Examination of Long-Term Temperature Change in Türkiye: Comparative Evaluation of an Advanced Quartile-Based Approach and Traditional Trend Detection Methods
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area and Data
2.2. Methodology
2.2.1. Mann–Kendall Test
2.2.2. Linear Regression Analysis (LRA)
2.2.3. Sen’s Slope Test
2.2.4. Innovative Trend Analysis (ITA)
2.2.5. Quartile Based Trend (QuarTrend) Analysis
- Increasing Trend: If Q1(SH) > Q1(FH), Q2(SH) > Q2(FH), and Q3(SH) > Q3(FH);
- Decreasing Trend: If Q1(SH) < Q1(FH), Q2(SH) < Q2(FH), and Q3(SH) < Q3(FH);
- No Trend: If all three quartiles in one of the two half series are not greater than those in the other,
3. Results
3.1. Trend Analysis of Temperature Series in Türkiye
3.2. Trend Slopes
4. Discussion
4.1. Comparison of the Results with Previous Studies Conducted in Türkiye, in the Region, and Around the World
4.2. Comparison of the Results of the Trend Analysis Methodologies
- (a)
- In mean annual temperatures, the average slope of the series without trend was calculated as 0.01, while the average slope of the series with trend was calculated as 0.03;
- (b)
- In maximum annual temperatures, the average slope of the series without trend was calculated as 0.015, while the average slope of the series with trend was calculated as 0.039;
- (c)
- In minimum annual temperatures, the average slope of the series without trend was calculated as 0.02, while the average slope of the series with trend was calculated as 0.068.
- (a)
- For the mean annual temperature series
- -
- Almost all methods showed the same (increasing) trend for 78 of the 81 stations.
- -
- Only 1 station (Erzurum) had a trend slope below the trend slope threshold (0.01).
- (b)
- For the maximum annual temperatures series
- -
- All the 5 trend methods showed the same result at 54 stations (51 increasing trend and 3 no trend).
- -
- Three traditional trend tests fail to detect trends in 17 of 81 stations (21%) with trend slopes above the lower slope threshold (0.015).
- -
- In 9 stations only ITA detected an increasing trend. Less than half of these trends (33%) were above the trend slope threshold (0.015).
- -
- In 14 stations, only ITA and QT detected an increasing trend, where most of the linear trend slopes of these stations (79%) were above the trend slope threshold (0.015).
- (c)
- For the minimum annual temperatures series
- -
- All the 5 trend methods showed the same result in 41 stations (39 increasing trend, 1 decreasing trend and 1 no trend).
- -
- Three traditional trend tests fail to detect trends in 20 of 81 stations (25%) with trend slopes above the lower slope threshold (0.02).
- -
- In 16 stations only ITA detected an increasing trend. Less than half of these trends (44%) were above the trend slope threshold (0.02).
- -
- For the maximum annual temperature series in 14 stations only ITA and QT detected an increasing trend, where most of the linear trend slopes of these stations (79%) were above the trend threshold (0.02).
- -
- Although all trend analysis methods showed almost the same results for the mean temperature series (Tmean), significant differences between the methods occur in the extreme value series (Tmax, Tmin).
- -
- It has been determined that three traditional trend tests are not always sufficient to detect a trend when evaluated in terms of trend slope.
- -
- The fact that “ITA sometimes detects trends that do not really exist”, which has been stated in some previous studies, is confirmed here as well.
- -
- The QT method proposed in this study is positioned somewhere between traditional trend methods and ITA in terms of trend detection and makes more rational trend detections when the trend slope is taken into account.
- -
- The reason why QT method gives rational results, especially for extreme value series, is that both positive and negative skewness are taken into account by comparing the first and third quartiles (Q1 and Q3) as well as the medians (Q2) of the half series.
5. Conclusions
- As to our knowledge, there is no current temperature trend study covering the whole country for Türkiye. The studies conducted are either regional or do not take into account all the mean, maximum and minimum temperatures.
- The study did not only focus on the results of trend analyses at a certain level of significance but also examined the relationship between the detected trends and the trend slope.
- The QT method proposed in this study is a robust trend analysis method based on quartiles and it is suitable for detecting trend analysis of positively or negatively skewed series.
- The QT method, which uses order statistics, is less sensitive to outliers than trend analysis methods based on means, medians, or linear regression.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Station | Latitude | Longitude | Altitude | Tmean | Tmax | Tmin | Period of Data | |||
---|---|---|---|---|---|---|---|---|---|---|
Cs | Cs | Cs | ||||||||
Adana | 37.00 | 35.34 | 23 | 19.38 | 0.39 | 40.17 | 0.35 | −1.72 | −0.36 | 1960–2022 |
Adıyaman | 37.76 | 38.28 | 672 | 17.43 | 0.21 | 42.45 | −0.01 | 1.69 | −0.09 | 1963–2022 |
Afyon | 38.74 | 30.56 | 1034 | 11.33 | 0.29 | 35.71 | 0.27 | −15.30 | −0.49 | 1960–2022 |
Ağrı | 39.73 | 43.05 | 1646 | 6.55 | 2.04 | 35.21 | −0.10 | −32.68 | −0.21 | 1969–2022 |
Aksaray | 38.37 | 34.00 | 970 | 12.31 | 0.27 | 36.98 | −0.19 | −15.62 | −0.52 | 1964–2022 |
Amasya | 40.67 | 35.84 | 409 | 13.64 | 0.42 | 40.11 | 0.02 | −10.35 | −0.91 | 1961–2022 |
Ankara | 39.97 | 32.86 | 891 | 12.15 | 0.39 | 37.13 | −0.04 | −13.23 | −0.39 | 1960–2022 |
Antalya | 36.89 | 30.68 | 6 | 18.81 | −0.19 | 41.85 | 0.47 | −0.36 | −0.05 | 1960–2022 |
Ardahan | 41.11 | 42.71 | 1827 | 3.89 | 0.35 | 30.90 | −0.37 | −30.48 | 0.38 | 1961–2022 |
Artvin | 41.18 | 41.82 | 613 | 12.27 | 0.40 | 37.65 | 0.37 | −7.21 | 0.23 | 1960–2022 |
Aydın | 37.84 | 27.84 | 56 | 17.77 | 0.53 | 41.45 | 0.04 | −3.25 | 0.23 | 1960–2022 |
Balıkesir | 39.63 | 27.92 | 102 | 16.11 | 0.14 | 39.18 | 0.49 | −6.92 | −0.61 | 1960–2022 |
Bartın | 41.62 | 32.36 | 33 | 12.95 | 0.36 | 36.70 | 0.16 | −9.06 | −0.64 | 1965–2022 |
Batman | 37.86 | 41.16 | 610 | 16.34 | −0.16 | 43.70 | −0.09 | −10.94 | −0.84 | 1963–2022 |
Bayburt | 40.25 | 40.22 | 1584 | 7.17 | 0.42 | 34.12 | 0.28 | −22.36 | 0.41 | 1961–2022 |
Bilecik | 40.14 | 29.98 | 539 | 12.60 | 0.36 | 36.85 | 0.10 | −9.47 | 0.06 | 1960–2022 |
