The Spatiotemporal Dynamics of Air Pollutants and the Universal Thermal Climate Index in 370 Chinese Cities
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Universal Thermal Climate Index
2.3. Air Quality Data
2.4. Meteorological Data
2.5. XGBoost Regression Modeling
2.6. SHAP Model Interpretation
3. Results
3.1. Thermal Comfort and Extreme Weather Analysis
3.1.1. Summer Thermal Conditions
3.1.2. Winter Thermal Conditions
3.2. Contributions of Air Pollutants to UTCI
3.3. SHAP-Based Interpretation Across Climate Zones
4. Discussion
4.1. Meteorological Driving Mechanism of Impact of Air Pollution on Thermal Comfort
4.2. Seasonal and Diurnal Synergies
4.3. Implications and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Adnan, M.S.G.; Dewan, A.; Botje, D.; Shahid, S.; Hassan, Q.K. Vulnerability of Australia to Heatwaves: A Systematic Review on Influencing Factors, Impacts, and Mitigation Options. Environ. Res. 2022, 213, 113703. [Google Scholar] [CrossRef]
- Li, J.; Liu, N. The Perception, Optimization Strategies and Prospects of Outdoor Thermal Comfort in China: A Review. Build. Environ. 2020, 170, 106614. [Google Scholar] [CrossRef]
- Bröde, P.; Błazejczyk, K.; Fiala, D.; Havenith, G.; Holmér, I.; Jendritzky, G.; Kuklane, K.; Kampmann, B. The Universal Thermal Climate Index UTCI Compared to Ergonomics Standards for Assessing the Thermal Environment. Ind. Health 2013, 51, 16–24. [Google Scholar] [CrossRef]
- Golasi, I.; Salata, F.; de Vollaro, E.L.; Coppi, M.; Vollaro, A.d.L. Thermal Perception in the Mediterranean Area: Comparing the Mediterranean Outdoor Comfort Index (MOCI) to Other Outdoor Thermal Comfort Indices. Energies 2016, 9, 550. [Google Scholar] [CrossRef]
- Nikolopoulou, M.; Baker, N.; Steemers, K. Thermal Comfort in Outdoor Urban Spaces: Understanding the Human Parameter. Sol. Energy 2001, 70, 227–235. [Google Scholar] [CrossRef]
- Salata, F.; Golasi, I.; de Lieto Vollaro, R.; de Lieto Vollaro, A. Outdoor Thermal Comfort in the Mediterranean Area. A Transversal Study in Rome, Italy. Build. Environ. 2016, 96, 46–61. [Google Scholar] [CrossRef]
- Yahia, M.W.; Johansson, E. Evaluating the Behaviour of Different Thermal Indices by Investigating Various Outdoor Urban Environments in the Hot Dry City of Damascus, Syria. Int. J. Biometeorol. 2013, 57, 615–630. [Google Scholar] [CrossRef] [PubMed]
- Pantavou, K.; Santamouris, M.; Asimakopoulos, D.; Theoharatos, G. Empirical Calibration of Thermal Indices in an Urban Outdoor Mediterranean Environment. Build. Environ. 2014, 80, 283–292. [Google Scholar] [CrossRef]
- Pantavou, K.; Santamouris, M.; Asimakopoulos, D.; Theoharatos, G. Evaluating the Performance of Bioclimatic Indices on Quantifying Thermal Sensation for Pedestrians. Adv. Build. Energy Res. 2013, 7, 170–185. [Google Scholar] [CrossRef]
- Xu, T.; Yao, R.; Du, C.; Li, B.; Fang, F. A Quantitative Evaluation Model of Outdoor Dynamic Thermal Comfort and Adaptation: A Year-Long Longitudinal Field Study. Build. Environ. 2023, 237, 110308. [Google Scholar] [CrossRef]
- Zheng, B.; Tong, D.; Li, M.; Liu, F.; Hong, C.; Geng, G.; Li, H.; Li, X.; Peng, L.; Qi, J.; et al. Trends in China’s Anthropogenic Emissions since 2010 as the Consequence of Clean Air Actions. Atmos. Chem. Phys. 2018, 18, 14095–14111. [Google Scholar] [CrossRef]
- Connerton, P.; Vicente de Assunção, J.; Maura de Miranda, R.; Dorothée Slovic, A.; José Pérez-Martínez, P.; Ribeiro, H. Air Quality during COVID-19 in Four Megacities: Lessons and Challenges for Public Health. Int. J. Environ. Res. Public Health 2020, 17, 5067. [Google Scholar] [CrossRef]
