Examining the Probabilistic Characteristics of Maximum Rainfall in Türkiye
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Meteorological Data Used in Study
2.3. Probability Distributions Considered
2.4. Methods for Selecting the Best Fit Distributions
2.4.1. Kolmogorov–Smirnov (K-S) Test
2.4.2. Anderson–Darling (A-D) Test
2.4.3. Probability Plot Correlation Coefficient (PPCC) Test
2.4.4. Goodness of Fit Measure (ZDIST) of L-Moment Method
2.4.5. Conjunctive Evaluation of Selecting Criteria
2.5. Stationary Analysis
3. Results
3.1. Best Fit Probability Distributions for Each Rainfall Durations
3.2. Best Fit Probability Distributions by Provinces
3.3. Best Fit Probability Distribution in Türkiye
3.4. Best Fit Probability Distributions According to Goodness of Fit Tests
3.5. Stationary Analysis Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Station | Latitude (°N) | Longitude (°E) | Altitude (m) | Annual Rainfall (mm) | Data Recording Period |
---|---|---|---|---|---|
Adana | 37.00 | 35.34 | 23 | 668 | 1944–2020 |
Adıyaman | 37.76 | 38.28 | 672 | 715 | 1963–2020 |
Afyonkarahisar | 38.74 | 30.56 | 1034 | 444 | 1957–2020 |
Ağrı | 39.73 | 43.05 | 1646 | 526 | 1967–2020 |
Aksaray | 38.37 | 33.99 | 970 | 360 | 1965–2020 |
Amasya | 40.67 | 35.84 | 409 | 463 | 1965–2020 |
Ankara | 39.97 | 32.864 | 891 | 392 | 1940–2020 |
Antalya | 36.55 | 31.98 | 6 | 1040 | 1964–2020 |
Ardahan | 41.11 | 42.71 | 1827 | 558 | 1967–2020 |
Artvin | 41.18 | 41.82 | 613 | 695 | 1965–2020 |
Aydın | 37.84 | 27.84 | 56 | 658 | 1959–2020 |
Balıkesir | 39.63 | 27.92 | 102 | 604 | 1957–2020 |
Bartın | 41.63 | 32.36 | 33 | 1063 | 1966–2020 |
Batman | 37.86 | 41.16 | 610 | 489 | 1969–2020 |
Bayburt | 40.26 | 40.22 | 1584 | 451 | 1966–2020 |
Bilecik | 40.14 | 29.98 | 539 | 461 | 1960–2020 |
Bingöl | 38.89 | 40.50 | 1139 | 945 | 1966–2020 |
Bitlis | 38.48 | 42.16 | 1785 | 1072 | 1966–2020 |
Bolu | 40.73 | 31.60 | 743 | 555 | 1949–2020 |
Burdur | 37.72 | 30.29 | 957 | 428 | 1964–2020 |
Bursa | 40.23 | 29.01 | 100 | 708 | 1951–2020 |
Çanakkale | 40.14 | 26.40 | 6 | 623 | 1958–2020 |
Çankırı | 40.61 | 33.61 | 755 | 415 | 1959–2020 |
Çorum | 40.55 | 34.94 | 776 | 431 | 1958–2020 |
Denizli | 37.76 | 29.09 | 425 | 568 | 1959–2020 |
Diyarbakır | 37.90 | 40.20 | 674 | 491 | 1940–2020 |
Düzce | 40.84 | 31.15 | 146 | 838 | 1965–2020 |
Edirne | 41.68 | 26.55 | 51 | 599 | 1949–2020 |
Elazığ | 38.64 | 39.26 | 989 | 421 | 1957–2020 |
Erzincan | 39.75 | 39.49 | 1216 | 376 | 1957–2020 |
Erzurum | 39.95 | 41.19 | 1758 | 431 | 1956–2020 |
Eskişehir | 39.77 | 30.55 | 801 | 356 | 1940–2020 |
Gaziantep | 37.06 | 37.35 | 854 | 564 | 1957–2020 |
Giresun | 40.92 | 38.39 | 38 | 1292 | 1966–2020 |
Gümüşhane | 40.46 | 39.47 | 1216 | 463 | 1966–2020 |
Hakkari | 37.58 | 43.74 | 1720 | 793 | 1956–2020 |
Hatay | 36.20 | 36.15 | 104 | 1153 | 1957–2020 |
Iğdır | 39.92 | 44.05 | 856 | 259 | 1966–2020 |
Isparta | 37.79 | 30.57 | 997 | 566 | 1957–2020 |
İstanbul | 40.91 | 29.16 | 18 | 661 | 1974–2020 |
İzmir | 38.40 | 27.08 | 29 | 711 | 1938–2020 |
Kahramanmaraş | 37.58 | 36.92 | 572 | 722 | 1966–2020 |
Karabük | 41.20 | 32.63 | 278 | 549 | 1966–2020 |
