Heavy Metal Concentrations in Particulate Matter: A Case Study from Santo Domingo, Dominican Republic, 2022
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area and Sampling Design
2.2. Sample Collection and Gravimetric Analysis
2.3. Chemical Analysis (EDXRF)
2.4. Quality Assurance and Quality Control (QA/QC)
2.5. Data Handling and Statistical Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| As | Arsenic |
| Cd | Cadmium |
| Cr | Chromium |
| Cu | Copper |
| Fe | Iron |
| Hg | Mercury |
| Mn | Manganese |
| Ni | Nickel |
| Pb | Lead |
| PM | Particulate matter |
| PM10 | Particles with a diameter less than 10 m |
| PM2.5 | Particles with a diameter less than 2.5 m |
| V | Vanadium |
| XRF | X-ray fluorescence |
| Zn | Zinc |
Appendix A
| Site ID | Name | As | Cd | Cr | Cu | Fe | Hg | Mn | Ni | Pb | V | Zn | Latitude | Longitude |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | Los Prados School | 2.8 | 5.4 | 4.4 | 19.0 | 12.8 | 2.1 | 7.0 | 2.9 | 6.9 | 19.7 | 18.48 | −69.96 | |
| 2 | San Judas Tadeo School | 2.4 | 2.5 | 10.2 | 23.2 | 10.5 | 6.5 | 23.8 | 21.6 | 18.48 | −69.93 | |||
| 3 | UASD Faculty Club | 2.0 | 3.5 | 23.1 | 24.5 | 2.2 | 3.5 | 8.0 | 11.8 | 18.9 | 18.46 | −69.90 | ||
| 4 | Faculty of Health Sciences, UASD | 3.5 | 9.4 | 2.6 | 22.2 | 26.7 | 6.9 | 6.0 | 13.1 | 21.0 | 18.46 | −69.91 | ||
| 5 | University Geographic Institute, UASD | 3.2 | 2.8 | 20.7 | 7.5 | 2.3 | 4.0 | 6.0 | 9.9 | 18.8 | 19.0 | 18.47 | −69.88 | |
| 6 | Padre Valentín Salinero School | 2.4 | 3.3 | 6.1 | 23.2 | 17.6 | 6.8 | 5.5 | 20.9 | 18.46 | −69.94 | |||
| 7 | Padre Eulalio Antonio Arias Inoa School | 2.9 | 3.9 | 19.2 | 5.0 | 6.8 | 5.8 | 19.8 | 18.51 | −69.92 | ||||
| 8 | José Bordas Valdez School | 2.9 | 2.5 | 6.4 | 23.0 | 22.1 | 5.2 | 18.3 | 20.2 | 18.50 | −69.99 | |||
| 9 | Rosa Duarte School | 4.9 | 3.5 | 24.5 | 28.0 | 2.5 | 5.4 | 9.7 | 19.2 | 18.44 | −69.95 | |||
| 10 | Francisco Xavier Billini School | 2.8 | 23.9 | 15.8 | 6.2 | 20.4 | 18.44 | −69.96 | ||||||
| 11 | National Botanical Garden | 3.3 | 3.5 | 23.4 | 13.8 | 4.6 | 7.0 | 21.1 | 18.49 | −69.95 | ||||
| 12 | Escuela Básica Prof. María del Carmen Pérez Méndez | 2.5 | 20.1 | 4.0 | 5.7 | 6.7 | 20.6 | 18.53 | −69.97 | |||||
| 13 | Notre Dame School | 4.0 | 2.2 | 4.5 | 19.2 | 8.0 | 6.4 | 5.8 | 36.9 | 19.5 | 18.48 | −69.94 | ||
| 14 | Movearte Professional School | 2.1 | 4.9 | 7.3 | 20.4 | 11.0 | 7.4 | 3.7 | 12.1 | 17.9 | 18.43 | −69.98 | ||
| 15 | República Dominicana School | 3.1 | 20.9 | 14.6 | 7.4 | 11.3 | 24.0 | 19.2 | 18.49 | −69.91 | ||||
| 16 | Víctor Estrella Liz School | 3.2 | 2.4 | 25.6 | 9.5 | 3.8 | 2.4 | 12.2 | 22.3 | 19.5 | 18.49 | −69.93 | ||
| 17 | Association of Authorized Master Builders | 4.4 | 23.1 | 15.0 | 7.6 | 9.5 | 27.0 | 22.0 | 18.49 | −69.89 | ||||
| 18 | María Auxiliadora School | 5.0 | 3.9 | 21.8 | 10.8 | 7.6 | 10.6 | 19.6 | 18.50 | −69.89 | ||||
| 19 | Nuestra Señora del Carmen School | 2.6 | 2.1 | 4.0 | 21.8 | 13.3 | 4.2 | 6.2 | 5.4 | 19.5 | 18.51 | −69.90 | ||
| 20 | Salomé Ureña School | 2.6 | 10.0 | 5.4 | 22.5 | 8.5 | 4.3 | 3.0 | 7.1 | 22.6 | 19.6 | 18.50 | −69.90 | |
| 21 | American School of Santo Domingo | 3.1 | 23.8 | 11.2 | 7.2 | 5.5 | 20.5 | 18.51 | −69.94 | |||||
| 22 | The Community For Learning | 2.7 | 3.7 | 26.2 | 12.3 | 5.5 | 8.5 | 20.7 | 18.51 | −69.97 | ||||
| 23 | APEC University | 2.3 | 6.3 | 21.1 | 6.5 | 7.2 | 30.6 | 20.5 | 18.47 | −69.91 | ||||
| 24 | Prof. Adolfo González School | 2.4 | 6.9 | 21.2 | 8.8 | 2.7 | 7.8 | 8.6 | 19.8 | 18.54 | −69.98 | |||
| 25 | Capotillo School | 7.9 | 19.5 | 13.0 | 7.5 | 6.9 | 19.8 | 18.50 | −69.90 | |||||
| 26 | Aida Cartagena Portalatín School | 3.7 | 3.8 | 19.6 | 14.3 | 7.8 | 11.4 | 19.2 | 18.51 | −69.92 | ||||
| 27 | Arroyo Hondo School | 4.1 | 3.6 | 2.6 | 19.9 | 16.2 | 4.5 | 3.8 | 11.9 | 21.2 | 18.49 | −69.94 | ||