- Huang, R.-J.; Zhang, Y.; Bozzetti, C.; Ho, K.-F.; Cao, J.-J.; Han, Y.; Daellenbach, K.R.; Slowik, J.G.; Platt, S.M.; Canonaco, F.; et al. High Secondary Aerosol Contribution to Particulate Pollution during Haze Events in China. Nature 2014, 514, 218–222. [Google Scholar] [CrossRef] [PubMed]
- Lu, K.-F.; He, H.-D.; Wang, H.-W.; Li, X.-B.; Peng, Z.-R. Characterizing Temporal and Vertical Distribution Patterns of Traffic-Emitted Pollutants near an Elevated Expressway in Urban Residential Areas. Build. Environ. 2020, 172, 106678. [Google Scholar] [CrossRef]
- Miao, C.; He, X.; Gao, Z.; Chen, W.; He, B.-J. Assessing the Vertical Synergies between Outdoor Thermal Comfort and Air Quality in an Urban Street Canyon Based on Field Measurements. Build. Environ. 2023, 227, 109810. [Google Scholar] [CrossRef]
- Miao, C.; Chen, W.; Yu, S. Assessing Ozone Distribution Vertically and Horizontally in Urban Street Canyons Based on Field Investigation and ENVI-Met Modelling. Buildings 2022, 12, 262. [Google Scholar] [CrossRef]
- Zhan, C.; Xie, M.; Liu, J.; Wang, T.; Xu, M.; Chen, B.; Li, S.; Zhuang, B.; Li, M. Surface Ozone in the Yangtze River Delta, China: A Synthesis of Basic Features, Meteorological Driving Factors, and Health Impacts. J. Geophys. Res. Atmos. 2021, 126, e2020JD033600. [Google Scholar] [CrossRef]
- Ahmed, T.; Kumar, P.; Mottet, L. Natural Ventilation in Warm Climates: The Challenges of Thermal Comfort, Heatwave Resilience and Indoor Air Quality. Renew. Sustain. Energy Rev. 2021, 138, 110669. [Google Scholar] [CrossRef]
- Cooper, E.; Wang, Y.; Stamp, S.; Burman, E.; Mumovic, D. Use of Portable Air Purifiers in Homes: Operating Behaviour, Effect on Indoor PM2.5 and Perceived Indoor Air Quality. Build. Environ. 2021, 191, 107621. [Google Scholar] [CrossRef]
- Rui, L.; Buccolieri, R.; Gao, Z.; Ding, W.; Shen, J. The Impact of Green Space Layouts on Microclimate and Air Quality in Residential Districts of Nanjing, China. Forests 2018, 9, 224. [Google Scholar] [CrossRef]
- Yilmaz, S.; Sezen, I.; Irmak, M.A.; Külekçi, E.A. Analysis of Outdoor Thermal Comfort and Air Pollution under the Influence of Urban Morphology in Cold-Climate Cities: Erzurum/Turkey. Environ. Sci. Pollut. Res. Int. 2021, 28, 64068–64083. [Google Scholar] [CrossRef]
- Fahad, M.G.R.; Karimi, M.; Nazari, R.; Sabrin, S. Developing a Geospatial Framework for Coupled Large Scale Thermal Comfort and Air Quality Indices Using High Resolution Gridded Meteorological and Station Based Observations. Sustain. Cities Soc. 2021, 74, 103204. [Google Scholar] [CrossRef]
- Miao, C.; Li, P.; Huang, Y.; Sun, Y.; Chen, W.; Yu, S. Coupling Outdoor Air Quality with Thermal Comfort in the Presence of Street Trees: A Pilot Investigation in Shenyang, Northeast China. J. For. Res. 2023, 34, 831–839. [Google Scholar] [CrossRef]
- Gu, B.; Zhang, X.; Lam, S.K.; Yu, Y.; van Grinsven, H.J.M.; Zhang, S.; Wang, X.; Bodirsky, B.L.; Wang, S.; Duan, J.; et al. Cost-Effective Mitigation of Nitrogen Pollution from Global Croplands. Nature 2023, 613, 77–84. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Zheng, Y.; Tong, D.; Shao, M.; Wang, S.; Zhang, Y.; Xu, X.; Wang, J.; He, H.; Liu, W.; et al. Drivers of Improved PM2.5 Air Quality in China from 2013 to 2017. Proc. Natl. Acad. Sci. USA 2019, 116, 24463–24469. [Google Scholar] [CrossRef] [PubMed]
- Lasantha, V.; Oki, T.; Tokuda, D. Data-Driven versus Köppen–Geiger Systems of Climate Classification. Adv. Meteorol. 2022, 2022, 3581299. [Google Scholar] [CrossRef]
- GB 3095-2012; Ambient Air Quality Standards. China Environmental Science Press: Beijing, China.
