Retrieval of Long-Term (1980–2024) Time Series of PM10 Concentration by an Empirical Method: The Paris, Cairo, and New Delhi Case Studies
Abstract
1. Introduction
2. Data and Methods
2.1. Model of Said et al.
2.2. Sites and Acquisition of Observational Data
2.2.1. Paris
2.2.2. Cairo
2.2.3. New Delhi
2.3. Experiments
Substitute Input Data Used and Description of the Experiments
2.4. Evaluation Metrics
3. Results and Discussion
3.1. Evaluation of the Empirical Method with Substitute Inputs and Comparison with the Reanalyses
3.2. Reconstruction of the PM10 Times Series (1980–2024) by the Empirical Method
3.3. Discussion
4. Summary and Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Intergovernmental Panel on Climate Change (IPCC). Climate Change 2021: The Physical Science Basis; Intergovernmental Panel on Climate Change (IPCC): Geneva, Switzerland, 2021; Available online: https://www.ipcc.ch (accessed on 15 June 2025).
- World Health Organization. Air Pollution and Health; World Health Organization: Geneva, Switzerland, 2021; Available online: https://www.who.int (accessed on 15 June 2025).
- Brook, R.D.; Rajagopalan, S.; Pope, C.A., III.; Brook, J.R.; Bhatnagar, A.; Diez-Roux, A.V.; Holguin, F.; Hong, Y.; Luepker, R.V.; Mittleman, M.A.; et al. Particulate Matter Air Pollution and Cardiovascular Disease: An Update to the Scientific Statement from the American Heart Association. Circulation 2010, 121, 2331–2378. [Google Scholar] [CrossRef]
- Emberson, L.D.; Ashmore, M.R.; Murray, F.; Kuylenstierna, J.C.I.; Percy, K.E.; Izuta, T.; Zheng, Y.; Shimizu, H.; Sheu, B.H.; Liu, C.P.; et al. Impacts of Air Pollutants on Vegetation in Developing Countries. Water Air Soil Pollut. 2001, 130, 107–118. [Google Scholar] [CrossRef]
- U.S. Environmental Protection Agency (EPA). Effects of Acid Rain; U.S. Environmental Protection Agency (EPA): Washington, DC, USA, 2023. Available online: https://www.epa.gov (accessed on 15 June 2025).
- Lo, W.-C.; Hu, T.-H.; Hwang, J.-S. Lifetime Exposure to PM2.5 Air Pollution and Disability Adjusted Life Years Due to Cardiopulmonary Disease: A Modeling Study Based on Nationwide Longitudinal Data. Sci. Total Environ. 2023, 855, 158901. [Google Scholar] [CrossRef]
- Lelieveld, J.; Evans, J.S.; Fnais, M.; Giannadaki, D.; Pozzer, A. The Contribution of Outdoor Air Pollution Sources to Premature Mortality on a Global Scale. Nature 2015, 525, 367–371. [Google Scholar] [CrossRef]
- Sicard, P.; Agathokleous, E.; Anenberg, S.C.; De Marco, A.; Paoletti, E.; Calatayud, V. Trends in Urban Air Pollution over the Last Two Decades: A Global Perspective. Science of The Total Environment 2023, 858 Pt 2, 160064. [Google Scholar] [CrossRef] [PubMed]
- European Commission. Directive (EU) 2024/2881 of the European Parliament and of the Council of 23 October 2024 on ambient air quality and cleaner air for Europe (recast). Off. J. Eur. Union 2024. Available online: https://eur-lex.europa.eu/eli/dir/2024/2881/oj/eng (accessed on 1 July 2025).
- European Environment Agency. Europe’s Air Quality Status 2024: Briefing; European Environment Agency: Luxembourg, 2024; Available online: https://www.eea.europa.eu/publications/europes-air-quality-status-2024 (accessed on 1 July 2025).
- U.S. Environmental Protection Agency. Final Reconsideration of the National Ambient Air Quality Standards for Particulate Matter (PM NAAQS); EPA: Washington, DC, USA, 2024. Available online: https://www.epa.gov/pm-pollution/final-reconsideration-national-ambient-air-quality-standards-particulate-matter-pm (accessed on 1 July 2025).