Karaman | 37.19 | 33.22 | 1018 | 338 | 1965–2020 |
Kars | 40.60 | 43.11 | 1777 | 508 | 1965–2020 |
Kastamonu | 41.37 | 33.78 | 800 | 485 | 1948–2020 |
Kayseri | 38.69 | 35.50 | 1094 | 390 | 1950–2020 |
Kırıkkale | 39.84 | 33.52 | 751 | 383 | 1967–2020 |
Kırklareli | 41.74 | 27.22 | 232 | 582 | 1966–2020 |
Kırşehir | 39.16 | 34.16 | 1007 | 382 | 1942–2020 |
Kilis | 36.71 | 37.11 | 640 | 499 | 1966–2020 |
Kocaeli | 40.77 | 29.92 | 74 | 814 | 1945–2020 |
Konya | 37.98 | 32.57 | 1031 | 328 | 1950–2020 |
Kütahya | 39.42 | 29.99 | 969 | 328 | 1941–2020 |
Malatya | 38.34 | 38.22 | 950 | 384 | 1958–2020 |
Manisa | 38.62 | 27.41 | 71 | 742 | 1958–2020 |
Mersin | 36.78 | 34.60 | 7 | 610 | 1958–2020 |
Mardin | 37.31 | 40.73 | 1040 | 673 | 1966–2020 |
Muğla | 37.21 | 28.37 | 646 | 862 | 1944–2020 |
Muş | 38.75 | 41.50 | 1322 | 759 | 1966–2020 |
Nevşehir | 38.62 | 34.70 | 1260 | 422 | 1965–2020 |
Niğde | 37.96 | 34.68 | 1211 | 343 | 1959–2020 |
Ordu | 40.98 | 37.89 | 5 | 1050 | 1965–2020 |
Osmaniye | 37.10 | 36.25 | 94 | 817 | 1974–2020 |
Rize | 41.04 | 40.50 | 3 | 2301 | 1940–2020 |
Sakarya | 40.77 | 30.39 | 30 | 844 | 1962–2020 |
Samsun | 41.34 | 36.26 | 4 | 722 | 1957–2020 |
Siirt | 37.93 | 41.94 | 895 | 715 | 1959–2020 |
Sinop | 42.03 | 35.16 | 32 | 692 | 1965–2020 |
Sivas | 39.74 | 37.00 | 1294 | 430 | 1958–2020 |
Tekirdağ | 40.96 | 27.50 | 4 | 578 | 1963–2020 |
Tokat | 40.33 | 36.56 | 611 | 435 | 1966–2020 |
Trabzon | 40.99 | 39.77 | 33 | 829 | 1966–2020 |
Tunceli | 39.16 | 39.54 | 914 | 871 | 1966–2020 |
Şanlıurfa | 37.16 | 38.79 | 550 | 459 | 1959–2020 |
Şırnak | 37.52 | 42.45 | 1375 | 720 | 1959–2020 |
Uşak | 38.67 | 29.40 | 919 | 558 | 1941–2020 |
Van | 38.47 | 43.35 | 1675 | 395 | 1956–2020 |
Yalova | 40.66 | 29.28 | 4 | 755 | 1962–2020 |
Yozgat | 39.82 | 34.82 | 1301 | 572 | 1960–2020 |
Zonguldak | 41.45 | 31.78 | 135 | 1226 | 1945–2020 |
Appendix B
Province | Rainfall Duration | |||||||
---|---|---|---|---|---|---|---|---|
15 min | 30 min | 1 h | 3 h | 6 h | 12 h | 24 h | Overall | |
Adana | GEV | GEV | WAK | WAK | WAK | GEV | WAK | WAK |
Adıyaman | WAK | WAK | GLO | GLO | GLO | WAK | WAK | WAK |
Afyonkarahisar | WAK | GEV | WAK | WAK | GEV | GEV | WAK | WAK |
Ağrı | GEV | WAK | WAK | WAK | WAK | WAK | WAK | WAK |
Aksaray | WAK | WAK | GEV | WAK | WAK | GEV | WAK | WAK |
Amasya | GLO | WAK | WAK | GLO | GEV | GEV | WAK | GLO |
Ankara | WAK | LP3 | GEV | WAK | WAK | WAK | WAK | WAK |
Antalya | WAK | WAK | GEV | GEV | WAK | WAK | WAK | WAK |
Ardahan | GEV | WAK | WAK | WAK | WAK | WAK | LP3 | WAK |
Artvin | WAK | WAK | GEV | GEV | WAK | WAK | GEV | WAK |
Aydın | WAK | WAK | WAK | LP3 | LP3 | GEV | WAK | WAK |
Balıkesir | GEV | WAK | WAK | WAK | WAK | WAK | WAK | WAK |
Bartın | GEV | GEV | LP3 | WAK | GEV | GEV | WAK | GEV |
Batman | WAK | WAK | GEV | GEV | WAK | WAK | GEV | WAK |
Bayburt | GEV | WAK | WAK | WAK | GEV | WAK | GEV | WAK |
Bilecik | WAK | WAK | LP3 | WAK | WAK | GEV | GEV | WAK |
Bingöl | WAK | WAK | WAK | WAK | WAK | WAK | GLO | WAK |
Bitlis | WAK | GEV | LP3 | GLO | GEV | WAK | WAK | WAK |
Bolu | GEV | LP3 | WAK | WAK | WAK | WAK | WAK | WAK |