Bingöl | 38.88 | 40.50 | 1139 | 12.25 | −0.09 | 39.12 | −0.01 | −16.24 | 0.09 | 1961–2022 |
Bitlis | 38.48 | 42.16 | 1785 | 9.37 | 0.50 | 33.78 | −0.07 | −15.17 | 0.20 | 1965–2022 |
Bolu | 40.73 | 31.60 | 743 | 10.53 | 0.33 | 35.95 | −0.13 | −15.40 | −0.32 | 1960–2022 |
Burdur | 37.72 | 30.29 | 957 | 13.33 | 0.21 | 37.33 | 0.60 | −9.73 | 0.26 | 1960–2022 |
Bursa | 40.23 | 29.01 | 100 | 14.70 | 0.34 | 37.98 | 0.67 | −8.97 | −0.70 | 1960–2022 |
Çanakkale | 40.14 | 26.40 | 6 | 15.28 | 0.86 | 35.81 | 0.44 | −5.50 | −0.08 | 1960–2022 |
Çankırı | 40.61 | 33.61 | 755 | 11.35 | 0.45 | 38.14 | −0.15 | −14.47 | −0.63 | 1960–2022 |
Çorum | 40.55 | 34.94 | 776 | 10.80 | 0.56 | 37.10 | 0.32 | −15.63 | −0.55 | 1960–2022 |
Denizli | 37.76 | 29.09 | 425 | 16.31 | 0.30 | 39.91 | 0.45 | −6.00 | −0.23 | 1960–2022 |
Diyarbakır | 37.90 | 40.20 | 674 | 15.98 | −0.22 | 42.85 | −0.57 | −11.67 | −0.65 | 1960–2022 |
Düzce | 40.84 | 31.15 | 146 | 13.33 | 0.40 | 37.26 | −0.06 | −10.11 | −0.38 | 1963–2022 |
Edirne | 41.68 | 26.55 | 51 | 13.86 | 0.74 | 38.14 | 0.38 | −10.67 | −0.68 | 1960–2022 |
Elazığ | 38.64 | 39.26 | 989 | 13.26 | 0.01 | 39.38 | −0.12 | −12.42 | −0.57 | 1960–2022 |
Erzincan | 39.75 | 39.49 | 1216 | 11.05 | 0.11 | 37.37 | −0.14 | −17.62 | 0.04 | 1960–2022 |
Erzurum | 39.95 | 41.19 | 1758 | 5.67 | −0.07 | 32.88 | 0.00 | −29.02 | 0.21 | 1960–2022 |
Eskişehir | 39.77 | 30.55 | 801 | 11.53 | 0.51 | 36.58 | 0.14 | −13.25 | −0.45 | 1960–2022 |
Gaziantep | 37.06 | 37.35 | 854 | 15.49 | 0.12 | 40.23 | 0.19 | −8.09 | −0.83 | 1960–2022 |
Giresun | 40.92 | 38.39 | 38 | 14.77 | 0.52 | 32.02 | 0.45 | −2.02 | −0.74 | 1960–2022 |
Gümüşhane | 40.46 | 39.47 | 1216 | 9.71 | 0.53 | 37.59 | −0.39 | −16.98 | −0.01 | 1965–2022 |
Hakkari | 37.57 | 43.74 | 1720 | 10.29 | −1.81 | 35.09 | −2.59 | −17.18 | 0.47 | 1961–2022 |
Hatay | 36.24 | 36.13 | 104 | 18.37 | −0.24 | 39.47 | −0.01 | −2.16 | −0.25 | 1960–2022 |
Iğdır | 39.92 | 44.05 | 856 | 12.34 | 0.07 | 38.42 | 0.08 | −16.95 | −0.35 | 1960–2022 |
Isparta | 37.78 | 30.57 | 997 | 12.35 | 0.44 | 35.92 | 0.25 | −11.65 | −0.69 | 1960–2022 |
İçel | 36.78 | 34.60 | 7 | 19.43 | 0.17 | 35.29 | 0.79 | 0.16 | −0.35 | 1960–2022 |
İstanbul | 40.91 | 29.16 | 18 | 15.32 | 0.28 | 35.98 | 0.51 | −3.27 | −1.57 | 1960–2022 |
İzmir | 38.39 | 27.08 | 29 | 18.06 | 0.54 | 39.21 | 0.32 | −1.78 | −0.13 | 1960–2022 |
Karabük | 41.20 | 32.63 | 278 | 13.18 | −0.91 | 39.20 | −0.33 | −11.64 | −0.92 | 1965–2022 |
Karaman | 37.19 | 33.22 | 1018 | 12.10 | 0.26 | 37.10 | 0.23 | −17.49 | −0.32 | 1963–2022 |
Kars | 40.60 | 43.11 | 1777 | 5.01 | 0.16 | 32.29 | −0.29 | −28.09 | 0.43 | 1960–2022 |
Kastamonu | 41.37 | 33.78 | 800 | 9.84 | 0.27 | 36.18 | 0.59 | −14.81 | −0.11 | 1960–2022 |
Kayseri | 38.69 | 35.50 | 1094 | 10.64 | 0.17 | 37.46 | 0.07 | −20.60 | −0.30 | 1960–2022 |
Kilis | 36.71 | 37.11 | 640 | 17.35 | 0.21 | 41.24 | 0.07 | −4.72 | −0.62 | 1960–2022 |
Kırıkkale | 39.84 | 33.52 | 751 | 12.58 | 0.46 | 38.03 | 0.07 | −12.84 | −0.77 | 1963–2022 |
Kırklareli | 41.74 | 27.22 | 232 | 13.43 | −0.04 | 37.31 | 0.19 | −9.66 | −0.25 | 1961–2022 |
Kırşehir | 39.16 | 34.16 | 1007 | 11.65 | 0.38 | 36.49 | 0.35 | −15.73 | −0.30 | 1960–2022 |
Kocaeli | 40.77 | 29.92 | 74 | 15.04 | 0.56 | 37.11 | 0.76 | −4.10 | −0.27 | 1961–2022 |
Konya | 37.98 | 32.57 | 1031 | 11.77 | 0.06 | 36.29 | 0.49 | −15.60 | −0.65 | 1960–2022 |
Kütahya | 39.42 | 29.99 | 969 | 10.88 | 0.51 | 35.84 | 0.11 | −14.70 | −0.33 | 1960–2022 |
Malatya | 38.34 | 38.22 | 950 | 13.94 | 0.20 | 39.36 | 0.09 | −11.12 | −0.36 | 1960–2022 |
Manisa | 38.62 | 27.40 | 71 | 16.95 | 0.30 | 41.28 | 0.31 | −4.82 | −0.44 | 1960–2022 |
Maraş | 37.58 | 36.92 | 572 | 16.92 | 0.13 | 41.51 | 0.01 | −5.23 | −0.12 | 1963–2022 |
Mardin | 37.31 | 40.73 | 1040 | 16.27 | −0.11 | 39.83 | −0.47 | −6.91 | −0.24 | 1960–2022 |
Muğla | 37.21 | 28.37 | 646 | 15.20 | −0.01 | 38.85 | 0.01 | −6.10 | −0.34 | 1960–2022 |
Muş | 38.75 | 41.50 | 1322 | 9.90 | 0.04 | 37.53 | 0.13 | −25.12 | 0.96 | 1964–2022 |
Nevşehir | 38.62 | 34.70 | 1260 | 10.84 | 0.24 | 35.47 | 0.10 | −15.89 | 0.05 | 1960–2022 |
Niğde | 37.96 | 34.68 | 1211 | 11.26 | 0.14 | 35.55 | 0.12 | −16.94 | 0.24 | 1960–2022 |
Ordu | 40.98 | 37.89 | 5 | 14.57 | 0.39 | 32.47 | 0.71 | −2.79 | −0.13 | 1964–2022 |
Osmaniye | 37.10 | 36.25 | 94 | 18.22 | 0.12 | 40.40 | 0.28 | −3.68 | −0.47 | 1970–2022 |
Rize | 41.04 | 40.50 | 3 | 14.55 | 0.49 | 32.11 | 0.50 | −2.45 | −0.19 | 1960–2022 |
Sakarya | 40.77 | 30.39 | 30 | 14.68 | 0.64 | 37.79 | 0.40 | −6.00 | −0.83 | 1960–2022 |
Samsun | 41.34 | 36.26 | 4 | 14.71 | 0.42 | 33.57 | 0.40 | −3.04 | −0.05 | 1960–2022 |
Siirt | 37.93 | 41.94 | 895 | 16.42 | −0.05 | 41.52 | 0.12 | −8.22 | −0.27 | 1960–2022 |
Sinop | 42.03 | 35.15 | 32 | 14.44 | 0.72 | 31.33 | 1.24 | −2.02 | 0.02 | 1960–2022 |
Sivas | 39.74 | 37.00 | 1294 | 9.27 | 0.22 | 36.01 | 0.15 | −20.57 | 0.10 | 1960–2022 |
Şırnak | 37.52 | 42.45 | 1375 | 20.02 | −1.16 | 45.93 | −0.10 | −3.31 | −0.41 | 1966–2022 |
Tekirdağ | 40.96 | 27.50 | 4 | 14.21 | 0.50 | 33.92 | 0.96 | −7.17 | −0.04 | 1960–2022 |
Tokat | 40.33 | 36.56 | 611 | 12.54 | 0.31 | 38.48 | 0.37 | −12.59 | −0.45 | 1960–2022 |
Trabzon | 41.00 | 39.76 | 33 | 15.00 | 0.49 | 32.48 | 0.47 | −2.08 | 0.13 | 1960–2022 |
Tunceli | 39.11 | 39.54 | 914 | 12.94 | −0.17 | 39.87 | −0.69 | −16.80 | −0.39 | 1964–2022 |
Şanlıurfa | 37.16 | 38.79 | 550 | 18.67 | 0.05 | 43.17 | 0.34 | −3.93 | −0.07 | 1960–2022 |
Uşak | 38.67 | 29.40 | 919 | 12.64 | 0.38 | 36.17 | −0.11 | −10.68 | −0.45 | 1960–2022 |
Van | 38.47 | 43.35 | 1675 | 9.59 | −0.04 | 33.13 | 0.36 | −16.80 | −0.69 | 1960–2022 |
Yalova | 40.66 | 29.28 | 4 | 14.77 | 0.45 | 35.01 | 0.74 | −3.94 | −0.82 | 1961–2022 |
Yozgat | 39.82 | 34.82 | 1301 | 9.31 | 0.19 | 34.07 | 0.03 | −16.66 | 0.25 | 1960–2022 |
Zonguldak | 41.45 | 31.78 | 135 | 13.89 | 0.47 | 33.23 | 0.30 | −3.69 | 0.15 | 1960–2022 |
References
- Intergovernmental Panel on Climate Change (IPCC) (Ed.) Climate Change 2007—The Physical Science Basis; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Intergovernmental Panel on Climate Change (IPCC) (Ed.) Climate Change 2013—The Physical Science Basis; Cambridge University Press: Cambridge, UK, 2014; ISBN 9781107057999. [Google Scholar]
- Şen, Z. Global Warming Quantification by Innovative Trend Template Method. Int. J. Glob. Warm. 2017, 12, 499. [Google Scholar] [CrossRef]
- CRU. Global Temperature Record. Available online: https://crudata.uea.ac.uk/cru/data/t2024/ (accessed on 28 September 2025).