- Shi, Y.; Matsunaga, T.; Yamaguchi, Y.; Zhao, A.; Li, Z.; Gu, X. Long-Term Trends and Spatial Patterns of PM2.5-Induced Premature Mortality in Major Urban Areas of China. Sci. Total Environ. 2019, 631–632, 1504–1514. [Google Scholar] [CrossRef]
- European Environment Agency. Harm to Human Health from Air Pollution in Europe; EEA Report No 24/2023; European Environment Agency: Luxembourg, 2023; Available online: https://www.eea.europa.eu/publications/harm-to-human-health-from-air-pollution (accessed on 1 July 2025).
- Cooper, M.J.; Martin, R.V.; Hammer, M.S.; van Donkelaar, A.; Lyapustin, A.; Sayer, A.M.; Hsu, N.C.; Krotkov, N.A.; Brook, J.R.; Mallick, A.; et al. Global Fine-Scale Changes in Ambient NO2 during COVID-19 Lockdowns. Nature 2022, 601, 380–387. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Urrego, D.; Rodríguez-Urrego, L. Air Quality during the COVID-19: PM2.5 Analysis in the 50 Most Polluted Capital Cities in the World. Environ. Pollut. 2020, 266, 115042. [Google Scholar] [CrossRef]
- Putaud, J.-P.; Pisoni, E.; Mangold, A.; Hueglin, C.; Sciare, J.; Pikridas, M.; Savvides, C.; Ondracek, J.; Mbengue, S.; Wiedensohler, A.; et al. Impact of 2020 COVID-19 Lockdowns on Particulate Air Pollution across Europe. Atmos. Chem. Phys. 2023, 23, 10145–10161. [Google Scholar] [CrossRef]
- Viatte, C.; Petit, J.-E.; Yamanouchi, S.; Van Damme, M.; Doucerain, C.; Germain-Piaulenne, E.; Gros, V.; Favez, O.; Clarisse, L.; Coheur, P.-F.; et al. Ammonia and PM2.5 Air Pollution in Paris during the 2020 COVID-19 Lockdown. Atmosphere 2021, 12, 160. [Google Scholar] [CrossRef]
- Sicard, P.; De Marco, A.; Agathokleous, E.; Feng, Z.; Xu, X.; Paoletti, E.; Diéguez Rodríguez, J.J.; Calatayud, V. Amplified ozone pollution in cities during the COVID-19 lockdown. Sci. Total Environ. 2020, 735, 139542. [Google Scholar] [CrossRef] [PubMed]
- Cuesta, J.; Costantino, L.; Beekmann, M.; Siour, G.; Menut, L.; Bessagnet, B.; Landi, T.C.; Dufour, G.; Eremenko, M. Ozone pollution during the COVID-19 lockdown in the spring of 2020 over Europe, analysed from satellite observations, in situ measurements, and models. Atmos. Chem. Phys. 2022, 22, 4471–4489. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, T.; Stavrakou, T.; Elguindi, N.; Doumbia, T.; Granier, C.; Bouarar, I.; Gaubert, B.; Brasseur, G.P. Diverse Response of Surface Ozone to COVID-19 Lockdown in China. Sci. Total Environ. 2021, 789, 147739. [Google Scholar] [CrossRef]
- Mostafa, A.N.; Alfaro, S.; Cuesta, J.; Hassan, I.A.; Abdel Wahab, M.M. Surface Ozone Variability in Two Contrasting Megacities, Cairo and Paris, and Its Observation from Satellites. Atmosphere 2025, 16, 475. [Google Scholar] [CrossRef]
- Wang, J.; Christopher, S.A. Intercomparison between Satellite-Derived Aerosol Optical Thickness and PM2.5 Mass: Implications for Air Quality Studies. Geophys. Res. Lett. 2003, 30, 2095. [Google Scholar] [CrossRef]
- Gupta, P.; Christopher, S.A. Particulate Matter Air Quality Assessment Using Integrated Surface, Satellite, and Meteorological Products: A Neural Network Approach. J. Geophys. Res. Atmos. 2009, 114, D20205. [Google Scholar] [CrossRef]
