Quantification of Multi-Source Road Emissions in an Urban Environment Using Inverse Methods
Abstract
1. Introduction
2. Materials and Methods
2.1. Methodology
- Airflow simulation is applied to calculate wind flow and turbulence parameters under steady-state conditions for the wind directions of interest. A total of 36 wind direction sectors is considered, ranging from 0° to 350° in 10-degree increments.
- The source–receptor relationships are calculated using a forward dispersion model for each individual road traffic emission source.
- A synthetic observational dataset of a theoretical pollutant is generated by adding Gaussian noise to the concentrations obtained from the forward dispersion model.
- The Metropolis–Hastings MCMC algorithm is employed to estimate the release rate of each traffic source, based on both modelled and synthetic measured concentrations, incorporating prior knowledge of the emission rate range for each source.
- The Metropolis–Hastings MCMC is applied across various sensor configurations, involving different numbers of sensors and wind directions. Specific prior knowledge is used for all algorithm runs to assess the impact of sensor quantity on the accuracy of release rate estimations.
- The previous step is repeated using different emission rate ranges as prior information to examine how variations in prior knowledge influence the resulting release rate estimates.
2.2. Source–Receptor Relationship
- C is the concentration of the passive scalar;
- represents the velocity vector in Cartesian coordinates ;
- is the diffusion coefficient;
- is the Dirac delta function, representing the source.
- is the turbulent Schmidt number;
- is the eddy viscosity.
2.3. Bayesian Inference
- Existing knowledge about the source term;
- Uncertainties in sensor data;
- Possible inaccuracies in model predictions.
- is the likelihood, indicating the probability of observing given source ;
- is the prior distribution, representing known information about before the analysis;
- is the evidence or normalization factor, which is independent of and ensures the posterior is a valid probability distribution.
2.3.1. Likelihood Function
- : the (unknown) true concentrations at the sensor locations;
- : the observed concentrations from the sensor network;
- : the concentrations computed by the ATDM based on source term ;
- : the overall number of sensors.
- is the measurement error vector;
- is the model error vector.
2.3.2. Prior Probability
2.3.3. Posterior Probability
2.3.4. Sampling Methods
2.3.5. Metropolis–Hastings MCMC
- Initialize: set the initial state .
- For :
- ○
- Sample the proposal state .
- ○
- Calculate the acceptance probability .
- ○
- A random number uniformly sampled between 0 and 1: .
- ○
- If :
- ▪
- Accept the proposal state .
- ○
- Else:
- ▪
- Reject the proposal state .
- Store the sample .
2.4. Case Study
2.5. Settings
2.5.1. Numerical Simulations Set up
2.5.2. Metropolis–Hastings MCMC Set up
2.6. Synthetic Observational Dataset
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Moussiopoulos, N. Air Quality in Cities; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2003. [Google Scholar]
- Vlachokostas, C.; Banias, G.; Athanasiadis, A.; Achillas, C.; Akylas, V.; Moussiopoulos, N. Cense: A Tool to Assess Combined Exposure to Environmental Health Stressors in Urban Areas. Environ. Int. 2014, 63, 1–10. [Google Scholar]