- NASA. Temperatures Rising: NASA Confirms 2024 Warmest Year on Record; NASA: Washington, DC, USA, 2024. [Google Scholar]
- IPCC. AR6 Synthesis Report: Climate Change, Synthesis Report for the Sixth Assessment Report; IPCC: Geneva, Switzerland, 2023. [Google Scholar]
- Nalley, D.; Adamowski, J.; Khalil, B.; Ozga-Zielinski, B. Trend Detection in Surface Air Temperature in Ontario and Quebec, Canada during 1967–2006 Using the Discrete Wavelet Transform. Atmos. Res. 2013, 132–133, 375–398. [Google Scholar] [CrossRef]
- Gocic, M.; Trajkovic, S. Analysis of Changes in Meteorological Variables Using Mann-Kendall and Sen’s Slope Estimator Statistical Tests in Serbia. Glob. Planet. Change 2013, 100, 172–182. [Google Scholar] [CrossRef]
- Mengistu, D.; Bewket, W.; Lal, R. Recent Spatiotemporal Temperature and Rainfall Variability and Trends over the Upper Blue Nile River Basin, Ethiopia. Int. J. Climatol. 2014, 34, 2278–2292. [Google Scholar] [CrossRef]
- Wu, C.; Huang, G.; Yu, H.; Chen, Z.; Ma, J. Spatial and Temporal Distributions of Trends in Climate Extremes of the Feilaixia Catchment in the Upstream Area of the Beijiang River Basin, South China. Int. J. Climatol. 2014, 34, 3161–3178. [Google Scholar] [CrossRef]
- Yao, J.; Chen, Y. Trend Analysis of Temperature and Precipitation in the Syr Darya Basin in Central Asia. Theor. Appl. Climatol. 2015, 120, 521–531. [Google Scholar] [CrossRef]
- Sharma, C.S.; Panda, S.N.; Pradhan, R.P.; Singh, A.; Kawamura, A. Precipitation and Temperature Changes in Eastern India by Multiple Trend Detection Methods. Atmos. Res. 2016, 180, 211–225. [Google Scholar] [CrossRef]
- Salman, S.A.; Shahid, S.; Ismail, T.; Chung, E.-S.; Al-Abadi, A.M. Long-Term Trends in Daily Temperature Extremes in Iraq. Atmos. Res. 2017, 198, 97–107. [Google Scholar] [CrossRef]
- Atta-ur-Rahman; Dawood, M. Spatio-Statistical Analysis of Temperature Fluctuation Using Mann–Kendall and Sen’s Slope Approach. Clim. Dyn. 2017, 48, 783–797. [Google Scholar] [CrossRef]
- Ajaaj, A.A.; Mishra, A.K.; Khan, A.A. Urban and Peri-Urban Precipitation and Air Temperature Trends in Mega Cities of the World Using Multiple Trend Analysis Methods. Theor. Appl. Climatol. 2018, 132, 403–418. [Google Scholar] [CrossRef]
- Ahmadi, F.; Nazeri Tahroudi, M.; Mirabbasi, R.; Khalili, K.; Jhajharia, D. Spatiotemporal Trend and Abrupt Change Analysis of Temperature in Iran. Meteorol. Appl. 2018, 25, 314–321. [Google Scholar] [CrossRef]
- Machiwal, D.; Gupta, A.; Jha, M.K.; Kamble, T. Analysis of Trend in Temperature and Rainfall Time Series of an Indian Arid Region: Comparative Evaluation of Salient Techniques. Theor. Appl. Climatol. 2019, 136, 301–320. [Google Scholar] [CrossRef]
- Djaman, K.; Koudahe, K.; Bodian, A.; Diop, L.; Ndiaye, P.M. Long-Term Trend Analysis in Annual and Seasonal Precipitation, Maximum and Minimum Temperatures in the Southwest United States. Climate 2020, 8, 142. [Google Scholar] [CrossRef]
- Israel, E.; David, A.K.; Omolara, E.G. Spatio-Temporal Variation and Trends of Long-Term Meteorological Variables in Nigeria. Arab. J. Geosci. 2020, 13, 1290. [Google Scholar] [CrossRef]
- Çelebioğlu, T.; Tayanç, M.; Oruç, H. Determination of Temperature Variabilities and Trends in Turkey. Uludağ Univ. J. Fac. Eng. 2021, 26, 1003–1020. [Google Scholar] [CrossRef]
- Bosneagu, R.; Lupu, C.E.; Torica, E.; Lupu, S.; Vatu, N.; Tanase, V.M.; Vasilache, C.; Daneci-Patrau, D.; Scurtu, I.C. Long-Term Analysis of Air Temperatures Variability and Trends on the Romanian Black Sea Coast. Acta Geophys. 2022, 70, 2179–2197. [Google Scholar] [CrossRef]
- Hussain, F.; Wu, R.-S.; Nabi, G.; Noor, R.S.; Anjum, M.N.; Azam, M.; Afzal, A. Analysis of Temperature Data Using the Innovative Trend Pivot Analysis Method and Trend Polygon Star Concept: A Case Study of Soan River Basin, Potohar, Pakistan. Pure Appl. Geophys. 2023, 180, 475–507. [Google Scholar] [CrossRef]
- Kliengchuay, W.; Mingkhwan, R.; Kiangkoo, N.; Suwanmanee, S.; Sahanavin, N.; Kongpran, J.; Aung, H.W.; Tantrakarnapa, K. Analyzing Temperature, Humidity, and Precipitation Trends in Six Regions of Thailand Using Innovative Trend Analysis. Sci. Rep. 2024, 14, 7800. [Google Scholar] [CrossRef]
- Qadem, Z.; Tayfur, G. In-Depth Exploration of Temperature Trends in Morocco: Combining Traditional Methods of Mann Kendall with Innovative ITA and IPTA Approaches. Pure Appl. Geophys. 2024, 181, 2717–2739. [Google Scholar] [CrossRef]
- von Storch, H. Misuses of Statistical Analysis in Climate Research. In Analysis of Climate Variability; Springer: Berlin/Heidelberg, Germany, 1999; pp. 11–26. ISBN 978-3-642-08560-4. [Google Scholar]
- Yue, S.; Wang, C.Y. Applicability of Prewhitening to Eliminate the Influence of Serial Correlation on the Mann-Kendall Test. Water Resour. Res. 2002, 38, 4-1–4-7. [Google Scholar] [CrossRef]
- Yue, S.; Pilon, P.; Phinney, B.; Cavadias, G. The Influence of Autocorrelation on the Ability to Detect Trend in Hydrological Series. Hydrol. Process. 2002, 16, 1807–1829. [Google Scholar] [CrossRef]
- Bayazit, M.; Önöz, B. To Prewhiten or Not to Prewhiten in Trend Analysis? Hydrol. Sci. J. 2007, 52, 611–624. [Google Scholar] [CrossRef]
- Wang, W.; Zhu, Y.; Liu, B.; Chen, Y.; Zhao, X. Innovative Variance Corrected Sen’s Trend Test on Persistent Hydrometeorological Data. Water 2019, 11, 2119. [Google Scholar] [CrossRef]
- Serinaldi, F.; Chebana, F.; Kilsby, C.G. Dissecting Innovative Trend Analysis. Stoch. Environ. Res. Risk Assess. 2020, 34, 733–754. [Google Scholar] [CrossRef]
- Cui, L.; Wang, L.; Lai, Z.; Tian, Q.; Liu, W.; Li, J. Innovative Trend Analysis of Annual and Seasonal Air Temperature and Rainfall in the Yangtze River Basin, China during 1960–2015. J. Atmos. Solar-Terrestrial Phys. 2017, 164, 48–59. [Google Scholar] [CrossRef]
- Caloiero, T.; Coscarelli, R.; Ferrari, E. Application of the Innovative Trend Analysis Method for the Trend Analysis of Rainfall Anomalies in Southern Italy. Water Resour. Manag. 2018, 32, 4971–4983. [Google Scholar] [CrossRef]
- Zhou, Z.; Wang, L.; Lin, A.; Zhang, M.; Niu, Z. Innovative Trend Analysis of Solar Radiation in China during 1962–2015. Renew. Energy 2018, 119, 675–689. [Google Scholar] [CrossRef]
- Ahmad, I.; Zhang, F.; Tayyab, M.; Anjum, M.N.; Zaman, M.; Liu, J.; Farid, H.U.; Saddique, Q. Spatiotemporal Analysis of Precipitation Variability in Annual, Seasonal and Extreme Values over Upper Indus River Basin. Atmos. Res. 2018, 213, 346–360. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, Y.; Tabari, H.; Wang, J.; Wang, Q.; Song, S.; Hu, Z. Innovative Trend Analysis of Annual and Seasonal Rainfall in the Yangtze River Delta, Eastern China. Atmos. Res. 2020, 231, 104673. [Google Scholar] [CrossRef]
- Caloiero, T. Evaluation of Rainfall Trends in the South Island of New Zealand through the Innovative Trend Analysis (ITA). Theor. Appl. Climatol. 2020, 139, 493–504. [Google Scholar] [CrossRef]
- Marak, J.D.K.; Sarma, A.K.; Bhattacharjya, R.K. Innovative Trend Analysis of Spatial and Temporal Rainfall Variations in Umiam and Umtru Watersheds in Meghalaya, India. Theor. Appl. Climatol. 2020, 142, 1397–1412. [Google Scholar] [CrossRef]
- Singh, R.; Sah, S.; Das, B.; Potekar, S.; Chaudhary, A.; Pathak, H. Innovative Trend Analysis of Spatio-Temporal Variations of Rainfall in India during 1901–2019. Theor. Appl. Climatol. 2021, 145, 821–838. [Google Scholar] [CrossRef]
- Mallick, J.; Talukdar, S.; Alsubih, M.; Salam, R.; Ahmed, M.; Kahla, N.B.; Shamimuzzaman, M. Analysing the Trend of Rainfall in Asir Region of Saudi Arabia Using the Family of Mann-Kendall Tests, Innovative Trend Analysis, and Detrended Fluctuation Analysis. Theor. Appl. Climatol. 2021, 143, 823–841. [Google Scholar] [CrossRef]
- Harka, A.E.; Jilo, N.B.; Behulu, F. Spatial-Temporal Rainfall Trend and Variability Assessment in the Upper Wabe Shebelle River Basin, Ethiopia: Application of Innovative Trend Analysis Method. J. Hydrol. Reg. Stud. 2021, 37, 100915. [Google Scholar] [CrossRef]
- Wu, S.; Zhao, W.; Yao, J.; Jin, J.; Zhang, M.; Jiang, G. Precipitation Variations in the Tai Lake Basin from 1971 to 2018 Based on Innovative Trend Analysis. Ecol. Indic. 2022, 139, 108868. [Google Scholar] [CrossRef]
- Katipoğlu, O.M. Analyzing the Trend and Change Point in Various Meteorological Variables in Bursa with Various Statistical and Graphical Methods. Theor. Appl. Climatol. 2022, 150, 1295–1320. [Google Scholar] [CrossRef]
- Esit, M.; Yuce, M.I.; Deger, İ.H.; Yasa, I. Trend and Variability Analysis in Rainfall and Temperature Records over Van Province, Türkiye. Theor. Appl. Climatol. 2024, 155, 451–472. [Google Scholar] [CrossRef]
- Asikoglu, O.L.; Alp, H.; Temel, I. Modified Data Classification for Extreme Values in Şen’s Innovative Trend Analysis: A Comparative Trend Study for the Aegean and Eastern Anatolia Regions of Türkiye. Theor. Appl. Climatol. 2024, 155, 8415–8434. [Google Scholar] [CrossRef]
- Ali, R.; Kuriqi, A.; Abubaker, S.; Kisi, O. Long-Term Trends and Seasonality Detection of the Observed Flow in Yangtze River Using Mann-Kendall and Sen’s Innovative Trend Method. Water 2019, 11, 1855. [Google Scholar] [CrossRef]
- MGM. Available online: https://www.mgm.gov.tr/FILES/resmi-istatistikler/2024_İklim_Metaveri.pdf (accessed on 28 September 2025).