- Shin, M.; Kang, Y.; Park, S.; Im, J.; Yoo, C.; Quackenbush, L.J. Estimating Ground-Level Particulate Matter Concentrations Using Satellite-Based Data: A Review. GIScience Remote Sens. 2020, 57, 174–189. [Google Scholar] [CrossRef]
- Inness, A.; Ades, M.; Agustí-Panareda, A.; Barré, J.; Benedictow, A.; Blechschmidt, A.M.; Dominguez, J.J.; Engelen, R.; Eskes, H.; Flemming, J.; et al. The CAMS Reanalysis of Atmospheric Composition. Atmos. Chem. Phys. 2019, 19, 3515–3556. [Google Scholar] [CrossRef]
- Li, Y.; Dhomse, S.S.; Chipperfield, M.P.; Feng, W.; Chrysanthou, A.; Xia, Y.; Guo, D. Effects of Reanalysis Forcing Fields on Ozone Trends and Age of Air from a Chemical Transport Model. Atmos. Chem. Phys. 2022, 22, 10635–10656. [Google Scholar] [CrossRef]
- Molod, A.; Takacs, L.; Suarez, M.; Bacmeister, J. Development of the GEOS-5 Atmospheric General Circulation Model: Evolution from MERRA to MERRA-2. Geosci. Model Dev. 2015, 8, 1339–1356. [Google Scholar] [CrossRef]
- Li, X.; Wang, Y.; Hu, X.; Zhang, W. Estimating Ground-Level PM2.5 Using AOD Retrievals from Satellite Observations and WRF-Chem Simulations. Atmos. Res. 2018, 214, 47–58. [Google Scholar] [CrossRef]
- Hu, X.; Belle, J.H.; Meng, X.; Wildani, A.; Waller, L.A.; Strickland, M.J.; Liu, Y. Estimating PM2.5 Concentrations in the Conterminous United States Using the Random Forest Approach. Environ. Sci. Technol. 2017, 51, 6936–6944. [Google Scholar] [CrossRef] [PubMed]
- Brokamp, C.; Jandarov, R.; Hossain, M.; Ryan, P. Predicting Daily Urban Fine Particulate Matter Concentrations Using a Random Forest Model. Environ. Sci. Technol. 2018, 52, 4173–4179. [Google Scholar] [CrossRef] [PubMed]
- Gupta, P.; Christopher, S.A. Particulate Matter Air Quality Assessment Using Integrated Surface, Satellite, and Meteorological Products: Multiple Regression Approach. J. Geophys. Res. Atmos. 2009, 114, D14205. [Google Scholar] [CrossRef]
- Zou, B.; Liu, L.; Huang, L.; Li, Z.; Li, D. Satellite-Based PM10 Estimation and Its Comparison with Reanalysis Datasets. Atmos. Pollut. Res. 2016, 7, 512–521. [Google Scholar]
- Tian, M.; Chen, Y. Correction of Vertical AOD Profiles for PM2.5 Estimation Using Planetary Boundary Layer Height and Relative Humidity. Atmos. Environ. 2010, 44, 905–910. [Google Scholar] [CrossRef]
- He, Q.; Huang, B. Satellite-Based Mapping of Daily High-Resolution Ground PM2.5 in China via Space-Time Regression Modeling. Remote Sens. Environ. 2018, 206, 72–83. [Google Scholar] [CrossRef]
- Said, S.; Salah, Z.; Abdel Wahab, M.M.; Alfaro, S.C. Retrieving PM10 Surface Concentration from AERONET Aerosol Optical Depth: The Cairo and Delhi Megacities Case Studies. J. Indian Soc. Remote Sens. 2023, 51, 1797–1807. [Google Scholar] [CrossRef]
- Holben, B.N.; Eck, T.F.; Slutsker, I.; Tanré, D.; Buis, J.P.; Setzer, A.; Vermote, E.; Reagan, J.A.; Kaufman, Y.J.; Nakajima, T.; et al. AERONET—A Federated Instrument Network and Data Archive for Aerosol Characterization. Remote Sens. Environ. 1998, 66, 1–16. [Google Scholar] [CrossRef]