Burdur | WAK | WAK | WAK | WAK | WAK | WAK | WAK | WAK |
Bursa | WAK | WAK | GEV | WAK | GEV | GEV | GLO | WAK |
Çanakkale | WAK | GEV | WAK | GEV | GEV | WAK | WAK | GEV |
Çankırı | LP3 | GEV | WAK | GLO | WAK | WAK | WAK | WAK |
Çorum | WAK | WAK | WAK | WAK | GEV | WAK | GEV | WAK |
Denizli | WAK | WAK | LP3 | WAK | WAK | GEV | WAK | WAK |
Diyarbakır | WAK | WAK | WAK | WAK | WAK | WAK | GEV | WAK |
Düzce | GEV | WAK | WAK | WAK | GEV | WAK | WAK | WAK |
Edirne | WAK | WAK | GEV | WAK | WAK | WAK | GEV | WAK |
Elazığ | WAK | WAK | WAK | WAK | WAK | WAK | GEV | WAK |
Erzincan | WAK | WAK | WAK | WAK | GEV | WAK | GLO | WAK |
Erzurum | LP3 | WAK | GEV | GEV | GLO | GLO | GEV | GEV |
Eskişehir | LP3 | GEV | GEV | WAK | WAK | WAK | GEV | WAK |
Gaziantep | LP3 | WAK | WAK | WAK | LP3 | GEV | WAK | WAK |
Giresun | WAK | LP3 | WAK | PE3 | WAK | WAK | LP3 | WAK |
Gümüşhane | WAK | WAK | WAK | WAK | WAK | GEV | GEV | WAK |
Hakkari | WAK | WAK | WAK | WAK | WAK | WAK | WAK | WAK |
Iğdır | WAK | GEV | GEV | WAK | WAK | GEV | WAK | WAK |
Isparta | WAK | WAK | WAK | WAK | WAK | GLO | WAK | WAK |
İstanbul | WAK | GEV | GEV | GEV | WAK | WAK | LP3 | WAK |
İzmir | GLO | WAK | GEV | WAK | WAK | WAK | GEV | WAK |
Kahramanmaraş | WAK | WAK | GLO | GEV | WAK | WAK | WAK | WAK |
Karabük | WAK | WAK | WAK | LP3 | WAK | WAK | LN3 | WAK |
Karaman | LP3 | LP3 | WAK | GEV | WAK | WAK | WAK | WAK |
Kars | GEV | WAK | GEV | WAK | GEV | GLO | GEV | WAK |
Kastamonu | WAK | WAK | WAK | LP3 | WAK | WAK | LP3 | WAK |
Kayseri | WAK | LP3 | WAK | WAK | WAK | WAK | WAK | WAK |
Kırıkkale | WAK | WAK | WAK | LP3 | GLO | GLO | WAK | WAK |
Kırklareli | WAK | GLO | WAK | WAK | WAK | WAK | GEV | WAK |
Kırşehir | GEV | WAK | GEV | WAK | WAK | WAK | WAK | WAK |
Kilis | WAK | WAK | WAK | GEV | WAK | WAK | WAK | WAK |
Kocaeli | WAK | WAK | LP3 | WAK | WAK | WAK | WAK | WAK |
Konya | GEV | WAK | WAK | GEV | WAK | GEV | WAK | WAK |
Kütahya | GEV | WAK | LP3 | WAK | WAK | GEV | GEV | GEV |
Malatya | GEV | WAK | GLO | GEV | WAK | WAK | GEV | WAK |
Manisa | WAK | GEV | GEV | WAK | WAK | GEV | WAK | WAK |
Mardin | LP3 | WAK | WAK | LP3 | GEV | WAK | WAK | WAK |
Mersin | WAK | GEV | GEV | GEV | WAK | WAK | PE3 | WAK |
Muğla | WAK | WAK | GEV | GLO | GLO | GEV | WAK | WAK |
Muş | WAK | GEV | LP3 | WAK | GLO | GEV | WAK | WAK |
Nevşehir | WAK | WAK | WAK | WAK | WAK | GEV | WAK | WAK |
Niğde | WAK | WAK | WAK | WAK | WAK | GLO | WAK | WAK |
Ordu | WAK | WAK | WAK | WAK | WAK | GEV | WAK | WAK |
Osmaniye | GEV | WAK | WAK | WAK | WAK | GEV | WAK | WAK |
Rize | GEV | WAK | WAK | LP3 | LP3 | WAK | WAK | WAK |
Sakarya | GEV | WAK | WAK | WAK | GEV | GEV | WAK | WAK |
Samsun | GEV | WAK | WAK | WAK | LP3 | WAK | WAK | WAK |
Siirt | WAK | GEV | PE3 | WAK | WAK | WAK | GLO | WAK |
Sinop | WAK | GEV | WAK | WAK | WAK | LP3 | WAK | WAK |
Sivas | WAK | WAK | WAK | GEV | WAK | GEV | WAK | WAK |
Şanlıurfa | WAK | GLO | LP3 | PE3 | GEV | GLO | WAK | WAK |
Şırnak | WAK | GEV | PE3 | WAK | WAK | WAK | GLO | WAK |
Tekirdağ | WAK | WAK | GEV | WAK | WAK | WAK | WAK | WAK |
Tokat | WAK | WAK | WAK | GEV | GEV | GEV | WAK | WAK |