- World Health Organization; others WHO Global. Air Quality Guidelines: Particulate Matter (PM2. 5 and PM10), Ozone, Nitrogen Dioxide, Sulfur Dioxide and Carbon Monoxide; World Health Organization: Geneva, Switzerland, 2021. [Google Scholar]
- Hutchinson, M.; Oh, H.; Chen, W.H. A Review of Source Term Estimation Methods for Atmospheric Dispersion Events Using Static or Mobile Sensors. Inf. Fusion 2017, 36, 130–148. [Google Scholar] [CrossRef]
- Pudykiewicz, J.A. Application of Adjoint Tracer Transport Equations for Evaluating Source Parameters. Atmos. Environ. 1998, 32, 3039–3050. [Google Scholar] [CrossRef]
- Kobayashi, T.; Nagai, H.; Chino, M.; Kawamura, H. Source Term Estimation of Atmospheric Release Due to the Fukushima Dai-Ichi Nuclear Power Plant Accident by Atmospheric and Oceanic Dispersion Simulations: Fukushima NPP Accident Related. J. Nucl. Sci. Technol. 2013, 50, 255–264. [Google Scholar] [CrossRef]
- Terada, H.; Katata, G.; Chino, M.; Nagai, H. Atmospheric Discharge and Dispersion of Radionuclides during the Fukushima Dai-Ichi Nuclear Power Plant Accident. Part II: Verification of the Source Term and Analysis of Regional-Scale Atmospheric Dispersion. J. Environ. Radioact. 2012, 112, 141–154. [Google Scholar] [CrossRef]
- Kopka, P.; Wawrzynczak, A. Framework for Stochastic Identification of Atmospheric Contamination Source in an Urban Area. Atmos. Environ. 2018, 195, 63–77. [Google Scholar] [CrossRef]
- Gkirmpas, P.; Barmpas, F.; Tsegas, G.; Moussiopoulos, N.; Vlachokostas, C. Unknown Source Parameters Estimation in an Urban-Like Domain Using RANS and LES Approaches. In Air Pollution Modeling and Its Application XXIX; Mensink, C., Mathur, R., Arunachalam, S., Eds.; Springer Nature Switzerland: Cham, Switzerland, 2025; pp. 181–187. [Google Scholar]
- Yee, E.; Hoffman, I.; Ungar, K. Bayesian Inference for Source Reconstruction: A Real-World Application. Int. Sch. Res. Not. 2014, 2014, 507634. [Google Scholar] [CrossRef]
- Gkirmpas, P.; Tsegas, G.; Ioannidis, G.; Vlachokostas, C.; Moussiopoulos, N. Identification of an Unknown Stationary Emission Source in Urban Geometry Using Bayesian Inference. Atmos. Atmos. 2024, 15, 871. [Google Scholar] [CrossRef]
- Singh, S.K.; Rani, R. A Least-Squares Inversion Technique for Identification of a Point Release: Application to Fusion Field Trials 2007. Atmos Environ. 2014, 92, 104–117. [Google Scholar] [CrossRef]
- Singh, S.K.; Turbelin, G.; Issartel, J.-P.; Kumar, P.; Feiz, A.A. Reconstruction of an Atmospheric Tracer Source in Fusion Field Trials: Analyzing Resolution Features. J. Geophys. Res. Atmos. 2015, 120, 6192–6206. [Google Scholar] [CrossRef]
- Yee, E. Probability Theory as Logic: Data Assimilation for Multiple Source Reconstruction. Pure Appl. Geophys. 2012, 169, 499–517. [Google Scholar] [CrossRef]
- Zhang, H.L.; Li, B.; Shang, J.; Wang, W.W.; Zhao, F.Y. Source Term Estimation for Continuous Plume Dispersion in Fusion Field Trial-07: Bayesian Inference Probability Adjoint Inverse Method. Sci. Total Environ. 2024, 915, 169802. [Google Scholar] [CrossRef]
- Efthimiou, G.C.; Kovalets, I.V.; Venetsanos, A.; Andronopoulos, S.; Argyropoulos, C.D.; Kakosimos, K. An Optimized Inverse Modelling Method for Determining the Location and Strength of a Point Source Releasing Airborne Material in Urban Environment. Atmos. Environ. 2017, 170, 118–129. [Google Scholar] [CrossRef]