| 28 | Governorship of Mirador Sur Park | 2.4 | 6.6 | 22.3 | 13.9 | 2.5 | 4.4 | 10.0 | 20.7 | 20.3 | 18.44 | −69.96 | ||
| 29 | Agrarian Institute of Dominican Republic | 3.7 | 23.2 | 20.7 | 6.4 | 12.2 | 19.3 | 18.45 | −69.97 | |||||
| 30 | Private residence | 2.8 | 3.5 | 19.1 | 12.3 | 6.7 | 20.6 | 18.46 | −69.96 |
| Site ID | Name | As | Cd | Cr | Cu | Fe | Hg | Mn | Ni | Pb | V | Zn | Latitude | Longitude |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | Los Prados School | 4.3 | 20.6 | 6.0 | 2.7 | 7.1 | 8.4 | 18.2 | 18.48 | −69.96 | ||||
| 2 | San Judas Tadeo School | 3.2 | 3.5 | 15.5 | 8.0 | 2.9 | 7.4 | 11.2 | 19.9 | 18.48 | −69.93 | |||
| 3 | UASD Faculty Club | 6.7 | 2.8 | 16.5 | 21.4 | 4.1 | 6.7 | 20.3 | 21.1 | 18.46 | −69.90 | |||
| 4 | Faculty of Health Sciences, UASD | 3.5 | 9.4 | 2.6 | 22.2 | 26.7 | 6.9 | 6.0 | 13.1 | 21.0 | 18.46 | −69.91 | ||
| 5 | University Geographic Institute, UASD | 4.6 | 2.4 | 21.2 | 10.0 | 6.2 | 7.1 | 22.6 | 20.3 | 18.47 | −69.88 | |||
| 6 | Padre Valentín Salinero School | 3.3 | 3.7 | 23.1 | 13.8 | 7.6 | 12.9 | 19.8 | 18.46 | −69.94 | ||||
| 7 | Padre Eulalio Antonio Arias Inoa School | 2.8 | 2.3 | 19.6 | 12.6 | 6.6 | 5.9 | 2.8 | 20.3 | 18.51 | −69.92 | |||
| 8 | José Bordas Valdez School | 3.2 | 7.1 | 22.1 | 9.1 | 7.4 | 21.1 | 18.50 | −69.99 | |||||
| 9 | Rosa Duarte School | 6.9 | 6.8 | 18.4 | 9.5 | 2.2 | 6.4 | 6.7 | 20.6 | 18.44 | −69.95 | |||
| 10 | Francisco Xavier Billini School | 2.2 | 4.7 | 21.9 | 12.8 | 6.5 | 8.1 | 5.7 | 21.0 | 18.44 | −69.96 | |||
| 11 | National Botanical Garden | 5.3 | 24.3 | 10.2 | 2.1 | 6.1 | 9.7 | 4.2 | 20.4 | 18.49 | −69.95 | |||
| 12 | Escuela Básica Prof. María del Carmen Pérez Méndez | 2.6 | 21.4 | 8.8 | 7.0 | 6.5 | 6.3 | 20.1 | 18.53 | −69.97 | ||||
| 13 | Notre Dame School | 2.8 | 5.4 | 3.3 | 19.3 | 12.7 | 6.4 | 2.8 | 6.9 | 20.0 | 18.48 | −69.94 | ||
| 14 | Movearte Professional School | 2.9 | 3.5 | 19.2 | 4.1 | 7.5 | 2.2 | 13.9 | 19.6 | 18.43 | −69.98 | |||
| 15 | República Dominicana School | 19.6 | 11.4 | 6.1 | 19.8 | 18.49 | −69.91 | |||||||
| 16 | Víctor Estrella Liz School | 2.6 | 8.9 | 2.1 | 20.5 | 14.8 | 4.6 | 9.6 | 20.2 | 18.49 | −69.93 | |||
| 17 | Association of Authorized Master Builders | 2.3 | 24.1 | 18.7 | 6.2 | 2.5 | 7.4 | 21.2 | 18.49 | −69.89 | ||||
| 18 | María Auxiliadora School | 2.8 | 4.9 | 6.2 | 21.3 | 5.8 | 3.0 | 6.0 | 7.9 | 19.2 | 18.50 | −69.89 | ||
| 19 | Nuestra Señora del Carmen School | 4.9 | 4.0 | 4.1 | 20.9 | 16.9 | 3.9 | 4.6 | 6.4 | 31.6 | 21.0 | 18.51 | −69.90 | |
| 20 | Salomé Ureña School | 2.4 | 4.2 | 25.5 | 6.1 | 7.6 | 8.4 | 19.9 | 18.50 | −69.90 | ||||
| 21 | American School of Santo Domingo | 7.8 | 2.7 | 19.2 | 13.2 | 4.6 | 13.9 | 20.6 | 18.51 | −69.94 | ||||
| 22 | The Community For Learning | 3.1 | 20.0 | 18.9 | 2.2 | 6.3 | 8.2 | 16.9 | 20.2 | 18.51 | −69.97 | |||
| 23 | APEC University | 4.2 | 21.6 | 11.4 | 2.1 | 3.6 | 3.3 | 43.6 | 18.9 | 18.47 | −69.91 | |||
| 24 | Prof. Adolfo González School | 3.6 | 2.0 | 6.6 | 24.1 | 10.9 | 6.1 | 8.3 | 3.1 | 19.6 | 18.54 | −69.98 | ||
| 25 | Capotillo School | 3.2 | 3.5 | 15.5 | 8.0 | 2.9 | 7.4 | 11.2 | 19.9 | 18.50 | −69.90 | |||
| 26 | Aida Cartagena Portalatín School | 5.7 | 5.3 | 23.3 | 28.4 | 6.1 | 9.2 | 20.9 | 18.51 | −69.92 | ||||
| 27 | Arroyo Hondo School | 3.5 | 5.3 | 20.4 | 17.5 | 7.1 | 12.9 | 18.3 | 20.4 | 18.49 | −69.94 | |||
| 28 | Governorship of Mirador Sur Park | 3.8 | 23.9 | 8.3 | 5.8 | 7.3 | 4.6 | 6.0 | 19.5 | 18.44 | −69.96 | |||
| 29 | Agrarian Institute of Dominican Republic | 2.1 | 6.3 | 4.2 | 23.4 | 8.2 | 2.4 | 3.5 | 6.1 | 19.5 | 18.45 | −69.97 | ||
| 30 | Private residence | 2.4 | 5.6 | 26.0 | 10.9 | 5.9 | 5.1 | 20.1 | 18.46 | −69.96 |
Appendix B
| Element | DL Determined (ppm) |
|---|---|
| K | 109.7 |
| Ca | 159.4 |
| Ti | 13.0 |