- Sayemuzzaman, M.; Jha, M.K. Seasonal and Annual Precipitation Time Series Trend Analysis in North Carolina, United States. Atmos. Res. 2014, 137, 183–194. [Google Scholar] [CrossRef]
- Asikoglu, O.L.; Ciftlik, D. Recent Rainfall Trends in the Aegean Region of Turkey. J. Hydrometeorol. 2015, 16, 1873–1885. [Google Scholar] [CrossRef]
- Jones, J.R.; Schwartz, J.S.; Ellis, K.N.; Hathaway, J.M.; Jawdy, C.M. Temporal Variability of Precipitation in the Upper Tennessee Valley. J. Hydrol. Reg. Stud. 2015, 3, 125–138. [Google Scholar] [CrossRef]
- Liuzzo, L.; Bono, E.; Sammartano, V.; Freni, G. Analysis of Spatial and Temporal Rainfall Trends in Sicily during the 1921–2012 Period. Theor. Appl. Climatol. 2016, 126, 113–129. [Google Scholar] [CrossRef]
- Hussain, A.; Cao, J.; Ali, S.; Muhammad, S.; Ullah, W.; Hussain, I.; Akhtar, M.; Wu, X.; Guan, Y.; Zhou, J. Observed Trends and Variability of Seasonal and Annual Precipitation in Pakistan during 1960–2016. Int. J. Climatol. 2022, 42, 8313–8332. [Google Scholar] [CrossRef]
- Meshram, S.G.; Singh, V.P.; Meshram, C. Long-Term Trend and Variability of Precipitation in Chhattisgarh State, India. Theor. Appl. Climatol. 2017, 129, 729–744. [Google Scholar] [CrossRef]
- Wang, G.; Wang, D.; Trenberth, K.E.; Erfanian, A.; Yu, M.; Bosilovich, M.G.; Parr, D.T. The Peak Structure and Future Changes of the Relationships between Extreme Precipitation and Temperature. Nat. Clim. Chang. 2017, 7, 268–274. [Google Scholar] [CrossRef]
- Bisht, D.S.; Chatterjee, C.; Raghuwanshi, N.S.; Sridhar, V. Spatio-Temporal Trends of Rainfall across Indian River Basins. Theor. Appl. Climatol. 2018, 132, 419–436. [Google Scholar] [CrossRef]
- Nourani, V.; Danandeh Mehr, A.; Azad, N. Trend Analysis of Hydroclimatological Variables in Urmia Lake Basin Using Hybrid Wavelet Mann–Kendall and Şen Tests. Environ. Earth Sci. 2018, 77, 207. [Google Scholar] [CrossRef]
- Nisansala, W.D.S.; Abeysingha, N.S.; Islam, A.; Bandara, A.M.K.R. Recent Rainfall Trend over Sri Lanka (1987–2017). Int. J. Climatol. 2020, 40, 3417–3435. [Google Scholar] [CrossRef]
- Zhao, H.; Pan, X.; Wang, Z.; Jiang, S.; Liang, L.; Wang, X.; Wang, X. What Were the Changing Trends of the Seasonal and Annual Aridity Indexes in Northwestern China during 1961–2015? Atmos. Res. 2019, 222, 154–162. [Google Scholar] [CrossRef]
- Malik, A.; Kumar, A. Spatio-Temporal Trend Analysis of Rainfall Using Parametric and Non-Parametric Tests: Case Study in Uttarakhand, India. Theor. Appl. Climatol. 2020, 140, 183–207. [Google Scholar] [CrossRef]
- Salehi, S.; Dehghani, M.; Mortazavi, S.M.; Singh, V.P. Trend Analysis and Change Point Detection of Seasonal and Annual Precipitation in Iran. Int. J. Climatol. 2020, 40, 308–323. [Google Scholar] [CrossRef]
- Abebe, B.A.; Grum, B.; Degu, A.M.; Goitom, H. Spatio-temporal Rainfall Variability and Trend Analysis in the Tekeze-Atbara River Basin, Northwestern Ethiopia. Meteorol. Appl. 2022, 29, e2059. [Google Scholar] [CrossRef]
- Halder, P.; Dey, R.K.; Mandal, S. Long-Period Trend Analysis of Annual and Seasonal Rainfall in West Bengal, India (1901–2020). Theor. Appl. Climatol. 2023, 154, 685–703. [Google Scholar] [CrossRef]
- Wang, S. Variations in Maximum and Minimum Temperature in Mount Qomolangma during 1971–2020. Atmosphere 2024, 15, 358. [Google Scholar] [CrossRef]
- Sarioz, I.O.; Ceribasi, G.; Ceyhunlu, A.I. Investigation of the Variability Applying Classical (MK-SR) and Modern (ITTA-TPSC) Trend Methods to Meteorological Parameters of Marmara Basin in Turkey. Phys. Chem. Earth Parts A/B/C 2024, 135, 103665. [Google Scholar] [CrossRef]
- Ercan, C.; Abu Arra, A.; Şişman, E. Investigation of Precipitation and Temperature Trends Using Classical and Innovative Approaches with Corresponding Frequencies in Antalya Basin, Türkiye. Phys. Chem. Earth Parts A/B/C 2025, 139, 103958. [Google Scholar] [CrossRef]
- Zarenistanak, M.; Dhorde, A.G.; Kripalani, R.H. Temperature Analysis over Southwest Iran: Trends and Projections. Theor. Appl. Climatol. 2014, 116, 103–117. [Google Scholar] [CrossRef]
- Güner Bacanli, Ü. Trend Analysis of Precipitation and Drought in the Aegean Region, Turkey. Meteorol. Appl. 2017, 24, 239–249. [Google Scholar] [CrossRef]
- Wu, H.; Qian, H. Innovative Trend Analysis of Annual and Seasonal Rainfall and Extreme Values in Shaanxi, China, since the 1950s. Int. J. Climatol. 2017, 37, 2582–2592. [Google Scholar] [CrossRef]
- Li, J.; Wu, W.; Ye, X.; Jiang, H.; Gan, R.; Wu, H.; He, J.; Jiang, Y. Innovative Trend Analysis of Main Agriculture Natural Hazards in China during 1989–2014. Nat. Hazards 2019, 95, 677–720. [Google Scholar] [CrossRef]
- Ay, M. Trend Tests on Maximum Rainfall Series by a Novel Approach in the Aegean Region, Turkey. Meteorol. Atmos. Phys. 2021, 133, 1041–1055. [Google Scholar] [CrossRef]
- Sah, S.; Singh, R.; Chaturvedi, G.; Das, B. Trends, Variability, and Teleconnections of Long-Term Rainfall in the Terai Region of India. Theor. Appl. Climatol. 2021, 143, 291–307. [Google Scholar] [CrossRef]
- Farooq, Z.; Kumar, R. Spatial and Temporal Trend Analysis of Relative Humidity in the Himalayan Region: A Case Study. Arab. J. Geosci. 2021, 14, 2237. [Google Scholar] [CrossRef]
- Syafrina, A.H.; Zalina, M.D.; Juneng, L. Historical Trend of Hourly Extreme Rainfall in Peninsular Malaysia. Theor. Appl. Climatol. 2015, 120, 259–285. [Google Scholar] [CrossRef]
- Sen, P.K. Estimates of the Regression Coefficient Based on Kendall’s Tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Hirsch, R.M.; Slack, J.R.; Smith, R.A. Techniques of Trend Analysis for Monthly Water Quality Data. Water Resour. Res. 1982, 18, 107–121. [Google Scholar] [CrossRef]