- Efthimiou, G.C.; Kovalets, I.V.; Argyropoulos, C.D.; Venetsanos, A.; Andronopoulos, S.; Kakosimos, K.E. Evaluation of an Inverse Modelling Methodology for the Prediction of a Stationary Point Pollutant Source in Complex Urban Environments. Build. Environ. 2018, 143, 107–119. [Google Scholar] [CrossRef]
- Gkirmpas, P.; Barmpas, F.; Tsegas, G.; Efthimiou, G.; Tremper, P.; Riedel, T.; Vlachokostas, C.; Moussiopoulos, N. An Evaluation of the Sensitivity of a Source Term Estimation Methodology of Sensor Configuration in an Urban-like Environment. Atmosphere 2024, 15, 1512. [Google Scholar] [CrossRef]
- Allen, C.T.; Young, G.S.; Haupt, S.E. Improving Pollutant Source Characterization by Better Estimating Wind Direction with a Genetic Algorithm. Atmos. Environ. 2007, 41, 2283–2289. [Google Scholar] [CrossRef]
- Allen, C.T.; Haupt, S.E.; Young, G.S. Source Characterization with a Genetic Algorithm–Coupled Dispersion–Backward Model Incorporating SCIPUFF. J. Appl. Meteorol. Clim. 2007, 46, 273–287. [Google Scholar] [CrossRef]
- Haupt, S.E.; Young, G.S.; Allen, C.T. Validation of a Receptor–Dispersion Model Coupled with a Genetic Algorithm Using Synthetic Data. J. Appl. Meteorol. Clim. 2006, 45, 476–490. [Google Scholar] [CrossRef]
- Santiago, J.L.; Borge, R.; Martin, F.; de la Paz, D.; Martilli, A.; Lumbreras, J.; Sanchez, B. Evaluation of a CFD-Based Approach to Estimate Pollutant Distribution within a Real Urban Canopy by Means of Passive Samplers. Sci. Total Environ. 2017, 576, 46–58. [Google Scholar] [CrossRef]
- Sanchez, B.; Santiago, J.L.; Martilli, A.; Martin, F.; Borge, R.; Quaassdorff, C.; de la Paz, D. Modelling NOX Concentrations through CFD-RANS in an Urban Hot-Spot Using High Resolution Traffic Emissions and Meteorology from a Mesoscale Model. Atmos. Environ. 2017, 163, 155–165. [Google Scholar] [CrossRef]
- Ioannidis, G.; Tremper, P.; Li, C.; Riedel, T.; Rapkos, N.; Boikos, C.; Ntziachristos, L. Integrating Cost-Effective Measurements and CFD Modeling for Accurate Air Quality Assessment. Atmosphere 2024, 15, 1056. [Google Scholar] [CrossRef]
- Keats, A.; Yee, E.; Lien, F.-S. Bayesian Inference for Source Determination with Applications to a Complex Urban Environment. Atmos. Environ. 2007, 41, 465–479. [Google Scholar] [CrossRef]
- Haupt, S.E. A Demonstration of Coupled Receptor/Dispersion Modeling with a Genetic Algorithm. Atmos. Environ. 2005, 39, 7181–7189. [Google Scholar] [CrossRef]
- Lu, J.; Huang, M.; Wu, W.; Wei, Y.; Liu, C. Application and Improvement of the Particle Swarm Optimization Algorithm in Source-Term Estimations for Hazardous Release. Atmosphere 2023, 14, 1168. [Google Scholar] [CrossRef]
- Wawrzynczak, A.; Kopka, P.; Borysiewicz, M. Sequential Monte Carlo in Bayesian Assessment of Contaminant Source Localization Based on the Sensors Concentration Measurements. In Proceedings of the Parallel Processing and Applied Mathematics: 10th International Conference, PPAM 2013, Warsaw, Poland, 8–11 September 2013; Revised Selected Papers, Part II 10. 2014; pp. 407–417. [Google Scholar]
- Ickowicz, A.; Septier, F.; Armand, P.; Delignon, Y. Adaptive Bayesian Algorithms For The Estimation Of Source Term In A Complex Atmospheric Release. In Proceedings of the 15th International Conference on Harmonisation within Atmospheric Dispersion Modelling for Regulatory Purposes, Madrid, Spain, 6–9 May 2013. [Google Scholar]
- Wang, R.; Chen, B.; Qiu, S.; Ma, L.; Zhu, Z.; Wang, Y.; Qiu, X. Hazardous Source Estimation Using an Artificial Neural Network, Particle Swarm Optimization and a Simulated Annealing Algorithm. Atmosphere 2018, 9, 119. [Google Scholar] [CrossRef]