- Wu, S.; Liu, J.; Zhang, G.; Han, B.; Wu, R.; Chen, D. Evaluation of NCEP-CFSv2, ERA5, and CCMP Wind Datasets against Buoy Observations over Zhejiang Nearshore Waters. Ocean Eng. 2022, 259, 111832. [Google Scholar] [CrossRef]
- Gao, B.; Coon, E.T.; Thornton, P.E.; Lu, D. Improving the Estimation of Atmospheric Water Vapor Pressure Using Interpretable Long Short-Term Memory Networks. Agric. For. Meteorol. 2024, 347, 109907. [Google Scholar] [CrossRef]
- Park, H.; Park, D.Y. Prediction of Individual Thermal Comfort Based on Ensemble Transfer Learning Method Using Wearable and Environmental Sensors. Build. Environ. 2022, 207, 108492. [Google Scholar] [CrossRef]
- Kong, G.; Peng, J.; Corcoran, J. Modelling Urban Heat Island Effects: A Global Analysis of 216 Cities Using Machine Learning Techniques. Comput. Urban Sci. 2025, 5, 18. [Google Scholar] [CrossRef]
- Lundberg, S.M.; Erion, G.; Chen, H.; DeGrave, A.; Prutkin, J.M.; Nair, B.; Katz, R.; Himmelfarb, J.; Bansal, N.; Lee, S.-I. From Local Explanations to Global Understanding with Explainable AI for Trees. Nat. Mach. Intell. 2020, 2, 56–67. [Google Scholar] [CrossRef]
- Li, Y.; Jia, C.; Chen, H.; Su, H.; Chen, J.; Wang, D. Machine Learning Assessment of Damage Grade for Post-Earthquake Buildings: A Three-Stage Approach Directly Handling Categorical Features. Sustainability 2023, 15, 13847. [Google Scholar] [CrossRef]
- Bian, C.; Lee, C.C.; Chen, X.; Li, C.Y.; Hu, P. Quantifying the Thermal and Energy Impacts of Urban Morphology Using Multi-Source Data: A Multi-Scale Study in Coastal High-Density Contexts. Buildings 2025, 15, 2266. [Google Scholar] [CrossRef]
- Bröde, P.; Fiala, D.; Błażejczyk, K.; Holmér, I.; Jendritzky, G.; Kampmann, B.; Tinz, B.; Havenith, G. Deriving the Operational Procedure for the Universal Thermal Climate Index (UTCI). Int. J. Biometeorol. 2012, 56, 481–494. [Google Scholar] [CrossRef] [PubMed]
- Meehl, G.A.; Tebaldi, C. More Intense, More Frequent, and Longer Lasting Heat Waves in the 21st Century. Science 2004, 305, 994–997. [Google Scholar] [CrossRef]
- Jacobson, M.Z. Enhancement of Local Air Pollution by Urban CO2 Domes. Environ. Sci. Technol. 2010, 44, 2497–2502. [Google Scholar] [CrossRef]
- Huang, X.; Ding, A.; Wang, Z.; Ding, K.; Gao, J.; Chai, F.; Fu, C. Amplified Transboundary Transport of Haze by Aerosol–Boundary Layer Interaction in China. Nat. Geosci. 2020, 13, 428–434. [Google Scholar] [CrossRef]
- Luo, M.; Wu, S.; Lau, G.N.-C.; Pei, T.; Liu, Z.; Wang, X.; Ning, G.; Chan, T.O.; Yang, Y.; Zhang, W. Anthropogenic Forcing Has Increased the Risk of Longer-Traveling and Slower-Moving Large Contiguous Heatwaves. Sci. Adv. 2024, 10, eadl1598. [Google Scholar] [CrossRef]






| Code | Climate Zone | Main Characteristics | Geographical Distribution |
|---|---|---|---|