Trabzon | WAK | LP3 | WAK | PE3 | WAK | WAK | LN3 | WAK |
Tunceli | LP3 | WAK | WAK | WAK | WAK | WAK | GLO | WAK |
Uşak | WAK | GEV | WAK | GEV | GEV | GEV | WAK | GEV |
Van | WAK | WAK | WAK | WAK | WAK | WAK | WAK | WAK |
Yalova | WAK | WAK | WAK | WAK | WAK | WAK | LN3 | WAK |
Yozgat | LN3 | LN3 | LN3 | LN3 | GEV | LN3 | LN3 | LN3 |
Zonguldak | PE3 | PE3 | PE3 | GEV | WAK | LN3 | LN3 | LN3 |
Appendix C
15 min | 30 min | 1 h | 3 h | 6 h | 12 h | 24 h | |
---|---|---|---|---|---|---|---|
Adana | stationary | stationary | stationary | stationary | stationary | nonstationary | stationary |
Adıyaman | stationary | stationary | stationary | nonstationary | stationary | stationary | stationary |
Afyonkarahisar | nonstationary | nonstationary | nonstationary | nonstationary | stationary | stationary | stationary |
Ağrı | stationary | stationary | stationary | stationary | stationary | stationary | stationary |
Aksaray | stationary | nonstationary | nonstationary | nonstationary | stationary | stationary | nonstationary |
Amasya | stationary | stationary | stationary | stationary | stationary | stationary | stationary |
Ankara | stationary | stationary | stationary | stationary | stationary | stationary | stationary |
Antalya | stationary | stationary | stationary | stationary | stationary | stationary | stationary |
Ardahan | stationary | stationary | stationary | stationary | stationary | stationary | stationary |
Artvin | nonstationary | nonstationary | nonstationary | nonstationary | stationary | stationary | stationary |
Aydın | nonstationary | nonstationary | nonstationary | nonstationary | nonstationary | nonstationary | nonstationary |
Balıkesir | stationary | stationary | stationary | stationary | stationary | stationary | stationary |
Bartın | stationary | stationary | stationary | nonstationary | nonstationary | nonstationary | nonstationary |
Batman | stationary | stationary | stationary | stationary | nonstationary | nonstationary | stationary |
Bayburt | nonstationary | nonstationary | nonstationary | stationary | stationary | stationary | stationary |
Bilecik | stationary | stationary | stationary | nonstationary | nonstationary | stationary | stationary |
Bingöl | nonstationary | stationary | stationary | nonstationary | nonstationary | stationary | stationary |
Bitlis | stationary | stationary | stationary | stationary | stationary | stationary | stationary |
Bolu | stationary | stationary | nonstationary | nonstationary | stationary | stationary | stationary |
Burdur | stationary | stationary | stationary | stationary | stationary | stationary | stationary |
Bursa | stationary | nonstationary | nonstationary | nonstationary | nonstationary | stationary | stationary |
Çanakkale | stationary | stationary | stationary | stationary | stationary | stationary | stationary |
Çankırı | stationary | stationary | stationary | stationary | stationary | nonstationary | stationary |
Çorum | stationary | stationary | stationary | nonstationary | nonstationary | stationary | stationary |
Denizli | stationary | stationary | stationary | stationary | nonstationary | nonstationary | stationary |