- Ling, Y.; Yue, Q.; Chai, C.; Shan, Q.; Hei, D.; Jia, W. Nuclear Accident Source Term Estimation Using Kernel Principal Component Analysis, Particle Swarm Optimization, and Backpropagation Neural Networks. Ann. Nucl. Energy 2020, 136, 107031. [Google Scholar] [CrossRef]
- Coelho, S.; Ferreira, J.; Rodrigues, V.; Lopes, M. Source Apportionment of Air Pollution in European Urban Areas: Lessons from the ClairCity Project. J. Environ. Manag. 2022, 320, 115899. [Google Scholar] [CrossRef]
- Feng, X.; Zhang, X.; Wang, J. Update of SO2 Emission Inventory in the Megacity of Chongqing, China by Inverse Modeling. Atmos. Environ. 2023, 294, 119519. [Google Scholar]
- Cheng, X.; Hao, Z.; Zang, Z.; Liu, Z.; Xu, X.; Wang, S.; Liu, Y.; Hu, Y.; Ma, X. A New Inverse Modeling Approach for Emission Sources Based on the DDM-3D and 3DVAR Techniques: An Application to Air Quality Forecasts in the Beijing–Tianjin–Hebei Region. Atmos. Chem. Phys. 2021, 21, 13747–13761. [Google Scholar]
- Kumar, S.; Sharma, S.; Sharma, P.; Agarwal, S. Inverse Modelling Approach to Assess Air Pollutant Emission Trends, and Source Contributions in Highly Polluted Cities. Discov. Atmos. 2024, 2, 13. [Google Scholar]
- Ntziachristos, L.; Gkatzoflias, D.; Kouridis, C.; Samaras, Z. COPERT: A European Road Transport Emission Inventory Model. In Proceedings of the Information Technologies in Environmental Engineering: Proceedings of the 4th International ICSC Symposium, Thessaloniki, Greece, 28–29 May 2009; pp. 491–504. [Google Scholar]
- Carruthers, D.; Stidworthy, A.; Clarke, D.; Dicks, J.; Jones, R.; Leslie, I.; Popoola, O.A.M.; Seaton, M. Urban Emission Inventory Optimisation Using Sensor Data, an Urban Air Quality Model and Inversion Techniques. Int. J. Environ. Pollut. 2019, 66, 252–266. [Google Scholar] [CrossRef]
- Xue, F.; Li, X.; Ooka, R.; Kikumoto, H.; Zhang, W. Turbulent Schmidt Number for Source Term Estimation Using Bayesian Inference. Build. Environ. 2017, 125, 414–422. [Google Scholar] [CrossRef]
- Xue, F.; Kikumoto, H.; Li, X.; Ooka, R. Bayesian Source Term Estimation of Atmospheric Releases in Urban Areas Using LES Approach. J. Hazard. Mater. 2018, 349, 68–78. [Google Scholar] [CrossRef]
- Henry, F.; Bonifacio, R.G.M.; Glasgow, L.A. Numerical Simulation of Transport of Particles Emitted From Ground-Level Area Source Using Aermod and CFD. Eng. Appl. Comput. Fluid. Mech. 2014, 8, 488–502. [Google Scholar] [CrossRef]
- Wang, Y.; Huang, H.; Huang, L.; Ristic, B. Evaluation of Bayesian Source Estimation Methods with Prairie Grass Observations and Gaussian Plume Model: A Comparison of Likelihood Functions and Distance Measures. Atmos. Environ. 2017, 152, 519–530. [Google Scholar] [CrossRef]
- Jia, H.; Kikumoto, H. Source Term Estimation in Complex Urban Environments Based on Bayesian Inference and Unsteady Adjoint Equations Simulated via Large Eddy Simulation. Build. Environ. 2021, 193, 107669. [Google Scholar] [CrossRef]
- Metropolis, N.; Rosenbluth, A.W.; Rosenbluth, M.N.; Teller, A.H.; Teller, E. Equation of State Calculations by Fast Computing Machines. J. Chem. Phys. 1953, 21, 1087–1092. [Google Scholar] [CrossRef]
- Kahn, H.; Marshall, A.W. Methods of Reducing Sample Size in Monte Carlo Computations. J. Oper. Res. Soc. Am. 1953, 1, 263–278. [Google Scholar] [CrossRef]
- Von Neumann, J. Various Techniques Used in Connection with Random Digits. John Von. Neumann Collect. Work. 1963, 5, 768–770. [Google Scholar]