| V | 3.3 |
| Cr | 1.7 |
| Mn | 3.8 |
| Fe | 12.7 |
| Ni | 0.9 |
| Cu | 5.4 |
| Zn | 5.4 |
| As | 0.0 |
| Br | 0.2 |
| Sr | 0.2 |
| Cd | 0.6 |
| Hg | 0.2 |
| Pb | 0.9 |
References
- Anderson, J.O.; Thundiyil, J.G.; Stolbach, A. Clearing the Air: A Review of the Effects of Particulate Matter Air Pollution on Human Health. J. Med. Toxicol. 2012, 8, 166–175. [Google Scholar] [CrossRef]
- World Health Organization. The World Health Report 2002: Reducing Risks, Promoting Healthy Life; World Health Organization: Geneva, Switzerland, 2002. [Google Scholar]
- World Health Organization. WHO Global Air Quality Guidelines: Particulate Matter (PM2.5 and PM10), Ozone, Nitrogen Dioxide, Sulfur Dioxide and Carbon Monoxide; World Health Organization: Geneva, Switzerland, 2021. [Google Scholar]
- Goossens, J.; Jonckheere, A.C.; Dupont, L.J.; Bullens, D.M.A. Air Pollution and the Airways: Lessons from a Century of Human Urbanization. Atmosphere 2021, 12, 898. [Google Scholar] [CrossRef]
- Anjum, M.S.; Ali, S.M.; Imad-Ud-Din, M.; Subhani, M.A.; Anwar, M.N.; Nizami, A.S.; Ashraf, U.; Khokhar, M.F. An Emerged Challenge of Air Pollution and Ever-Increasing Particulate Matter in Pakistan; A Critical Review. J. Hazard. Mater. 2021, 402, 123943. [Google Scholar] [CrossRef]
- Sicard, P.; Agathokleous, E.; Anenberg, S.C.; De Marco, A.; Paoletti, E.; Calatayud, V. Trends in urban air pollution over the last two decades: A global perspective. Sci. Total Environ. 2023, 858, 160064. [Google Scholar] [CrossRef]
- Sanda, M.; Dunea, D.; Iordache, S.; Predescu, L.; Predescu, M.; Pohoata, A.; Onutu, I. Recent Urban Issues Related to Particulate Matter in Ploiesti City, Romania. Atmosphere 2023, 14, 746. [Google Scholar] [CrossRef]
- Wang, Z.; Chen, J.; Zhou, C.; Wang, S.; Li, M. The Impacts of Urban Form on PM2.5 Concentrations: A Regional Analysis of Cities in China from 2000 to 2015. Atmosphere 2022, 13, 963. [Google Scholar] [CrossRef]
- Xiao, K.; Wang, Y.; Wu, G.; Fu, B.; Zhu, Y. Spatiotemporal Characteristics of Air Pollutants (PM10, PM2.5, SO2, NO2, O3, and CO) in the Inland Basin City of Chengdu, Southwest China. Atmosphere 2018, 9, 74. [Google Scholar] [CrossRef]
- U.S. Environmental Protection Agency. Integrated Science Assessment (ISA) for Particulate Matter (Final Report, December 2019); Final Report, Technical Report EPA/600/R-19/188; U.S. Environmental Protection Agency: Washington, DC, USA, 2019. [Google Scholar]
- Cohen, A.J.; Brauer, M.; Burnett, R.; Anderson, H.R.; Frostad, J.; Estep, K.; Balakrishnan, K.; Brunekreef, B.; Dandona, L.; Dandona, R.; et al. Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: An analysis of data from the Global Burden of Diseases Study 2015. Lancet 2017, 389, 1907–1918. [Google Scholar] [CrossRef] [PubMed]
- Murray, C.J.; Aravkin, A.Y.; Zheng, P.; Abbafati, C.; Abbas, K.M.; Abbasi-Kangevari, M.; Abd-Allah, F.; Abdelalim, A.; Abdollahi, M.; Abdollahpour, I.; et al. Global burden of 87 risk factors in 204 countries and territories, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet 2020, 396, 1223–1249. [Google Scholar] [CrossRef] [PubMed]
- Jaishankar, M.; Tseten, T.; Anbalagan, N.; Mathew, B.B.; Beeregowda, K.N. Toxicity, mechanism and health effects of some heavy metals. Interdiscip. Toxicol. 2014, 7, 60–72. [Google Scholar] [CrossRef] [PubMed]
- WHO Regional Office for Europe. Review of Evidence on Health Aspects of Air Pollution—REVIHAAP; Technical Report; WHO Europe: Copenhagen, Denmark, 2013. [Google Scholar]
- Silva, R.A.; West, J.J.; Lamarque, J.F.; Shindell, D.T.; Collins, W.J.; Faluvegi, G.; Folberth, G.A.; Horowitz, L.W.; Nagashima, T.; Naik, V.; et al. Future global mortality from changes in air pollution attributable to climate change. Nat. Clim. Change 2017, 7, 647–651. [Google Scholar] [CrossRef]