- Şen, Z. Innovative Trend Analysis Methodology. J. Hydrol. Eng. 2012, 17, 1042–1046. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change (IPCC) (Ed.) Climate Change 2021—The Physical Science Basis; Cambridge University Press: Cambridge, UK, 2023; ISBN 9781009157896. [Google Scholar]
- Türkeş, M.; Sümer, U.M.; Demïr, İ. Re-evaluation of Trends and Changes in Mean, Maximum and Minimum Temperatures of Turkey for the Period 1929–1999. Int. J. Climatol. 2002, 22, 947–977. [Google Scholar] [CrossRef]
- MGM. Turkish State Meteorological Service, Climate Change Projections; MGM: Keçiören, Ankara, Türkiye, 2015. [Google Scholar]
- Hadi, S.J.; Tombul, M. Long-term Spatiotemporal Trend Analysis of Precipitation and Temperature over Turkey. Meteorol. Appl. 2018, 25, 445–455. [Google Scholar] [CrossRef]
- Nacar, S.; Şan, M.; Kankal, M.; Okkan, U. Trends and Amount Changes of Temperature and Precipitation under Future Projections in High–Low Groups and Intra-Period for the Eastern Black Sea, the Wettest Basin in Türkiye. Nat. Hazards 2024, 120, 9833–9866. [Google Scholar] [CrossRef]
- Güçlü, Y.S.; Acar, R.; Saplıoğlu, K. Seasonally Adjusted Periodic Time Series for Mann-Kendall Trend Test. Phys. Chem. Earth Parts A/B/C 2025, 138, 103848. [Google Scholar] [CrossRef]
- Kamangar, M.; Ahmadi, M.; Rabiei-Dastjerdi, H.; Hazbavi, Z. Ensemble Modeling of Extreme Seasonal Temperature Trends in Iran under Socio-Economic Scenarios. Nat. Hazards 2025, 121, 1265–1288. [Google Scholar] [CrossRef]
- Bilgili, M.; Tokmakci, M. Climate Change and Trends in Europe and Globally over the Period 1970–2023. Phys. Chem. Earth Parts A/B/C 2025, 139, 103928. [Google Scholar] [CrossRef]
- Fonseca, D.; Carvalho, M.J.; Marta-Almeida, M.; Melo-Gonçalves, P.; Rocha, A. Recent Trends of Extreme Temperature Indices for the Iberian Peninsula. Phys. Chem. Earth Parts A/B/C 2016, 94, 66–76. [Google Scholar] [CrossRef]
- Palacios-Gutiérrez, A.; Valencia-Delfa, J.L.; Villeta, M. Identification of Extreme Temperature and Precipitation Patterns in Spain Based on Multiscale Analysis of Time Series. Nat. Hazards 2025, 121, 7991–8009. [Google Scholar] [CrossRef]
- You, Q.; Kang, S.; Aguilar, E.; Pepin, N.; Flügel, W.-A.; Yan, Y.; Xu, Y.; Zhang, Y.; Huang, J. Changes in Daily Climate Extremes in China and Their Connection to the Large Scale Atmospheric Circulation during 1961–2003. Clim. Dyn. 2011, 36, 2399–2417. [Google Scholar] [CrossRef]
- You, Q.; Min, J.; Fraedrich, K.; Zhang, W.; Kang, S.; Zhang, L.; Meng, X. Projected Trends in Mean, Maximum, and Minimum Surface Temperature in China from Simulations. Glob. Planet. Change 2014, 112, 53–63. [Google Scholar] [CrossRef]
- Pang, Z.; Wang, Z. Temperature Trend Analysis and Extreme High Temperature Prediction Based on Weighted Markov Model in Lanzhou. Nat. Hazards 2021, 108, 891–906. [Google Scholar] [CrossRef]
- Mondal, A.; Khare, D.; Kundu, S. Spatial and Temporal Analysis of Rainfall and Temperature Trend of India. Theor. Appl. Climatol. 2015, 122, 143–158. [Google Scholar] [CrossRef]
- Khan, N.; Shahid, S.; Ismail, T.b.; Wang, X.-J. Spatial Distribution of Unidirectional Trends in Temperature and Temperature Extremes in Pakistan. Theor. Appl. Climatol. 2019, 136, 899–913. [Google Scholar] [CrossRef]
- Pandey, B.K.; Khare, D.; Tiwari, H.; Mishra, P.K. Analysis and Visualization of Meteorological Extremes in Humid Subtropical Regions. Nat. Hazards 2021, 108, 661–687. [Google Scholar] [CrossRef]
- Nabi, S.; Ahanger, M.A.; Dar, A.Q. Spatio-Temporal Variability of Temperature and Precipitation in a Himalayan Watershed. Nat. Hazards 2023, 115, 1743–1760. [Google Scholar] [CrossRef]
- Ouhamdouch, S.; Bahir, M. Climate Change Impact on Future Rainfall and Temperature in Semi-Arid Areas (Essaouira Basin, Morocco). Environ. Process. 2017, 4, 975–990. [Google Scholar] [CrossRef]
- Menna, B.Y.; Waktola, D.K. Extreme Temperature Trend and Return Period Mapping in a Changing Climate in Upper Tekeze River Basin, Northern Ethiopia. Phys. Chem. Earth Parts A/B/C 2022, 128, 103234. [Google Scholar] [CrossRef]
- Animashaun, I.M.; Oguntunde, P.G.; Olubanjo, O.O.; Akinwumiju, A.S. Analysis of Variations and Trends of Temperature over Niger Central Hydrological Area, Nigeria, 1911–2015. Phys. Chem. Earth Parts A/B/C 2023, 131, 103445. [Google Scholar] [CrossRef]
- Mohsin, T.; Gough, W.A. Trend Analysis of Long-Term Temperature Time Series in the Greater Toronto Area (GTA). Theor. Appl. Climatol. 2010, 101, 311–327. [Google Scholar] [CrossRef]
- Fritzsche Jeff Statistics Canada; EnviroStats. Temperature Trends in Canada, Catalogue No. 16-002-X Vol. 5, No. 1. 2011. Available online: https://www150.statcan.gc.ca/n1/pub/16-002-x/16-002-x2011001-eng.pdf (accessed on 20 October 2025).
- Martínez-Austria, P.F.; Bandala, E.R.; Patiño-Gómez, C. Temperature and Heat Wave Trends in Northwest Mexico. Phys. Chem. Earth Parts A/B/C 2016, 91, 20–26. [Google Scholar] [CrossRef]
- Parker, D.E. A Demonstration That Large-Scale Warming Is Not Urban. J. Clim. 2006, 19, 2882–2895. [Google Scholar] [CrossRef]
- Turkes, M.; Sumer, U.M. Spatial and Temporal Patterns of Trends and Variability in Diurnal Temperature Ranges of Turkey. Theor. Appl. Climatol. 2004, 77, 195–227. [Google Scholar] [CrossRef]
- Founda, D.; Giannakopoulos, C. The Exceptionally Hot Summer of 2007 in Athens, Greece—A Typical Summer in the Future Climate? Glob. Planet. Change 2009, 67, 227–236. [Google Scholar] [CrossRef]
- Asseng, S.; Foster, I.; Turner, N.C. The Impact of Temperature Variability on Wheat Yields. Glob. Chang. Biol. 2011, 17, 997–1012. [Google Scholar] [CrossRef]