- Giles, D.M.; Sinyuk, A.; Sorokin, M.G.; Schafer, J.S.; Smirnov, A.; Slutsker, I.; Eck, T.F.; Holben, B.N.; Lewis, J.R.; Campbell, J.R.; et al. Advancements in the Aerosol Robotic Network (AERONET) Version 3 Database—Automated Near-Real-Time Quality Control Algorithm with Improved Cloud Screening for Sun Photometer Aerosol Optical Depth (AOD) Measurements. Atmos. Meas. Tech. 2019, 12, 169–209. [Google Scholar] [CrossRef]
- Sinyuk, A.; Holben, B.N.; Eck, T.F.; Giles, D.M.; Slutsker, I.; Korkin, S.; Schafer, J.S.; Smirnov, A.; Sorokin, M.; Lyapustin, A. The AERONET Version 3 Aerosol Retrieval Algorithm, Associated Uncertainties and Comparisons to Version 2. Atmos. Meas. Tech. 2020, 13, 3375–3411. [Google Scholar] [CrossRef]
- Ångström, A. The Parameters of Atmospheric Turbidity. Tellus 1964, 16, 64–75. [Google Scholar] [CrossRef]
- Lei, L.; Sun, Y.; Ouyang, B.; Qiu, Y.; Xie, C.; Tang, G.; Zhou, W.; He, Y.; Wang, Q.; Cheng, X.; et al. Vertical Distributions of Primary and Secondary Aerosols in Urban Boundary Layer: Insights into Sources, Chemistry, and Interaction with Meteorology. Environ. Sci. Technol. 2021, 55, 4542–4552. [Google Scholar] [CrossRef]
- Mostafa, A.N.; Zakey, A.S.; Monem, A.S.; Abdel Wahab, M.M.A. Analysis of the Surface Air Quality Measurements in the Greater Cairo (Egypt) Metropolitan. Glob. J. Adv. Res. 2018, 5, 207–214. [Google Scholar]
- Hyvärinen, A.-P.; Lihavainen, H.; Komppula, M.; Panwar, T.S.; Sharma, V.P.; Hooda, R.K.; Viisanen, Y. Aerosol measurements at the Gual Pahari EUCAARI station: Preliminary results from in-situ measurements. Atmos. Chem. Phys. 2010, 10, 7241–7252. [Google Scholar] [CrossRef]
- Buchard, V.; Randles, C.A.; Da Silva, A.M.; Darmenov, A.; Colarco, P.R.; Govindaraju, R.; Ferrare, R.; Hair, J.; Beyersdorf, A.J.; Ziemba, L.D.; et al. The MERRA-2 Aerosol Reanalysis, 1980 Onward. Part II: Evaluation and Case Studies. J. Clim. 2017, 30, 6851–6872. [Google Scholar] [CrossRef]
- Randles, C.A.; Da Silva, A.M.; Buchard, V.; Colarco, P.R.; Darmenov, A.; Govindaraju, R.; Smirnov, A.; Holben, B.; Ferrare, R.; Hair, J.; et al. The MERRA-2 Aerosol Reanalysis, 1980 Onward. Part I: System Description and Data Assimilation Evaluation. J. Clim. 2017, 30, 6823–6850. [Google Scholar] [CrossRef]
- Gueymard, C.A.; Yang, D. Worldwide validation of CAMS and MERRA-2 reanalysis aerosol optical depth products using 15 years of AERONET observations. Atmos. Environ. 2020, 225, 117216. [Google Scholar] [CrossRef]
- Schober, P.; Boer, C.; Schwarte, L.A. Correlation Coefficients: Appropriate Use and Interpretation. Anesth. Analg. 2018, 126, 1763–1768. [Google Scholar] [CrossRef]
- Reich, N.G.; Lessler, J.; Sakrejda, K.; Lauer, S.A.; Iamsirithaworn, S.; Cummings, D.A.T. Case Study in Evaluating Time Series Prediction Models Using the Thailand Dengue Surveillance System. Epidemics 2016, 17, 33–43. [Google Scholar] [CrossRef]
- World Health Organization (WHO). WHO Global Air Quality Guidelines: Particulate Matter (PM2.5 and PM10), Ozone, Nitrogen Dioxide, Sulfur Dioxide and Carbon Monoxide; World Health Organization: Geneva, Switzerland, 2021; Available online: https://www.who.int/publications/i/item/9789240034228 (accessed on 19 September 2025).