Diyarbakır | stationary | stationary | stationary | stationary | stationary | stationary | stationary |
Düzce | stationary | stationary | stationary | stationary | stationary | stationary | stationary |
Edirne | stationary | stationary | nonstationary | nonstationary | nonstationary | nonstationary | nonstationary |
Elazığ | stationary | stationary | stationary | stationary | nonstationary | nonstationary | stationary |
Erzincan | stationary | stationary | stationary | stationary | stationary | stationary | stationary |
Erzurum | stationary | stationary | stationary | stationary | stationary | stationary | stationary |
Eskişehir | stationary | stationary | stationary | stationary | stationary | stationary | stationary |
Gaziantep | stationary | stationary | stationary | stationary | stationary | stationary | nonstationary |
Giresun | stationary | stationary | stationary | stationary | stationary | stationary | stationary |
Gümüşhane | stationary | stationary | stationary | stationary | stationary | stationary | stationary |
Hakkari | stationary | stationary | stationary | stationary | stationary | stationary | stationary |
Hatay | stationary | stationary | stationary | stationary | stationary | stationary | stationary |
Iğdır | nonstationary | stationary | stationary | stationary | stationary | stationary | stationary |
Isparta | stationary | stationary | stationary | stationary | stationary | stationary | stationary |
İstanbul | stationary | stationary | stationary | stationary | stationary | stationary | stationary |
İzmir | nonstationary | nonstationary | nonstationary | nonstationary | nonstationary | nonstationary | nonstationary |
Kahramanmaraş | stationary | stationary | stationary | stationary | nonstationary | stationary | stationary |
Karabük | nonstationary | nonstationary | nonstationary | stationary | nonstationary | nonstationary | nonstationary |
Karaman | stationary | stationary | stationary | stationary | stationary | stationary | stationary |
Kars | stationary | stationary | stationary | stationary | stationary | stationary | nonstationary |
Kastamonu | nonstationary | nonstationary | nonstationary | stationary | nonstationary | nonstationary | nonstationary |
Kayseri | nonstationary | nonstationary | nonstationary | nonstationary | nonstationary | nonstationary | stationary |
Kırıkkale | stationary | stationary | stationary | stationary | stationary | stationary | stationary |
Kırklareli | stationary | stationary | stationary | stationary | stationary | stationary | stationary |
Kırşehir | stationary | nonstationary | nonstationary | stationary | nonstationary | nonstationary | nonstationary |
Kilis | stationary | stationary | stationary | stationary | stationary | stationary | stationary |
Kocaeli | nonstationary | nonstationary | nonstationary | nonstationary | nonstationary | stationary | stationary |
Konya | stationary | stationary | stationary | stationary | stationary | stationary | nonstationary |
Kütahya | stationary | nonstationary | nonstationary | nonstationary | nonstationary | nonstationary | nonstationary |