- Dabanlı, İ.; Şen, Z.; Yeleğen, M.Ö.; Şişman, E.; Selek, B.; Güçlü, Y.S. Trend Assessment by the Innovative-Şen Method. Water Resour. Manag. 2016, 30, 5193–5203. [Google Scholar] [CrossRef]
- Gedefaw, M.; Yan, D.; Wang, H.; Qin, T.; Girma, A.; Abiyu, A.; Batsuren, D. Innovative Trend Analysis of Annual and Seasonal Rainfall Variability in Amhara Regional State, Ethiopia. Atmosphere 2018, 9, 326. [Google Scholar] [CrossRef]
- Malik, A.; Kumar, A.; Guhathakurta, P.; Kisi, O. Spatial-Temporal Trend Analysis of Seasonal and Annual Rainfall (1966–2015) Using Innovative Trend Analysis Method with Significance Test. Arab. J. Geosci. 2019, 12, 328. [Google Scholar] [CrossRef]
- IPCC. Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation; IPCC: Geneva, Switzerland, 2012. [Google Scholar]
Nr | Station | Slope (Sen’s) | Slope (Linear) | LRA | Sen’s Slope | MK | ITA | QT |
---|---|---|---|---|---|---|---|---|
1 | Adana | 0.017 | 0.017 | ↑ | ↑ | ↑ | ↑ | ↑ |
2 | Adıyaman | 0.032 | 0.032 | ↑ | ↑ | ↑ | ↑ | ↑ |
3 | Afyon | 0.031 | 0.029 | ↑ | ↑ | ↑ | ↑ | ↑ |
4 | Ağrı | 0.050 | 0.064 | ↑ | ↑ | ↑ | ↑ | ↑ |
5 | Aksaray | 0.045 | 0.041 | ↑ | ↑ | ↑ | ↑ | ↑ |
6 | Amasya | 0.021 | 0.020 | ↑ | ↑ | ↑ | ↑ | ↑ |
7 | Ankara | 0.035 | 0.034 | ↑ | ↑ | ↑ | ↑ | ↑ |
8 | Antalya | 0.016 | 0.016 | ↑ | ↑ | ↑ | ↑ | ↑ |
9 | Ardahan | 0.040 | 0.037 | ↑ | ↑ | ↑ | ↑ | ↑ |
10 | Artvin | 0.022 | 0.019 | ↑ | ↑ | ↑ | ↑ | ↑ |
11 | Aydın | 0.028 | 0.026 | ↑ | ↑ | ↑ | ↑ | ↑ |
12 | Balıkesir | 0.046 | 0.046 | ↑ | ↑ | ↑ | ↑ | ↑ |
13 | Bartın | 0.024 | 0.022 | ↑ | ↑ | ↑ | ↑ | ↑ |
14 | Batman | 0.025 | 0.024 | ↑ | ↑ | ↑ | ↑ | ↑ |
15 | Bayburt | 0.038 | 0.035 | ↑ | ↑ | ↑ | ↑ | ↑ |
16 | Bilecik | 0.030 | 0.028 | ↑ | ↑ | ↑ | ↑ | ↑ |
17 | Bingöl | 0.023 | 0.020 | ↑ | ↑ | ↑ | ↑ | ↑ |
18 | Bitlis | 0.027 | 0.019 | ↑ | ↑ | ↑ | ↑ | ↑ |
19 | Bolu | 0.024 | 0.023 | ↑ | ↑ | ↑ | ↑ | ↑ |
20 | Burdur | 0.023 | 0.020 | ↑ | ↑ | ↑ | ↑ | ↑ |
21 | Bursa | 0.027 | 0.026 | ↑ | ↑ | ↑ | ↑ | ↑ |
22 | Çanakkale | 0.031 | 0.031 | ↑ | ↑ | ↑ | ↑ | ↑ |
23 | Çankırı | 0.023 | 0.022 | ↑ | ↑ | ↑ | ↑ | ↑ |
24 | Çorum | 0.023 | 0.023 | ↑ | ↑ | ↑ | ↑ | ↑ |
25 | Denizli | 0.044 | 0.041 | ↑ | ↑ | ↑ | ↑ | ↑ |
26 | Diyarbakır | 0.010 | 0.010 | – | – | – | ↑ | ↑ |
27 | Düzce | 0.031 | 0.031 | ↑ | ↑ | ↑ | ↑ | ↑ |
28 | Edirne | 0.033 | 0.032 | ↑ | ↑ | ↑ | ↑ | ↑ |
29 | Elazığ | 0.031 | 0.027 | ↑ | ↑ | ↑ | ↑ | ↑ |
30 | Erzincan | 0.041 | 0.037 | ↑ | ↑ | ↑ | ↑ | ↑ |
31 | Erzurum | 0.001 | 0.000 | – | – | – | ↓ | ↓ |
32 | Eskişehir | 0.032 | 0.030 | ↑ | ↑ | ↑ | ↑ | ↑ |
33 | Gaziantep | 0.043 | 0.040 | ↑ | ↑ | ↑ | ↑ | ↑ |
34 | Giresun | 0.027 | 0.027 | ↑ | ↑ | ↑ | ↑ | ↑ |
35 | Gümüşhane | 0.022 | 0.023 | ↑ | ↑ | ↑ | ↑ | ↑ |
36 | Hakkari | 0.042 | 0.046 | ↑ | ↑ | ↑ | ↑ | ↑ |
37 | Hatay | 0.017 | 0.015 | ↑ | ↑ | ↑ | ↑ | ↑ |
38 | Iğdır | 0.043 | 0.042 | ↑ | ↑ | ↑ | ↑ | ↑ |
39 | Isparta | 0.024 | 0.022 | ↑ | ↑ | ↑ | ↑ | ↑ |
40 | İçel | 0.054 | 0.052 | ↑ | ↑ | ↑ | ↑ | ↑ |
41 | İstanbul | 0.029 | 0.028 | ↑ | ↑ | ↑ | ↑ | ↑ |
42 | İzmir | 0.027 | 0.026 | ↑ | ↑ | ↑ | ↑ | ↑ |
43 | Karabük | 0.016 | 0.019 | – | – | – | ↑ | ↑ |
44 | Karaman | 0.034 | 0.034 | ↑ | ↑ | ↑ | ↑ | ↑ |
45 | Kars | 0.040 | 0.038 | ↑ | ↑ | ↑ | ↑ | ↑ |
46 | Kastamonu | 0.019 | 0.017 | ↑ | ↑ | ↑ | ↑ | ↑ |
47 | Kayseri | 0.031 | 0.027 | ↑ | ↑ | ↑ | ↑ | ↑ |
48 | Kilis | 0.030 | 0.028 | ↑ | ↑ | ↑ | ↑ | ↑ |
49 | Kırıkkale | 0.035 | 0.034 | ↑ | ↑ | ↑ | ↑ | ↑ |
50 | Kırklareli | 0.033 | 0.033 | ↑ | ↑ | ↑ | ↑ | ↑ |
51 | Kırşehir | 0.026 | 0.026 | ↑ | ↑ | ↑ | ↑ | ↑ |
52 | Kocaeli | 0.030 | 0.029 | ↑ | ↑ | ↑ | ↑ | ↑ |
53 | Konya | 0.020 | 0.020 | ↑ | ↑ | ↑ | ↑ | ↑ |
54 | Kütahya | 0.030 | 0.027 | ↑ | ↑ | ↑ | ↑ | ↑ |
55 | Malatya | 0.038 | 0.034 | ↑ | ↑ | ↑ | ↑ | ↑ |
56 | Manisa | 0.020 | 0.019 | ↑ | ↑ | ↑ | ↑ | ↑ |
57 | Maraş | 0.036 | 0.034 | ↑ | ↑ | ↑ | ↑ | ↑ |
58 | Mardin | 0.037 | 0.037 | ↑ | ↑ | ↑ | ↑ | ↑ |
59 | Muğla | 0.018 | 0.017 | ↑ | ↑ | ↑ | ↑ | ↑ |
60 | Muş | 0.052 | 0.051 | ↑ | ↑ | ↑ | ↑ | ↑ |
61 | Nevşehir | 0.029 | 0.027 | ↑ | ↑ | ↑ | ↑ | ↑ |
62 | Niğde | 0.038 | 0.034 | ↑ | ↑ | ↑ | ↑ | ↑ |
63 | Ordu | 0.039 | 0.037 | ↑ | ↑ | ↑ | ↑ | ↑ |
64 | Osmaniye | 0.037 | 0.029 | ↑ | ↑ | ↑ | ↑ | ↑ |
65 | Rize | 0.032 | 0.030 | ↑ | ↑ | ↑ | ↑ | ↑ |
66 | Sakarya | 0.037 | 0.039 | ↑ | ↑ | ↑ | ↑ | ↑ |
67 | Samsun | 0.025 | 0.023 | ↑ | ↑ | ↑ | ↑ | ↑ |
68 | Siirt | 0.029 | 0.030 | ↑ | ↑ | ↑ | ↑ | ↑ |
69 | Sinop | 0.026 | 0.026 | ↑ | ↑ | ↑ | ↑ | ↑ |
70 | Şırnak | 0.038 | 0.044 | ↑ | ↑ | ↑ | ↑ | ↑ |
71 | Sivas | 0.033 | 0.031 | ↑ | ↑ | ↑ | ↑ | ↑ |
72 | Tekirdağ | 0.027 | 0.027 | ↑ | ↑ | ↑ | ↑ | ↑ |
73 | Tokat | 0.031 | 0.027 | ↑ | ↑ | ↑ | ↑ | ↑ |
74 | Trabzon | 0.024 | 0.023 | ↑ | ↑ | ↑ | ↑ | ↑ |
75 | Tunceli | 0.032 | 0.030 | ↑ | ↑ | ↑ | ↑ | ↑ |
76 | Şanlıurfa | 0.034 | 0.032 | ↑ | ↑ | ↑ | ↑ | ↑ |
77 | Uşak | 0.025 | 0.025 | ↑ | ↑ | ↑ | ↑ | ↑ |
78 | Van | 0.048 | 0.043 | ↑ | ↑ | ↑ | ↑ | ↑ |
79 | Yalova | 0.030 | 0.030 | ↑ | ↑ | ↑ | ↑ | ↑ |
80 | Yozgat | 0.030 | 0.026 | ↑ | ↑ | ↑ | ↑ | ↑ |
81 | Zonguldak | 0.016 | 0.017 | ↑ | ↑ | ↑ | ↑ | ↑ |
Increasing Trend (%) ⟶ | 96 | 96 | 96 | 100 | 100 |
Nr | Station | Slope (Sen’s) | Slope (Linear) | LRA | Sen’s Slope | MK | ITA | QT |
---|---|---|---|---|---|---|---|---|
1 | Adana | 0.020 | 0.023 | – | – | – | ↑ | ↑ |
2 | Adıyaman | 0.034 | 0.034 | ↑ | ↑ | ↑ | ↑ | ↑ |
3 | Afyon | 0.014 | 0.017 | – | – | – | ↑ | ↑ |
4 | Ağrı | 0.048 | 0.046 | ↑ | ↑ | ↑ | ↑ | ↑ |
5 | Aksaray | 0.027 | 0.026 | ↑ | ↑ | ↑ | ↑ | ↑ |
6 | Amasya | 0.040 | 0.040 | ↑ | ↑ | ↑ | ↑ | ↑ |
7 | Ankara | 0.032 | 0.034 | ↑ | ↑ | ↑ | ↑ | ↑ |
8 | Antalya | 0.017 | 0.023 | ↑ | ↑ | ↑ | ↑ | ↑ |
9 | Ardahan | 0.011 | 0.018 | – | – | – | ↑ | – |