- Asif, M.; Yousuf, S.; Donald, A.N.; Hassan, A.M.M.; Iqbal, A.; Bodlah, M.A.; Sharf, B.; Noshia, N. A review on particulate matter and heavy metal emissions; impacts on the environment, detection techniques and control strategies. MOJ Ecol. Environ. Sci. 2021, 7, 1–5. [Google Scholar] [CrossRef]
- Alharbi, H.A.; Rushdi, A.I.; Bazeyad, A.; Al-Mutlaq, K.F. Temporal Variations, Air Quality, Heavy Metal Concentrations, and Environmental and Health Impacts of Atmospheric PM2.5 and PM10 in Riyadh City, Saudi Arabia. Atmosphere 2024, 15, 1448. [Google Scholar] [CrossRef]
- Contini, D.; Cesari, D.; Donateo, A.; Chirizzi, D.; Belosi, F. Characterization of PM10 and PM2.5 and Their Metals Content in Different Typologies of Sites in South-Eastern Italy. Atmosphere 2014, 5, 435–453. [Google Scholar] [CrossRef]
- Alwadei, M.; Srivastava, D.; Alam, M.S.; Shi, Z.; Bloss, W.J. Chemical characteristics and source apportionment of particulate matter (PM2.5) in Dammam, Saudi Arabia: Impact of dust storms. Atmos. Environ. X 2022, 14, 100164. [Google Scholar] [CrossRef]
- Querol, X.; Alastuey, A.; Viana, M.; Rodriguez, S.; Artiñano, B.; Salvador, P.; Garcia do Santos, S.; Fernandez Patier, R.; Ruiz, C.; de la Rosa, J.; et al. Speciation and origin of PM10 and PM2.5 in Spain. J. Aerosol Sci. 2004, 35, 1151–1172. [Google Scholar] [CrossRef]
- Buseck, P.R.; Adachi, K. Nanoparticles in the Atmosphere. Elements 2008, 4, 389–394. [Google Scholar] [CrossRef]
- Harrison, R.M.; Yin, J. Particulate matter in the atmosphere: Which particle properties are important for its effects on health? Sci. Total Environ. 2000, 249, 85–101. [Google Scholar] [CrossRef]
- Zhang, R.; Jing, J.; Tao, J.; Hsu, S.C.; Wang, G.; Cao, J.; Lee, C.S.L.; Zhu, L.; Chen, Z.; Zhao, Y.; et al. Chemical characterization and source apportionment of PM2.5 in Beijing: Seasonal perspective. Atmos. Chem. Phys. 2013, 13, 7053–7074. [Google Scholar] [CrossRef]
- Pant, P.; Harrison, R.M. Estimation of the contribution of road traffic emissions to particulate matter concentrations from field measurements: A review. Atmos. Environ. 2013, 77, 78–97. [Google Scholar] [CrossRef]
- Duffus, J.H. “Heavy metals”—A meaningless term. Chem. Int.-Newsmag. IUPAC 2001, 23, 163–167. [Google Scholar] [CrossRef]
- Maret, W. Zinc Biochemistry: From a Single Zinc Enzyme to a Key Element of Life. Adv. Nutr. 2013, 4, 82–91. [Google Scholar] [CrossRef]
- Tchounwou, P.B.; Yedjou, C.G.; Patlolla, A.K.; Sutton, D.J. Heavy Metal Toxicity and the Environment. In Molecular, Clinical and Environmental Toxicology: Volume 3: Environmental Toxicology; Springer: Basel, Switzerland, 2012; pp. 133–164. [Google Scholar] [CrossRef]
- Pope, C.A., III; Dockery, D.W. Health Effects of Fine Particulate Air Pollution: Lines that Connect. J. Air Waste Manag. Assoc. 2006, 56, 709–742. [Google Scholar] [CrossRef]
- Valko, M.; Morris, H.; Cronin, M.T.D. Metals, Toxicity and Oxidative Stress. Curr. Med. Chem. 2005, 12, 1161–1208. [Google Scholar] [CrossRef]
- Goudarzi, G.; Shirmardi, M.; Naimabadi, A.; Ghadiri, A.; Sajedifar, J. Chemical and organic characteristics of PM2.5 particles and their in-vitro cytotoxic effects on lung cells: The Middle East dust storms in Ahvaz, Iran. Sci. Total Environ. 2019, 655, 434–445. [Google Scholar] [CrossRef]
- Galeano-Páez, C.; Brango, H.; Pastor-Sierra, K.; Coneo-Pretelt, A.; Arteaga-Arroyo, G.; Peñata-Taborda, A.; Espitia-Pérez, P.; Ricardo-Caldera, D.; Humanez-Álvarez, A.; Londoño-Velasco, E.; et al. Genotoxicity and Cytotoxicity Induced In Vitro by Airborne Particulate Matter (PM2.5) from an Open-Cast Coal Mining Area. Atmosphere 2024, 15, 1420. [Google Scholar] [CrossRef]
- Chen, W.; Ge, P.; Deng, M.; Liu, X.; Lu, Z.; Yan, Z.; Chen, M.; Wang, J. Toxicological responses of A549 and HCE-T cells exposed to fine particulate matter at the air–liquid interface. Environ. Sci. Pollut. Res. 2024, 31, 27375–27387. [Google Scholar] [CrossRef]