- Gordon, N.J.; Salmond, D.J.; Smith, A.F.M. Novel Approach to Nonlinear/Non-Gaussian Bayesian State Estimation. In IEE Proceedings F (Radar and Signal Processing); IET: London, UK, 1993; Volume 140, pp. 107–113. [Google Scholar]
- Gilks, W.R.; Richardson, S.; Spiegelhalter, D. Markov Chain Monte Carlo in Practice, 1st ed.; Chapman and Hall/CRC: New York, NY, USA, 1995. [Google Scholar] [CrossRef]
- Haklay, M.; Weber, P. Openstreetmap: User-Generated Street Maps. IEEE Pervasive Comput. 2008, 7, 12–18. [Google Scholar] [CrossRef]
- Haklay, M. How Good Is Volunteered Geographical Information? A Comparative Study of OpenStreetMap and Ordnance Survey Datasets. Environ. Plan. B Plan. Des. 2010, 37, 682–703. [Google Scholar] [CrossRef]
- Mooney, P.; Corcoran, P.; Winstanley, A.C. Towards Quality Metrics for OpenStreetMap. In Proceedings of the 18th SIGSPATIAL International Conference on Advances in Geographic Information Systems, San Jose, CA, USA, 2–5 November 2010; pp. 514–517. [Google Scholar]
- Neis, P.; Zielstra, D.; Zipf, A. The Street Network Evolution of Crowdsourced Maps: OpenStreetMap in Germany 2007–2011. Future Internet 2011, 4, 1–21. [Google Scholar] [CrossRef]
- Ioannidis, G.; Li, C.; Tremper, P.; Riedel, T.; Ntziachristos, L. Application of CFD Modelling for Pollutant Dispersion at an Urban Traffic Hotspot. Atmosphere 2024, 15, 113. [Google Scholar] [CrossRef]
- Antoniou, A.; Ioannidis, G.; Ntziachristos, L. Realistic Simulation of Air Pollution in an Urban Area to Promote Environmental Policies. Environ. Model. Softw. 2024, 172, 105918. [Google Scholar] [CrossRef]
- Blocken, B. Computational Fluid Dynamics for Urban Physics: Importance, Scales, Possibilities, Limitations and Ten Tips and Tricks towards Accurate and Reliable Simulations. Build. Environ. 2015, 91, 219–245. [Google Scholar] [CrossRef]
- BETA CAE Systems ANSA Pre-Processor Software, Version 20.1.0 2020; BETA CAE Systems: Thessaloniki, Greece, 2019.
- Ariff, M.; Salim, S.M.; Cheah, S.C. Wall Y+ Approach for Dealing with Turbulent Flows over a Surface Mounted Cube: Part 2—High Reynolds Number; CSIRO Publishing: Melbourne, Australia, 2009. [Google Scholar]
- OpenFOAM Foundation Ltd. OpenFOAM V2112: The Open Source CFD Toolbox 2021. OpenFOAM Foundation Ltd.: London, UK, 2021. [Google Scholar]
- VDI. VDI 3783 Part 9: Environmental Meteorology. Prognostic Microscale Wind Field Models. Evaluation for Flow around Buildings and Obstacles; VDI/DIN-Kommission Reinhaltung der Luft (KRdL)-Normenausschuss: Düsseldorf, Germany, 2017. [Google Scholar]
- VDI. VDI 3783 Part 4: Environmental Meteorology—Acute Accidental Releases into the Atmosphere—Requirements to an Optimal System to Determining and Assessing Pollution of the Atmosphere; VDI/DIN-Kommission Reinhaltung der Luft (KRdL)-Normenausschuss: Düsseldorf, Germany, 2004. [Google Scholar]
- Franke, J.; Hellsten, A.; Schlünzen, H.; Carissimo, B. COST–Best Practice Guideline for the CFD Simulation of Flows in the Urban Environment; University of Hamburg: Hamburg, Germany, 2007. [Google Scholar]
- Martín, F.; Janssen, S.; Rodrigues, V.; Sousa, J.; Santiago, J.L.; Rivas, E.; Stocker, J.; Jackson, R.; Russo, F.; Villani, M.G.; et al. Using Dispersion Models at Microscale to Assess Long-Term Air Pollution in Urban Hot Spots: A FAIRMODE Joint Intercomparison Exercise for a Case Study in Antwerp. Sci. Total Environ. 2024, 925, 171761. [Google Scholar] [CrossRef]