10 | Artvin | 0.027 | 0.018 | – | – | – | ↑ | ↑ |
11 | Aydın | 0.038 | 0.041 | ↑ | ↑ | ↑ | ↑ | ↑ |
12 | Balıkesir | 0.002 | 0.005 | – | – | – | ↑ | – |
13 | Bartın | 0.028 | 0.022 | – | – | – | ↑ | – |
14 | Batman | 0.006 | 0.005 | – | – | – | – | – |
15 | Bayburt | 0.040 | 0.041 | ↑ | ↑ | ↑ | ↑ | ↑ |
16 | Bilecik | 0.044 | 0.040 | ↑ | ↑ | ↑ | ↑ | ↑ |
17 | Bingöl | 0.003 | 0.001 | – | – | – | ↑ | – |
18 | Bitlis | 0.031 | 0.032 | ↑ | ↑ | ↑ | ↑ | ↑ |
19 | Bolu | 0.015 | 0.015 | – | – | – | ↑ | ↑ |
20 | Burdur | 0.047 | 0.047 | ↑ | ↑ | ↑ | ↑ | ↑ |
21 | Bursa | 0.005 | 0.005 | – | – | – | ↑ | – |
22 | Çanakkale | 0.031 | 0.035 | ↑ | ↑ | ↑ | ↑ | ↑ |
23 | Çankırı | 0.052 | 0.052 | ↑ | ↑ | ↑ | ↑ | ↑ |
24 | Çorum | 0.047 | 0.047 | ↑ | ↑ | ↑ | ↑ | ↑ |
25 | Denizli | 0.050 | 0.054 | ↑ | ↑ | ↑ | ↑ | ↑ |
26 | Diyarbakır | 0.006 | 0.005 | – | – | – | – | – |
27 | Düzce | 0.007 | 0.005 | – | – | – | ↑ | ↑ |
28 | Edirne | 0.045 | 0.046 | ↑ | ↑ | ↑ | ↑ | ↑ |
29 | Elazığ | 0.029 | 0.026 | ↑ | ↑ | ↑ | ↑ | ↑ |
30 | Erzincan | 0.038 | 0.034 | ↑ | ↑ | ↑ | ↑ | ↑ |
31 | Erzurum | 0.043 | 0.043 | ↑ | ↑ | ↑ | ↑ | ↑ |
32 | Eskişehir | 0.025 | 0.026 | ↑ | ↑ | ↑ | ↑ | ↑ |
33 | Gaziantep | 0.030 | 0.030 | ↑ | ↑ | ↑ | ↑ | ↑ |
34 | Giresun | 0.018 | 0.013 | – | – | – | ↑ | – |
35 | Gümüşhane | 0.022 | 0.022 | – | – | – | ↑ | ↑ |
36 | Hakkari | 0.015 | 0.016 | – | – | – | ↑ | ↑ |
37 | Hatay | 0.037 | 0.035 | ↑ | – | – | ↑ | ↑ |
38 | Iğdır | 0.041 | 0.040 | ↑ | ↑ | ↑ | ↑ | ↑ |
39 | Isparta | 0.032 | 0.033 | ↑ | ↑ | ↑ | ↑ | ↑ |
40 | İçel | 0.040 | 0.038 | ↑ | ↑ | ↑ | ↑ | ↑ |
41 | İstanbul | 0.028 | 0.028 | ↑ | ↑ | ↑ | ↑ | ↑ |
42 | İzmir | 0.014 | 0.016 | – | – | – | ↑ | ↑ |
43 | Karabük | 0.042 | 0.043 | – | – | – | ↑ | ↑ |
44 | Karaman | 0.011 | 0.013 | – | – | – | ↑ | ↑ |
45 | Kars | 0.038 | 0.039 | ↑ | ↑ | ↑ | ↑ | ↑ |
46 | Kastamonu | 0.047 | 0.049 | ↑ | ↑ | ↑ | ↑ | ↑ |
47 | Kayseri | 0.026 | 0.024 | ↑ | ↑ | ↑ | ↑ | ↑ |
48 | Kilis | 0.014 | 0.016 | – | – | – | ↑ | ↑ |
49 | Kırıkkale | 0.056 | 0.054 | ↑ | ↑ | ↑ | ↑ | ↑ |
50 | Kırklareli | 0.027 | 0.028 | – | – | – | ↑ | ↑ |
51 | Kırşehir | 0.055 | 0.053 | ↑ | ↑ | ↑ | ↑ | ↑ |
52 | Kocaeli | 0.012 | 0.012 | – | – | – | ↑ | – |
53 | Konya | 0.022 | 0.023 | ↑ | ↑ | ↑ | ↑ | ↑ |
54 | Kütahya | 0.038 | 0.039 | ↑ | ↑ | ↑ | ↑ | ↑ |
55 | Malatya | 0.048 | 0.045 | ↑ | ↑ | ↑ | ↑ | ↑ |
56 | Manisa | 0.022 | 0.023 | – | – | – | ↑ | ↑ |
57 | Maraş | 0.043 | 0.046 | ↑ | ↑ | ↑ | ↑ | ↑ |
58 | Mardin | 0.030 | 0.032 | ↑ | ↑ | ↑ | ↑ | ↑ |
59 | Muğla | 0.040 | 0.040 | ↑ | ↑ | ↑ | ↑ | ↑ |
60 | Muş | 0.034 | 0.036 | ↑ | ↑ | ↑ | ↑ | ↑ |
61 | Nevşehir | 0.035 | 0.035 | ↑ | ↑ | ↑ | ↑ | ↑ |
62 | Niğde | 0.040 | 0.037 | ↑ | ↑ | ↑ | ↑ | ↑ |
63 | Ordu | 0.038 | 0.044 | ↑ | ↑ | ↑ | ↑ | ↑ |
64 | Osmaniye | 0.018 | 0.022 | – | – | – | ↑ | – |
65 | Rize | 0.043 | 0.042 | ↑ | ↑ | ↑ | ↑ | ↑ |
66 | Sakarya | 0.024 | 0.023 | – | – | – | ↑ | ↑ |
67 | Samsun | 0.000 | −0.004 | – | – | – | ↑ | – |
68 | Siirt | 0.011 | 0.009 | – | – | – | – | – |
69 | Sinop | 0.039 | 0.046 | ↑ | ↑ | ↑ | ↑ | ↑ |
70 | Şırnak | 0.029 | 0.026 | ↑ | ↑ | ↑ | ↑ | ↑ |
71 | Sivas | 0.057 | 0.053 | ↑ | ↑ | ↑ | ↑ | ↑ |
72 | Tekirdağ | 0.040 | 0.047 | ↑ | ↑ | ↑ | ↑ | ↑ |
73 | Tokat | 0.050 | 0.045 | ↑ | ↑ | ↑ | ↑ | ↑ |
74 | Trabzon | 0.033 | 0.033 | ↑ | ↑ | ↑ | ↑ | ↑ |
75 | Tunceli | 0.020 | 0.019 | – | ↑ | ↑ | ↑ | ↑ |
76 | Şanlıurfa | 0.029 | 0.027 | ↑ | ↑ | ↑ | ↑ | ↑ |
77 | Uşak | 0.025 | 0.027 | ↑ | ↑ | ↑ | ↑ | ↑ |
78 | Van | 0.025 | 0.020 | – | ↑ | ↑ | – | – |
79 | Yalova | 0.035 | 0.037 | ↑ | ↑ | ↑ | ↑ | ↑ |
80 | Yozgat | 0.053 | 0.052 | ↑ | ↑ | ↑ | ↑ | ↑ |
81 | Zonguldak | 0.009 | 0.012 | – | – | – | ↑ | ↑ |
Increasing Trend (%) ⟶ | 64 | 63 | 63 | 96 | 84 |
Nr | Station | Slope (Sen’s) | Slope (Linear) | LRA | Sen’s Slope | MK | ITA | QT |
---|---|---|---|---|---|---|---|---|
1 | Adana | 0.018 | 0.020 | – | – | – | ↑ | – |
2 | Adıyaman | 0.010 | 0.014 | – | – | – | ↑ | ↑ |
3 | Afyon | 0.056 | 0.063 | ↑ | ↑ | ↑ | ↑ | ↑ |
4 | Ağrı | 0.126 | 0.124 | ↑ | ↑ | ↑ | ↑ | ↑ |
5 | Aksaray | 0.032 | 0.039 | – | – | – | ↑ | ↑ |
6 | Amasya | −0.016 | −0.017 | – | – | – | – | – |
7 | Ankara | 0.084 | 0.083 | ↑ | ↑ | ↑ | ↑ | ↑ |
8 | Antalya | 0.000 | −0.003 | – | – | – | ↑ | – |
9 | Ardahan | 0.087 | 0.092 | ↑ | ↑ | ↑ | ↑ | ↑ |
10 | Artvin | 0.029 | 0.030 | – | – | – | ↑ | – |
11 | Aydın | 0.035 | 0.034 | ↑ | ↑ | ↑ | ↑ | ↑ |
12 | Balıkesir | 0.080 | 0.086 | ↑ | ↑ | ↑ | ↑ | ↑ |
13 | Bartın | 0.060 | 0.057 | ↑ | ↑ | ↑ | ↑ | ↑ |
14 | Batman | −0.014 | −0.017 | – | – | – | ↓ | – |
15 | Bayburt | 0.080 | 0.062 | ↑ | ↑ | ↑ | ↑ | ↑ |
16 | Bilecik | 0.044 | 0.047 | ↑ | ↑ | ↑ | ↑ | ↑ |
17 | Bingöl | 0.073 | 0.061 | ↑ | ↑ | ↑ | ↑ | – |
18 | Bitlis | 0.043 | 0.049 | ↑ | ↑ | ↑ | ↑ | ↑ |
19 | Bolu | 0.126 | 0.127 | ↑ | ↑ | ↑ | ↑ | ↑ |
20 | Burdur | −0.010 | −0.008 | – | – | – | ↑ | – |
21 | Bursa | 0.077 | 0.090 | ↑ | ↑ | ↑ | ↑ | ↑ |
22 | Çanakkale | 0.049 | 0.044 | ↑ | ↑ | ↑ | ↑ | ↑ |
23 | Çankırı | 0.042 | 0.041 | – | – | – | ↑ | ↑ |
24 | Çorum | 0.033 | 0.032 | – | – | – | ↑ | – |
25 | Düzce | 0.100 | 0.093 | ↑ | ↑ | ↑ | ↑ | ↑ |
26 | Denizli | 0.053 | 0.050 | ↑ | ↑ | ↑ | ↑ | ↑ |
27 | Diyarbakır | −0.015 | −0.014 | – | – | – | ↓ | ↓ |
28 | Edirne | 0.042 | 0.051 | ↑ | ↑ | ↑ | ↑ | ↑ |
29 | Elazığ | 0.040 | 0.039 | – | – | – | ↑ | – |
30 | Erzincan | 0.112 | 0.092 | ↑ | ↑ | ↑ | ↑ | ↑ |
31 | Erzurum | −0.151 | −0.146 | ↓ | ↓ | ↓ | ↓ | ↓ |
32 | Eskişehir | 0.081 | 0.076 | ↑ | ↑ | ↑ | ↑ | ↑ |
33 | Gaziantep | 0.080 | 0.086 | ↑ | ↑ | ↑ | ↑ | ↑ |
34 | Giresun | 0.034 | 0.041 | ↑ | ↑ | ↑ | ↑ | ↑ |
35 | Gümüşhane | 0.032 | 0.020 | – | – | – | ↑ | ↑ |
36 | Hakkari | 0.043 | 0.042 | – | – | – | ↑ | ↑ |