- de Bont, J.; Krishna, B.; Stafoggia, M.; Banerjee, T.; Dholakia, H.; Garg, A.; Ingole, V.; Jaganathan, S.; Kloog, I.; Lane, K.; et al. Ambient Air Pollution and Daily Mortality in Ten Cities of India: A Causal Modelling Study. Lancet Planet. Health 2024, 8, e433–e440. [Google Scholar] [CrossRef]
- El-Metwally, M.; Alfaro, S.C.; Abdel Wahab, M.; Chatenet, B. Aerosol Characteristics over Urban Cairo: Seasonal Variations as Retrieved from Sun Photometer Measurements. J. Geophys. Res. Atmos. 2008, 113, D14219. [Google Scholar] [CrossRef]
- Global Volcanism Program. Volcanoes of the World; v. 5.2.8; Venzke, E., Ed.; Smithsonian Institution: Washington, DC, USA, 2024. [Google Scholar] [CrossRef]
- Boraiy, M.; El-Metwally, M.; Wheida, A.; El-Nazer, M.; Hassan, S.K.; El-Sanabary, F.F.; Alfaro, S.C.; Abdelwahab, M.; Borbon, A. Statistical analysis of the variability of reactive trace gases (SO2, NO2 and ozone) in Greater Cairo during dust storm events. J. Atmos. Chem. 2023, 80, 227–250. [Google Scholar] [CrossRef]
- Leon, J.-F.; Chazette, P.; Dulac, F.; Pelon, J.; Flamant, C.; Ramdriamiarisoa, H.; Cautenet, G. Large-scale advection of continental aerosols during INDOEX. J. Geophys. Res. Atmos. 2001, 106, 28427–28439. [Google Scholar] [CrossRef]
- Alfaro, S.C.; Gaudichet, A.; Rajot, J.L.; Gomes, L.; Maillé, M.; Cachier, H. Variability of aerosol size-resolved composition at an Indian coastal site during the Indian Ocean Experiment (INDOEX) Intensive Field Phase. J. Geophys. Res. Atmos. 2003, 108, 8641. [Google Scholar] [CrossRef]



| Experiment | 1 | 2 | 3 | 4 |
|---|---|---|---|---|
| AOD | AERONET | MODIS | CAMS | MERRA-2 |
| PW | AERONET | MODIS | CAMS | MERRA-2 |
| AE | AERONET | MODIS | CAMS | MERRA-2 |
| Exp. | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
|---|---|---|---|---|---|---|---|---|---|
| AOD | MODIS | CAMS | MER.-2 | AERO. | AERO. | AERO. | AERO. | AERO. | AERO. |
| PW | AERO. | AERO. | AERO. | MODIS | CAMS | MER.-2 | AERO. | AERO. | AERO. |
| AE | AERO. | AERO. | AERO. | AERO. | AERO. | AERO. | MODIS | CAMS | MER.-2 |
| PARIS | Empirical Model | Reanalyses | |||||
|---|---|---|---|---|---|---|---|
| Averaging (Days) | Exp. 1 | Exp. 2 | Exp. 3 | Exp. 4 | CAMS | MERRA-2 | |
| 1 | 0.74 | 0.59 | 0.55 | 0.69 | 0.57 | 0.37 | |
| R | 7 | 0.82 | 0.70 | 0.67 | 0.80 | 0.66 | 0.45 |
| 30 | 0.84 | 0.82 | 0.71 | 0.88 | 0.71 | 0.57 | |
| 1 | 8.4 | 10.0 | 10.1 | 8.5 | 8.9 | 10.0 | |
| RMSE | 7 | 5.1 | 6.5 | 6.9 | 5.1 | 5.4 | 7.1 |
| (µg·m−3) | 30 | 3.8 | 5.0 | 5.6 | 3.8 | 6.5 | 4.8 |
| 1 | 29 | 34 | 36 | 28 | 34 | 37 | |
| rMAE | 7 | 19 | 22 | 27 | 19 | 22 | 27 |
| (%) | 30 | 15 | 21 | 25 | 16 | 31 | 21 |
| New Delhi | Empirical Model | Reanalyses | |||||
|---|---|---|---|---|---|---|---|