- Figueiredo, D.; Vicente, E.D.; Vicente, A.; Gonçalves, C.; Lopes, I.; Alves, C.A.; Oliveira, H. Toxicological and Mutagenic Effects of Particulate Matter from Domestic Activities. Toxics 2023, 11, 505. [Google Scholar] [CrossRef]
- Hu, A.; Li, R.; Chen, G.; Chen, S. Impact of Respiratory Dust on Health: A Comparison Based on the Toxicity of PM2.5, Silica, and Nanosilica. Int. J. Mol. Sci. 2024, 25, 7654. [Google Scholar] [CrossRef]
- Kabata-Pendias, A. Trace Elements in Soils and Plants; CRC Press: Boca Raton, FL, USA, 2000. [Google Scholar] [CrossRef]
- Burger, J. Bioindicators: Types, Development, and Use in Ecological Assessment and Research. Environ. Bioindic. 2006, 1, 22–39. [Google Scholar] [CrossRef]
- Riojas-Rodríguez, H.; Da Silva, A.S.; Texcalac-Sangrador, J.L.; Moreno-Banda, G.L. Air pollution management and control in Latin America and the Caribbean: Implications for climate change. Rev. Panam. Salud Pública 2016, 40, 150–159. [Google Scholar]
- Li, Q.Q.; Guo, Y.T.; Yang, J.Y.; Liang, C.S. Review on main sources and impacts of urban ultrafine particles: Traffic emissions, nucleation, and climate modulation. Atmos. Environ. X 2023, 19, 100221. [Google Scholar] [CrossRef]
- Espinal, G.; Nivar, S. Estudio de la contaminación ambiental al interior de las viviendas en tres barrios de la capital dominicana. Cienc. Y Soc. 2004, 29, 167–212. [Google Scholar] [CrossRef]
- Caballero-González, C. Calidad del Aire e Infraestructura Verde. Estudio de Caso: Distrito Nacional. Master’s Thesis, Instituto Tecnológico de Santo Domingo (INTEC), Santo Domingo, Dominican Republic, 2020. [Google Scholar]
- Gómez Pérez, A.; Guillermo Manzanillo, L.A.; Vázquez Frías, J.; Quintana Pérez, C.E. Contaminación atmosférica en puntos seleccionados de la ciudad de Santo Domingo, República Dominicana. Cienc. Soc. 2014, 39, 533–557. [Google Scholar] [CrossRef]
- Martinuzzi, S.; Locke, D.H.; Ramos-González, O.; Sanchez, M.; Grove, J.M.; Muñoz-Erickson, T.A.; Arendt, W.J.; Bauer, G. Exploring the relationships between tree canopy cover and socioeconomic characteristics in tropical urban systems: The case of Santo Domingo, Dominican Republic. Urban For. Urban Green. 2021, 62, 127125. [Google Scholar] [CrossRef]
- Matos-Espinosa, C.; Delanoy, R.; Caballero-González, C.; Hernández-Garces, A.; Jauregui-Haza, U.; Bonilla-Duarte, S.; Martínez-Batlle, J.R. Assessment of PM10 and PM2.5 Concentrations in Santo Domingo: A Comparative Study Between 2019 and 2022. Atmosphere 2025, 16, 734. [Google Scholar] [CrossRef]
- Airmetrics. MiniVol Portable Air Sampler Operation Manual; Airmetrics: Eugene, OR, USA, 2007. [Google Scholar]
- Airmetrics. MiniVol TAS Portable Air Sampler; Airmetrics: Eugene, OR, USA, 2024. [Google Scholar]
- U.S. Environmental Protection Agency. Part 50—National Primary and Secondary Ambient Air Quality Standards U.S. Government Publishing Office. Available online: https://www.ecfr.gov/current/title-40/part-50 (accessed on 3 March 2025).
- Skyray Instrument Inc. RoHS4 Software, version 1.1.47_110524_R; Skyray Instrument Inc.: Kunshan, China, 2009.
- Skyray Instrument Inc. RoHS4 User Manual; Skyray Instrument Inc.: Kunshan, China, 2010. [Google Scholar]
- United States Environmental Protection Agency (USEPA). Method 6200: Field Portable X-ray Fluorescence Spectrometry for the Determination of Elemental Concentrations in Soil and Sediment. 2007. Available online: https://www.epa.gov/sites/default/files/2015-12/documents/6200.pdf (accessed on 3 March 2025).
- ISO/IEC 17025:2017; General Requirements for the Competence of Testing and Calibration Laboratories. International Organization for Standardization: Geneva, Switzerland, 2017.