37 | Hatay | 0.008 | 0.006 | – | – | – | ↑ | ↑ |
38 | Iğdır | 0.072 | 0.078 | – | ↑ | – | ↑ | ↑ |
39 | Isparta | 0.006 | 0.015 | – | – | – | ↑ | – |
40 | İçel | 0.093 | 0.094 | ↑ | ↑ | ↑ | ↑ | ↑ |
41 | İstanbul | 0.033 | 0.042 | ↑ | ↑ | ↑ | ↑ | ↑ |
42 | İzmir | 0.040 | 0.037 | ↑ | ↑ | ↑ | ↑ | ↑ |
43 | Karabük | 0.011 | 0.013 | – | – | – | ↑ | – |
44 | Karaman | 0.036 | 0.033 | – | – | – | ↑ | ↑ |
45 | Kars | 0.069 | 0.070 | ↑ | ↑ | ↑ | ↑ | ↑ |
46 | Kastamonu | 0.050 | 0.053 | ↑ | ↑ | ↑ | ↑ | ↑ |
47 | Kayseri | 0.139 | 0.127 | ↑ | ↑ | ↑ | ↑ | ↑ |
48 | Kilis | 0.057 | 0.066 | ↑ | ↑ | ↑ | ↑ | ↑ |
49 | Kırıkkale | 0.020 | 0.046 | – | – | – | ↑ | ↑ |
50 | Kırklareli | 0.043 | 0.040 | – | – | – | ↑ | – |
51 | Kırşehir | 0.006 | 0.011 | – | – | – | ↑ | – |
52 | Kocaeli | 0.047 | 0.042 | ↑ | ↑ | ↑ | ↑ | ↑ |
53 | Konya | −0.022 | −0.013 | – | – | – | ↓ | ↓ |
54 | Kütahya | 0.046 | 0.045 | – | ↑ | – | ↑ | ↑ |
55 | Malatya | 0.028 | 0.027 | – | – | – | ↑ | – |
56 | Manisa | 0.031 | 0.033 | ↑ | ↑ | ↑ | ↑ | ↑ |
57 | Maraş | 0.027 | 0.024 | – | – | – | ↑ | ↑ |
58 | Mardin | 0.023 | 0.024 | – | – | – | ↑ | – |
59 | Muğla | 0.021 | 0.023 | – | – | – | ↑ | ↑ |
60 | Muş | 0.080 | 0.080 | – | – | – | ↑ | ↑ |
61 | Nevşehir | 0.034 | 0.035 | – | – | – | ↑ | ↑ |
62 | Niğde | 0.033 | 0.029 | – | – | – | ↑ | – |
63 | Ordu | 0.036 | 0.033 | ↑ | ↑ | ↑ | ↑ | ↑ |
64 | Osmaniye | 0.033 | 0.033 | ↑ | ↑ | ↑ | ↑ | ↑ |
65 | Rize | 0.020 | 0.021 | – | – | – | ↑ | – |
66 | Sakarya | 0.076 | 0.091 | ↑ | ↑ | ↑ | ↑ | ↑ |
67 | Samsun | 0.012 | 0.017 | – | – | – | ↑ | – |
68 | Siirt | 0.031 | 0.033 | – | – | – | ↑ | ↑ |
69 | Sinop | 0.033 | 0.035 | ↑ | ↑ | ↑ | ↑ | ↑ |
70 | Şırnak | 0.007 | 0.005 | – | – | – | ↑ | ↑ |
71 | Sivas | 0.076 | 0.063 | ↑ | ↑ | ↑ | ↑ | ↑ |
72 | Tekirdağ | 0.056 | 0.050 | ↑ | ↑ | ↑ | ↑ | ↑ |
73 | Tokat | 0.000 | −0.004 | – | – | – | ↓ | ↓ |
74 | Trabzon | 0.015 | 0.015 | – | – | – | ↑ | – |
75 | Tunceli | 0.097 | 0.097 | ↑ | ↑ | ↑ | ↑ | ↑ |
76 | Şanlıurfa | 0.027 | 0.027 | – | – | – | ↑ | ↑ |
77 | Uşak | 0.021 | 0.021 | – | – | – | ↑ | ↑ |
78 | Van | 0.109 | 0.114 | ↑ | ↑ | ↑ | ↑ | ↑ |
79 | Yalova | 0.054 | 0.051 | ↑ | ↑ | ↑ | ↑ | ↑ |
80 | Yozgat | 0.049 | 0.049 | ↑ | ↑ | ↑ | ↑ | ↑ |
81 | Zonguldak | 0.037 | 0.034 | ↑ | ↑ | ↑ | ↑ | ↑ |
Increasing Trend (%) ⟶ | 51 | 53 | 51 | 93 | 73 |
Study | Temperature Data | Site/Region—Country | Period | Trend Test 1 | Trend | Trend Slope (S) (°C/Year) |
---|---|---|---|---|---|---|
[8] | Annual max. and min. | Zhujiang River Basin—China | 1980–2010 | MK, SSE | increasing | 0.018 < STmax < 0.023 0.009 < STmin < 0.013 |
[7] | Annual mean | Ontario and Quebec, Canada | 1967–2006 | MK, DWT | increasing | |
[9] | Annual max. and min. | Upper Blue Nile River Basin, Ethiopia | 1981–2010 | LRA | increasing | STmax = 0.016 STmin = 0.021 |
[11] | Annual mean | Syr Darya Basin, Central Asia | 1881–2011 | MK | increasing | STmean = 0.014 |
[13] | Annual max. and min. | Iraq | 1965–2015 | MK, mMK | increasing | 0.025 < STmax < 0.101 0.048 < STmin < 0.117 |
[15] | Annual mean | 18 mega cities in 6 continents | 1901–2008 | MK, LRA | increasing | STmean = 0.009 |
[16] | Annual mean | Iran | 1961–2010 | MK, mMK | increasing | |
[18] | Annual max. and min. | Southwest of USA | 1902–2017 | MK, SSE | increasing | 0.006 < STmax < 0.031 0.01 < STmin < 0.08 |
[20] | Annual mean | Türkiye | 1969–2018 | MK | increasing | 0.029 < STmean < 0.035 |
[21] | Annual mean, max. and min. | Black Sea Coast, Romania | 1990–2020 | LRA, MK, SSE | increasing | STmean = 0.04 STmax = 0.062 STmin = 0.064 |
[23] | Annual mean | Thailand | 2001–2020 | MK, ITA | increasing | |
[90] | Annual max. and min. | Pakistan | 1960–2013 | mMK | increasing | 0.017 < STmax < 0.029 0.017 < STmin < 0.037 |
[63] | Annual mean | Marmara Basin, Türkiye | 1976–2021 | MK, SRA, ITA | increasing | |
[86] | Annual mean | China | 1961–2003 | MK, SSE | increasing | STmean = 0.027 |
[88] | Annual mean, max. and min. | Lanzhou city, China | 1951–2016 | MK, SSE, SRA | increasing | STmean = 0.074 STmax = 0.04 STmin = 0.104 |
[91] | Annual mean | Upper Narmada Basin, India | 1901–2002 | MK, SSE, ITA | increasing | 0.029 < STmean < 0.047 |
[92] | Annual mean | Northwest Himalayas, India | 1981–2018 | increasing | STmean = 0.011 | |
[96] | Annual mean, max. and min. | Greater Toronto Area, Canada | 1970–2000 | MK | increasing | STmean = 0.02 STmax = 0.03 STmin = 0.04 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Asikoglu, O.L.; Alp, H.; Temel, I.; Kamali, P. Examination of Long-Term Temperature Change in Türkiye: Comparative Evaluation of an Advanced Quartile-Based Approach and Traditional Trend Detection Methods. Atmosphere 2025, 16, 1225. https://doi.org/10.3390/atmos16111225
Asikoglu OL, Alp H, Temel I, Kamali P. Examination of Long-Term Temperature Change in Türkiye: Comparative Evaluation of an Advanced Quartile-Based Approach and Traditional Trend Detection Methods. Atmosphere. 2025; 16(11):1225. https://doi.org/10.3390/atmos16111225
Chicago/Turabian StyleAsikoglu, Omer Levend, Harun Alp, Ibrahim Temel, and Pegah Kamali. 2025. "Examination of Long-Term Temperature Change in Türkiye: Comparative Evaluation of an Advanced Quartile-Based Approach and Traditional Trend Detection Methods" Atmosphere 16, no. 11: 1225. https://doi.org/10.3390/atmos16111225
APA StyleAsikoglu, O. L., Alp, H., Temel, I., & Kamali, P. (2025). Examination of Long-Term Temperature Change in Türkiye: Comparative Evaluation of an Advanced Quartile-Based Approach and Traditional Trend Detection Methods. Atmosphere, 16(11), 1225. https://doi.org/10.3390/atmos16111225