| A | Tropical | High temperatures year-round; significant annual precipitation. | Southernmost China, including parts of Hainan and southern Yunnan. |
| B | Arid | Low precipitation; large diurnal temperature variation; includes desert and steppe areas. | Northwestern China, especially Xinjiang and parts of Inner Mongolia. |
| C | Temperate | Mild temperatures; distinct four seasons with moderate rainfall. | Eastern and southeastern China, including the Yangtze River basin and coastal provinces. |
| D | Cold/Continental | Cold winters and warm summers; strong seasonality. | Northern and northeastern China, such as Heilongjiang, Jilin, and parts of Inner Mongolia. |
| Category | Variables/Settings |
|---|---|
| Air quality variables | PM2.5, PM10, SO2, NO2, O3, CO |
| Meteorological covariates | 2 m air temperature, relative humidity, wind speed, downward long-wave radiation, short-wave radiation |
| Diurnal period | Daytime (solar radiation > 0), nighttime (solar radiation = 0) |
| Seasonal windows | Summer (June–August), winter (December–February) |
| Condition | Total Samples | Training Samples (80%) | Testing Samples (20%) |
|---|---|---|---|
| Summer Daytime | 6533 | 5226 | 1307 |
| Summer Nighttime | 4417 | 3533 | 884 |
| Winter Daytime | 1691 | 1352 | 339 |
| Winter Nighttime | 1965 | 1572 | 393 |
| R2/RMSE | Summer | Winter |
|---|---|---|
| Daytime | 0.9646/1.4005 | 0.9865/1.5423 |
| Nighttime | 0.9346/1.9304 | 0.9188/3.7710 |
| R2/RMSE | A | B | C | D |
|---|---|---|---|---|
| Summer Daytime | 0.604/2.45 | 0.616/4.36 | 0.580/3.26 | 0.509/4.65 |
| Summer Nighttime | 0.446/1.17 | 0.459/3.39 | 0.391/2.24 | 0.429/3.92 |
| Winter Daytime | 0.635/4.74 | 0.483/6.53 | 0.468/4.10 | 0.422/6.79 |
| Winter Nighttime | 0.638/4.25 | 0.528/3.15 | 0.482/2.90 | 0.487/4.63 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, K.; Zhang, L.; Meng, Q.; Mona, A.; Pan, J.; Chen, S.; Lei, X.; Sun, M. The Spatiotemporal Dynamics of Air Pollutants and the Universal Thermal Climate Index in 370 Chinese Cities. Atmosphere 2025, 16, 1263. https://doi.org/10.3390/atmos16111263
Huang K, Zhang L, Meng Q, Mona A, Pan J, Chen S, Lei X, Sun M. The Spatiotemporal Dynamics of Air Pollutants and the Universal Thermal Climate Index in 370 Chinese Cities. Atmosphere. 2025; 16(11):1263. https://doi.org/10.3390/atmos16111263
Chicago/Turabian StyleHuang, Kaiqi, Linlin Zhang, Qingyan Meng, Allam Mona, Jing Pan, Shize Chen, Xuewen Lei, and Mengqi Sun. 2025. "The Spatiotemporal Dynamics of Air Pollutants and the Universal Thermal Climate Index in 370 Chinese Cities" Atmosphere 16, no. 11: 1263. https://doi.org/10.3390/atmos16111263
APA StyleHuang, K., Zhang, L., Meng, Q., Mona, A., Pan, J., Chen, S., Lei, X., & Sun, M. (2025). The Spatiotemporal Dynamics of Air Pollutants and the Universal Thermal Climate Index in 370 Chinese Cities. Atmosphere, 16(11), 1263. https://doi.org/10.3390/atmos16111263