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2024. [Google Scholar]
- Wickham, H.; Averick, M.; Bryan, J.; Chang, W.; McGowan, L.D.; François, R.; Grolemund, G.; Hayes, A.; Henry, L.; Hester, J.; et al. Welcome to the tidyverse. J. Open Source Softw. 2019, 4, 1686. [Google Scholar] [CrossRef]
- Pebesma, E.J. Multivariable geostatistics in S: The gstat package. Comput. Geosci. 2004, 30, 683–691. [Google Scholar] [CrossRef]
- Gräler, B.; Pebesma, E.; Heuvelink, G. Spatio-Temporal Interpolation using gstat. R J. 2016, 8, 204–218. [Google Scholar] [CrossRef]
- Hiemstra, P.; Pebesma, E.; Twenhöfel, C.; Heuvelink, G. Real-time automatic interpolation of ambient gamma dose rates from the Dutch Radioactivity Monitoring Network. Comput. Geosci. 2009, 35, 1711–1721. [Google Scholar] [CrossRef]
- Neuwirth, E. RColorBrewer: ColorBrewer Palettes; R Package Version 1.1-3; R Foundation for Statistical Computing: Vienna, Austria, 2022. [Google Scholar]
- Lee, L. NADA: Nondetects and Data Analysis for Environmental Data; R Package Version 1.6-1.1; R Foundation for Statistical Computing: Vienna, Austria, 2020. [Google Scholar]
- Stacklies, W.; Redestig, H.; Scholz, M.; Walther, D.; Selbig, J. pcaMethods—A Bioconductor package providing PCA methods for incomplete data. Bioinformatics 2007, 23, 1164–1167. [Google Scholar] [CrossRef]
- Shoari, N.; Dubé, J.S. Toward improved analysis of concentration data: Embracing nondetects. Environ. Toxicol. Chem. 2018, 37, 643–656. [Google Scholar] [CrossRef]
- Matheron, G. Principles of geostatistics. Econ. Geol. 1963, 58, 1246–1266. [Google Scholar] [CrossRef]
- Cressie, N. Geostatistics. Am. Stat. 1989, 43, 197–202. [Google Scholar] [CrossRef]
- Isaaks, E.H.; Srivastava, R.M. Applied Geostatistics; Oxford University Press: New York, NY, USA, 1989; Volume 561. [Google Scholar]
- Goovaerts, P. Geostatistics for Natural Resources Evaluation; Oxford University Press: Oxford, UK, 1997. [Google Scholar]
- Pebesma, E.; Bivand, R. Spatial Data Science: With Applications in R; Chapman and Hall/CRC: Boca Raton, FL, USA, 2023. [Google Scholar] [CrossRef]
- Pebesma, E. Simple Features for R: Standardized Support for Spatial Vector Data. R J. 2018, 10, 439–446. [Google Scholar] [CrossRef]
- Wickham, H. ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2016. [Google Scholar]
- Pedersen, T.L. patchwork: The Composer of Plots; R Package Version 1.2.0; R Foundation for Statistical Computing: Vienna, Austria, 2024. [Google Scholar]
- Beckhoff, B.; Kanngießer, H.B.; Langhoff, N.; Wedell, R.; Wolff, H. (Eds.) Handbook of Practical X-Ray Fluorescence Analysis; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar] [CrossRef]
- Becker, S. Inorganic Mass Spectrometry: Principles and Applications; Wiley: Hoboken, NJ, USA, 2008. [Google Scholar]
- Niu, J.; Rasmussen, P.E.; Wheeler, A.; Williams, R.; Chénier, M. Evaluation of airborne particulate matter and metals data in personal, indoor and outdoor environments using ED-XRF and ICP-MS and co-located duplicate samples. Atmos. Environ. 2010, 44, 235–245. [Google Scholar] [CrossRef]
- PerkinElmer, Inc. Sensitivity, Background, Noise, and Calibration in Atomic Spectroscopy: Effects on Accuracy and Detection Limits; White Paper; PerkinElmer, Inc.: Waltham, MA, USA, 2018; pp. 1–11. [Google Scholar]
- Wold, H. Estimation of principal components and related models by iterative least squares. Multivar. Anal. 1966, 391–420. [Google Scholar]
- Wold, S.; Esbensen, K.; Geladi, P. Principal component analysis. Chemom. Intell. Lab. Syst. 1987, 2, 37–52. [Google Scholar] [CrossRef]
- Henry, R.C.; Lewis, C.W.; Hopke, P.K.; Williamson, H.J. Review of receptor model fundamentals. Atmos. Environ. 1984, 18, 1507–1515. [Google Scholar] [CrossRef]
- Celo, V.; Yassine, M.M.; Dabek-Zlotorzynska, E. Insights into Elemental Composition and Sources of Fine and Coarse Particulate Matter in Dense Traffic Areas in Toronto and Vancouver, Canada. Toxics 2021, 9, 264. [Google Scholar] [CrossRef]
- Jeong, H.; Ryu, J.S.; Ra, K. Characteristics of potentially toxic elements and multi-isotope signatures (Cu, Zn, Pb) in non-exhaust traffic emission sources. Environ. Pollut. 2022, 292, 118339. [Google Scholar] [CrossRef]