| Averaging (Days) | Exp. 1 | Exp. 2 | Exp. 3 | Exp. 4 | CAMS | MERRA-2 | |
| 1 | 0.78 | 0.74 | 0.66 | 0.72 | 0.63 | 0.59 | |
| R | 7 | 0.85 | 0.83 | 0.80 | 0.84 | 0.80 | 0.65 |
| 30 | 0.95 | 0.95 | 0.95 | 0.96 | 0.84 | 0.72 | |
| 1 | 93.1 | 103.0 | 106.1 | 99.8 | 169.8 | 187.2 | |
| RMSE | 7 | 57.7 | 59.0 | 59.2 | 56.6 | 134.4 | 173.2 |
| (µg·m−3) | 30 | 36.7 | 30.4 | 30.2 | 31.5 | 52.5 | 161.0 |
| 1 | 21 | 28 | 26 | 23 | 56 | 65 | |
| rMAE | 7 | 15 | 17 | 18 | 17 | 53 | 64 |
| (%) | 30 | 11 | 11 | 13 | 10 | 21 | 63 |
| CAIRO | Empirical Model | Reanalyses | |||||
|---|---|---|---|---|---|---|---|
| Averaging (Days) | Exp. 1 | Exp. 2 | Exp. 3 | Exp. 4 | CAMS | MERRA-2 | |
| 1 | 0.78 | 0.41 | 0.54 | 0.56 | 0.51 | 0.52 | |
| R | 7 | 0.83 | 0.54 | 0.56 | 0.59 | 0.51 | 0.50 |
| 30 | 0.84 | 0.71 | 0.54 | 0.59 | 0.52 | 0.49 | |
| 1 | 40.3 | 69.2 | 70.8 | 70.4 | 65.9 | 89.6 | |
| RMSE | 7 | 23.5 | 41.8 | 56.6 | 56.9 | 42.7 | 72.7 |
| (µg·m−3) | 30 | 17.5 | 31.5 | 44.2 | 44.7 | 57.8 | 67.1 |
| 1 | 23 | 40 | 37 | 36 | 44 | 58 | |
| rMAE | 7 | 15 | 25 | 27 | 27 | 30 | 55 |
| (%) | 30 | 12 | 23 | 25 | 25 | 46 | 54 |
| Exp. 1 | Paris | New Delhi | Cairo | |
|---|---|---|---|---|
| AOD/C | Mean (m3 µg−1) | 6.76 × 10−3 | 3.01 × 10−3 | 3.55 × 10−3 |
| rSD | 62% | 73% | 35% | |
| C1 | −0.09 | 0.22 | 0.10 | |
| C2 (mm−1) | 0.019 | 0.040 | 0.007 | |
| C3 (m−1) | 6.22 × 10−4 | 3.42 × 10−4 | 9.18 × 10−5 | |
| AE | mean | 1.26 | 0.91 | 1.08 |
| rSD | 34% | 42% | 34% | |
| Correction_AE_rSD | 3.9% | 8.4% | 3.7% | |
| PW | Mean (mm) | 15.8 | 20.8 | 16.3 |
| rSD | 43% | 62% | 31% | |
| Correction_PW_rSD | 12.9% | 50.9% | 14.0% | |
| H | Mean (m) | 610 | 576 | 726 |
| rSD | 42% | 49% | 29% | |
| Correction_H_rSD | 15.9% | 9.6% | 1.9% |
| Influence of AOD | Influence of PW | Influence of AE | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| Experiment | 1 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | |
| Paris | |||||||||||
| R | 1D | 0.74 | 0.50 | 0.61 | 0.69 | 0.73 | 0.74 | 0.71 | 0.73 | 0.74 | 0.71 |
| RMSE (µg·m−3) | 1D | 8.4 | 13.0 | 10.7 | 8.6 | 8.6 | 8.5 | 8.9 | 8.7 | 8.4 | 8.9 |
| rMAE (%) | 1D | 29 | 43 | 36 | 28 | 30 | 30 | 33 | 29 | 29 | 33 |
| R | 7D | 0.82 | 0.58 | 0.73 | 0.80 | 0.81 | 0.82 | 0.79 | 0.78 | 0.82 | 0.78 |
| RMSE (µg·m−3) | 7D | 5.0 | 9.3 | 6.7 | 5.1 | 5.2 | 5.1 | 5.1 | 5.4 | 5.0 | 5.1 |
| rMAE (%) | 7D | 19 | 29 | 24 | 19 | 19 | 19 | 20 | 18 | 18 | 20 |
| R | 30D | 0.84 | 0.64 | 0.78 | 0.88 | 0.81 | 0.83 | 0.75 | 0.82 | 0.84 | 0.74 |
| RMSE (µg·m−3) | 30D | 3.8 | 6.8 | 5.3 | 3.8 | 3.9 | 3.9 | 3.6 | 4.4 | 3.8 | 3.7 |
| rMAE (%) | 30D | 15 | 24 | 21 | 16 | 15 | 15 | 15 | 17 | 15 | 15 |
| New Delhi | |||||||||||
| Experiment | 1 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | |
| R | 1D | 0.78 | 0.71 | 0.64 | 0.66 | 0.74 | 0.80 | 0.76 | 0.81 | 0.79 | 0.79 |
| RMSE (µg·m−3) | 1D | 93.1 | 106.4 | 110.9 | 106.9 | 98.7 | 85.4 | 97.8 | 91.4 | 86.4 | 89.9 |
| rMAE (%) | 1D | 21 | 26 | 25 | 23 | 25 | 23 | 23 | 21 | 21 | 21 |
| R | 7D | 0.85 | 0.80 | 0.76 | 0.81 | 0.85 | 0.89 | 0.85 | 0.90 | 0.87 | 0.87 |
| RMSE (µg·m−3) | 7D | 57.7 | 64.6 | 68.8 | 60.6 | 54.3 | 45.9 | 62.3 | 51.4 | 49.1 | 54.7 |
| rMAE (%) | 7D | 15 | 18 | 19 | 16 | 15 | 14 | 17 | 13 | 14 | 15 |
| R | 30D | 0.95 | 0.95 | 0.91 | 0.95 | 0.96 | 0.98 | 0.94 | 0.98 | 0.98 | 0.96 |
| RMSE (µg·m−3) | 30D | 36.7 | 34.4 | 43.1 | 32.7 | 28.3 | 18.8 | 42.4 | 29.7 | 23.4 | 34.5 |
| rMAE (%) | 30D | 11 | 14 | 16 | 10 | 10 | 8 | 13 | 11 | 10 | 11 |
| Cairo | |||||||||||
| Experiment | 1 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | |
| R | 1D | 0.78 | 0.53 | 0.54 | 0.63 | 0.60 | 0.61 | 0.78 | 0.58 | 0.62 | 0.78 |
| RMSE (µg·m−3) | 1D | 40.3 | 66.3 | 61.9 | 42.0 | 61.7 | 60.3 | 34.0 | 59.9 | 59.6 | 33.9 |
| rMAE (%) | 1D | 23 | 39 | 34 | 30 | 30 | 30 | 23 | 30 | 29 | 23 |
| R | 7D | 0.83 | 0.65 | 0.61 | 0.69 | 0.66 | 0.66 | 0.82 | 0.58 | 0.68 | 0.81 |
| RMSE (µg·m−3) | 7D | 23.4 | 39.1 | 38.8 | 29.9 | 38.5 | 38.4 | 22.7 | 39.1 | 37.3 | 23.0 |
| rMAE (%) | 7D | 15 | 25 | 24 | 20 | 22 | 23 | 15 | 23 | 22 | 15 |
| R | 30D | 0.84 | 0.73 | 0.61 | 0.68 | 0.73 | 0.71 | 0.81 | 0.66 | 0.73 | 0.80 |
| RMSE (µg·m−3) | 30D | 17.4 | 30.0 | 30.1 | 22.6 | 29.1 | 29.1 | 16.9 | 29.0 | 28.3 | 17.3 |
| rMAE (%) | 30D | 12 | 22 | 22 | 16 | 19 | 20 | 12 | 20 | 20 | 12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khaled, A.; Boraiy, M.; Eissa, Y.; El-Metwally, M.; Alfaro, S.C. Retrieval of Long-Term (1980–2024) Time Series of PM10 Concentration by an Empirical Method: The Paris, Cairo, and New Delhi Case Studies. Atmosphere 2025, 16, 1272. https://doi.org/10.3390/atmos16111272
Khaled A, Boraiy M, Eissa Y, El-Metwally M, Alfaro SC. Retrieval of Long-Term (1980–2024) Time Series of PM10 Concentration by an Empirical Method: The Paris, Cairo, and New Delhi Case Studies. Atmosphere. 2025; 16(11):1272. https://doi.org/10.3390/atmos16111272
Chicago/Turabian StyleKhaled, Ahlaam, Mohamed Boraiy, Yehia Eissa, Mossad El-Metwally, and Stephane C. Alfaro. 2025. "Retrieval of Long-Term (1980–2024) Time Series of PM10 Concentration by an Empirical Method: The Paris, Cairo, and New Delhi Case Studies" Atmosphere 16, no. 11: 1272. https://doi.org/10.3390/atmos16111272
APA StyleKhaled, A., Boraiy, M., Eissa, Y., El-Metwally, M., & Alfaro, S. C. (2025). Retrieval of Long-Term (1980–2024) Time Series of PM10 Concentration by an Empirical Method: The Paris, Cairo, and New Delhi Case Studies. Atmosphere, 16(11), 1272. https://doi.org/10.3390/atmos16111272