- Rivas, E.; Santiago, J.L.; Lechón, Y.; Martín, F.; Ariño, A.; Pons, J.J.; Santamaría, J.M. CFD Modelling of Air Quality in Pamplona City (Spain): Assessment, Stations Spatial Representativeness and Health Impacts Valuation. Sci. Total Environ. 2019, 649, 1362–1380. [Google Scholar] [CrossRef]
- Richards, P.J.; Hoxey, R.P. Appropriate Boundary Conditions for Computational Wind Engineering Models Using the K-ε Turbulence Model. Comput. Wind Eng. 1993, 46, 145–153. [Google Scholar] [CrossRef]
- Kovalets, I.V.; Andronopoulos, S.; Venetsanos, A.G.; Bartzis, J.G. Identification of Strength and Location of Stationary Point Source of Atmospheric Pollutant in Urban Conditions Using Computational Fluid Dynamics Model. Math. Comput. Simul. 2011, 82, 244–257. [Google Scholar] [CrossRef]
- Budde, M.; Riedel, T.; Beigl, M.; Schäfer, K.; Emeis, S.; Cyrys, J.; Schnelle-Kreis, J.; Philipp, A.; Ziegler, V.; Grimm, H.; et al. SmartAQnet: Remote and in-Situ Sensing of Urban Air Quality. In Proceedings of the Remote Sensing of Clouds and the Atmosphere XXII, Warsaw, Poland, 11–14 September 2017; Volume 10424, pp. 19–26. [Google Scholar]
Prior Knowledge | Sensor’s Subgroup | Mean | Median | Std | Min | Max | Q 25% | Q 75% |
---|---|---|---|---|---|---|---|---|
q range = 0.001–100 kg/s | 10 | 5.94 | 6.33 | 1.48 | 1.00 | 8.74 | 5.91 | 6.71 |
20 | 5.51 | 6.20 | 1.88 | 1.00 | 8.82 | 5.43 | 6.71 | |
30 | 5.18 | 6.01 | 2.06 | 1.00 | 9.19 | 2.83 | 6.69 | |
40 | 4.64 | 5.45 | 2.25 | 1.00 | 9.44 | 2.34 | 6.54 | |
50 | 4.05 | 3.29 | 2.30 | 1.00 | 10.85 | 1.95 | 6.20 | |
60 | 3.38 | 2.47 | 2.17 | 1.00 | 12.13 | 1.65 | 5.17 | |
70 | 2.90 | 2.20 | 1.93 | 1.00 | 12.27 | 1.52 | 3.50 | |
80 | 2.76 | 2.15 | 1.79 | 1.00 | 12.07 | 1.53 | 3.14 | |
q range = 0.01–20 kg/s | 10 | 2.29 | 2.41 | 0.38 | 1.01 | 2.80 | 2.30 | 2.50 |
20 | 2.21 | 2.37 | 0.44 | 1.01 | 2.86 | 2.19 | 2.49 | |
30 | 2.20 | 2.37 | 0.45 | 1.01 | 3.02 | 1.91 | 2.51 | |
40 | 2.06 | 2.24 | 0.50 | 1.00 | 3.05 | 1.62 | 2.46 | |
50 | 1.96 | 2.02 | 0.54 | 1.00 | 3.18 | 1.49 | 2.42 | |
60 | 1.84 | 1.74 | 0.52 | 1.00 | 3.46 | 1.41 | 2.30 | |
70 | 1.79 | 1.67 | 0.51 | 1.00 | 3.27 | 1.39 | 2.20 | |
80 | 1.77 | 1.66 | 0.51 | 1.00 | 3.42 | 1.38 | 2.18 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gkirmpas, P.; Tsegas, G.; Ioannidis, G.; Tremper, P.; Riedel, T.; Chourdakis, E.; Vlachokostas, C.; Moussiopoulos, N. Quantification of Multi-Source Road Emissions in an Urban Environment Using Inverse Methods. Atmosphere 2025, 16, 1184. https://doi.org/10.3390/atmos16101184
Gkirmpas P, Tsegas G, Ioannidis G, Tremper P, Riedel T, Chourdakis E, Vlachokostas C, Moussiopoulos N. Quantification of Multi-Source Road Emissions in an Urban Environment Using Inverse Methods. Atmosphere. 2025; 16(10):1184. https://doi.org/10.3390/atmos16101184
Chicago/Turabian StyleGkirmpas, Panagiotis, George Tsegas, Giannis Ioannidis, Paul Tremper, Till Riedel, Eleftherios Chourdakis, Christos Vlachokostas, and Nicolas Moussiopoulos. 2025. "Quantification of Multi-Source Road Emissions in an Urban Environment Using Inverse Methods" Atmosphere 16, no. 10: 1184. https://doi.org/10.3390/atmos16101184
APA StyleGkirmpas, P., Tsegas, G., Ioannidis, G., Tremper, P., Riedel, T., Chourdakis, E., Vlachokostas, C., & Moussiopoulos, N. (2025). Quantification of Multi-Source Road Emissions in an Urban Environment Using Inverse Methods. Atmosphere, 16(10), 1184. https://doi.org/10.3390/atmos16101184