- Yang, J.; Ma, L.; He, X.; Au, W.C.; Miao, Y.; Wang, W.X.; Nah, T. Measurement report: Abundance and fractional solubilities of aerosol metals in urban Hong Kong—Insights into factors that control aerosol metal dissolution in an urban site in South China. Atmos. Chem. Phys. 2023, 23, 1403–1419. [Google Scholar] [CrossRef]
- Rasoazanany, E.O.; Andriamahenina, N.N.; Ravoson, H.N.; Andriambololona, R.; Randriamanivo, L.V.; Ramaherison, H.; Ahmed, H.; Harinoely, M. Air pollution studies in terms of PM2.5, PM2.5–10, PM10, lead and black carbon in urban areas of Antananarivo—Madagascar. arXiv 2012, arXiv:1204.1498. [Google Scholar]
- Laidlaw, M.A.; Filippelli, G.M. Resuspension of urban soils as a persistent source of lead poisoning in children: A review and new directions. Appl. Geochem. 2008, 23, 2021–2039. [Google Scholar] [CrossRef]
- Mielke, H.W.; Laidlaw, M.A.; Gonzales, C. Lead (Pb) legacy from vehicle traffic in eight California urbanized areas: Continuing influence of lead dust on children’s health. Sci. Total Environ. 2010, 408, 3965–3975. [Google Scholar] [CrossRef]
- Resongles, E.; Dietze, V.; Green, D.C.; Harrison, R.M.; Ochoa-Gonzalez, R.; Tremper, A.H.; Weiss, D.J. Strong evidence for the continued contribution of lead deposited during the 20th century to the atmospheric environment in London of today. Proc. Natl. Acad. Sci. USA 2021, 118, e2102791118. [Google Scholar] [CrossRef]
- O’Day, P.A.; Pattammattel, A.; Aronstein, P.; Leppert, V.J.; Forman, H.J. Iron Speciation in Respirable Particulate Matter and Implications for Human Health. Environ. Sci. Technol. 2022, 56, 7006–7016. [Google Scholar] [CrossRef] [PubMed]
- Furutani, H.; Jung, J.; Miura, K.; Takami, A.; Kato, S.; Kajii, Y.; Uematsu, M. Single-particle chemical characterization and source apportionment of iron-containing atmospheric aerosols in Asian outflow. J. Geophys. Res. Atmos. 2011, 116, D18204. [Google Scholar] [CrossRef]
- Spada, N.J.; Cheng, X.; White, W.H.; Hyslop, N.P. Decreasing Vanadium Footprint of Bunker Fuel Emissions. Environ. Sci. Technol. 2018, 52, 11528–11534. [Google Scholar] [CrossRef] [PubMed]
- Tao, L.; Fairley, D.; Kleeman, M.J.; Harley, R.A. Effects of Switching to Lower Sulfur Marine Fuel Oil on Air Quality in the San Francisco Bay Area. Environ. Sci. Technol. 2013, 47, 10171–10178. [Google Scholar] [CrossRef] [PubMed]
- González-Romero, A.; González-Flórez, C.; Panta, A.; Yus-Díez, J.; Reche, C.; Córdoba, P.; Moreno, N.; Alastuey, A.; Kandler, K.; Klose, M.; et al. Variability in sediment particle size, mineralogy, and Fe mode of occurrence across dust-source inland drainage basins: The case of the lower Drâa Valley, Morocco. Atmos. Chem. Phys. 2023, 23, 15815–15834. [Google Scholar] [CrossRef]
- Morton-Bermea, O.; Hernández-Alvarez, E.; Almorín-Ávila, M.A.; Ordoñez-Godínez, S.; Bermendi-Orosco, L.; Retama, A. Historical trends of metals concentration in PM10 collected in the Mexico City metropolitan area between 2004 and 2014. Environ. Geochem. Health 2021, 43, 2781–2798. [Google Scholar] [CrossRef]
- Silva, L.F.; Schneider, I.L.; Artaxo, P.; Núñez-Blanco, Y.; Pinto, D.; Flores, É.M.M.; Gómez-Plata, L.; Ramírez, O.; Dotto, G.L. Particulate matter geochemistry of a highly industrialized region in the Caribbean: Basis for future toxicological studies. Geosci. Front. 2022, 13, 101115. [Google Scholar] [CrossRef]
- La Colla, N.S.; Botté, S.E.; Marcovecchio, J.E. Atmospheric particulate pollution in South American megacities. Environ. Rev. 2021, 29, 415–429. [Google Scholar] [CrossRef]
- Harrison, R.M.; Jones, A.M.; Lawrence, R.G. Major component composition of PM10 and PM2.5 from roadside and urban background sites. Atmos. Environ. 2004, 38, 4531–4538. [Google Scholar] [CrossRef]
- Karagulian, F.; Belis, C.A.; Dora, C.F.C.; Prüss-Ustün, A.M.; Bonjour, S.; Adair-Rohani, H.; Amann, M. Contributions to cities’ ambient particulate matter (PM): A systematic review of local source contributions at global level. Atmos. Environ. 2015, 120, 475–483. [Google Scholar] [CrossRef]
- Yuan, C.S.; Lu, C.C.; Shen, H.Z.; Li, T.C. Metallic characteristics of PM2.5 and PM2.5–10 for clustered Aeolian Dust Episodes occurred in an extensive fluvial basin during rainy season. J. Air Waste Manag. Assoc. 2018, 68, 1085–1102. [Google Scholar] [CrossRef]
- Xue, H.; Liu, G.; Zhang, H.; Hu, R.; Wang, X. Similarities and differences in PM10 and PM2.5 concentrations, chemical compositions and sources in Hefei City, China. Chemosphere 2019, 220, 760–765. [Google Scholar] [CrossRef]
- Manchanda, C.; Kumar, M.; Singh, V.; Hazarika, N.; Faisal, M.; Lalchandani, V.; Shukla, A.; Dave, J.; Rastogi, N.; Tripathi, S.N. Chemical speciation and source apportionment of ambient PM2.5 in New Delhi before, during, and after the Diwali fireworks. Atmos. Pollut. Res. 2022, 13, 101428. [Google Scholar] [CrossRef]
- Varrica, D.; Alaimo, M.G. Determination of water-soluble trace elements in the PM10 and PM2.5 of Palermo Town (Italy). Int. J. Environ. Res. Public Health 2023, 20, 724. [Google Scholar] [CrossRef]
- McComb, J.Q.; Rogers, C.; Han, F.X.; Tchounwou, P.B. Rapid Screening of Heavy Metals and Trace Elements in Environmental Samples Using Portable X-Ray Fluorescence Spectrometer, A Comparative Study. Water Air Soil Pollut. 2014, 225, 2169. [Google Scholar] [CrossRef]
- Cai, J.; Ge, Y.; Li, H.; Yang, C.; Liu, C.; Meng, X.; Wang, W.; Niu, C.; Kan, L.; Schikowski, T.; et al. Application of land use regression to assess exposure and identify potential sources in PM2.5, BC, NO2 concentrations. Atmos. Environ. 2020, 223, 117267. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Cheng, N.; Li, S.; Dong, M.; Wang, X.; Ge, L.; Guo, T.; Li, W.; Gao, X. An Amended Chemical Mass Balance Model for Source Apportionment of PM2.5 in Typical Chinese Eastern Coastal Cities. CLEAN—Soil Air Water 2019, 47, 1800115. [Google Scholar] [CrossRef]





| Metal | Mean | Median | Max | Min | Standard Deviation | Standard Error | Variance | N Censored |
|---|---|---|---|---|---|---|---|---|
| As | 2.48 | 2.40 | 4.9 | 1.17 | 0.88 | 0.16 | 0.77 | 10 |
| Cd | 3.20 | 2.50 | 10.0 | 0.58 | 2.39 | 0.44 | 5.71 | 11 |
| Cr | 4.04 | 3.70 | 10.2 | 1.31 | 2.08 | 0.38 | 4.32 | 6 |
| Cu | 21.89 | 22.00 | 26.2 | 19.00 | 1.98 | 0.36 | 3.91 | 0 |
| Fe | 13.32 | 12.90 | 28.0 | 4.94 | 6.10 | 1.11 | 37.19 | 14 |
| Ni | 6.29 | 6.75 | 8.0 | 2.40 | 1.40 | 0.26 | 1.97 | 1 |
| Pb | 6.78 | 6.10 | 12.2 | 2.27 | 3.10 | 0.57 | 9.60 | 7 |
| V | 13.07 | 9.32 | 36.9 | 2.41 | 9.18 | 1.68 | 84.32 | 15 |
| Zn | 20.04 | 19.80 | 22.0 | 17.90 | 0.90 | 0.16 | 0.80 | 0 |
| Metal | Mean | Median | Max | Min | Standard Deviation | Standard Error | Variance | N Censored |
|---|---|---|---|---|---|---|---|---|
| Cd | 3.79 | 3.20 | 9.4 | 0.83 | 2.39 | 0.44 | 5.73 | 10 |
| Cr | 3.89 | 3.60 | 7.1 | 1.51 | 1.57 | 0.29 | 2.45 | 3 |
| Cu | 21.15 | 21.25 | 26.0 | 15.50 | 2.66 | 0.49 | 7.08 | 0 |
| Fe | 11.60 | 9.91 | 28.4 | 3.41 | 6.43 | 1.17 | 41.36 | 19 |
| Ni | 6.25 | 6.35 | 7.6 | 3.50 | 1.11 | 0.20 | 1.23 | 0 |
| Pb | 6.55 | 6.55 | 12.9 | 1.67 | 3.35 | 0.61 | 11.23 | 4 |
| V | 8.61 | 4.10 | 43.6 | 0.38 | 10.27 | 1.88 | 105.56 | 16 |
| Zn | 20.14 | 20.15 | 21.2 | 18.20 | 0.70 | 0.13 | 0.50 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matos-Espinosa, C.; Delanoy, R.; Hernández-Garces, A.; Jauregui-Haza, U.; Martínez-Batlle, J.-R. Heavy Metal Concentrations in Particulate Matter: A Case Study from Santo Domingo, Dominican Republic, 2022. Atmosphere 2025, 16, 1236. https://doi.org/10.3390/atmos16111236
Matos-Espinosa C, Delanoy R, Hernández-Garces A, Jauregui-Haza U, Martínez-Batlle J-R. Heavy Metal Concentrations in Particulate Matter: A Case Study from Santo Domingo, Dominican Republic, 2022. Atmosphere. 2025; 16(11):1236. https://doi.org/10.3390/atmos16111236
Chicago/Turabian StyleMatos-Espinosa, Carime, Ramón Delanoy, Anel Hernández-Garces, Ulises Jauregui-Haza, and José-Ramón Martínez-Batlle. 2025. "Heavy Metal Concentrations in Particulate Matter: A Case Study from Santo Domingo, Dominican Republic, 2022" Atmosphere 16, no. 11: 1236. https://doi.org/10.3390/atmos16111236
APA StyleMatos-Espinosa, C., Delanoy, R., Hernández-Garces, A., Jauregui-Haza, U., & Martínez-Batlle, J.-R. (2025). Heavy Metal Concentrations in Particulate Matter: A Case Study from Santo Domingo, Dominican Republic, 2022. Atmosphere, 16(11), 1236. https://doi.org/10.3390/atmos16111236