Malatya | nonstationary | stationary | stationary | stationary | stationary | stationary | stationary |
Manisa | stationary | stationary | stationary | stationary | stationary | stationary | stationary |
Mardin | stationary | stationary | stationary | stationary | stationary | stationary | nonstationary |
Mersin | stationary | stationary | stationary | nonstationary | nonstationary | nonstationary | nonstationary |
Muğla | nonstationary | nonstationary | nonstationary | nonstationary | stationary | stationary | stationary |
Muş | stationary | stationary | stationary | stationary | stationary | stationary | stationary |
Nevşehir | stationary | stationary | stationary | stationary | stationary | stationary | stationary |
Niğde | stationary | nonstationary | nonstationary | stationary | stationary | stationary | stationary |
Ordu | stationary | stationary | stationary | stationary | stationary | stationary | stationary |
Osmaniye | stationary | stationary | stationary | stationary | stationary | stationary | stationary |
Rize | nonstationary | nonstationary | nonstationary | nonstationary | nonstationary | nonstationary | stationary |
Sakarya | nonstationary | nonstationary | nonstationary | nonstationary | nonstationary | nonstationary | stationary |
Samsun | stationary | stationary | stationary | stationary | stationary | stationary | stationary |
Siirt | stationary | stationary | stationary | stationary | stationary | stationary | stationary |
Sinop | stationary | stationary | stationary | stationary | stationary | stationary | stationary |
Sivas | stationary | stationary | stationary | stationary | stationary | stationary | stationary |
Şanlıurfa | stationary | stationary | stationary | stationary | stationary | stationary | stationary |
Şırnak | stationary | stationary | stationary | stationary | stationary | stationary | stationary |
Tekirdağ | stationary | stationary | stationary | nonstationary | stationary | stationary | stationary |
Tokat | stationary | stationary | stationary | stationary | stationary | stationary | stationary |
Trabzon | stationary | stationary | stationary | stationary | stationary | stationary | stationary |
Tunceli | nonstationary | stationary | stationary | nonstationary | nonstationary | stationary | stationary |
Uşak | stationary | stationary | stationary | stationary | stationary | stationary | stationary |
Van | stationary | stationary | stationary | stationary | stationary | stationary | stationary |
Yalova | stationary | stationary | stationary | stationary | stationary | stationary | stationary |
Yozgat | stationary | stationary | stationary | stationary | stationary | stationary | stationary |
Zonguldak | stationary | stationary | stationary | stationary | stationary | stationary | stationary |
References
- IPCC. AR6 Synthesis Report: Climate Change, Synthesis Report for the Sixth Assessment Report; IPCC: Geneva, Switzerland, 2023. [Google Scholar]
- Francisco-Fernández, M.; Quintela-del-Río, A. Comparing Simultaneous and Pointwise Confidence Intervals for Hydrological Processes. PLoS ONE 2016, 11, e0147505. [Google Scholar] [CrossRef]
- Flowers-Cano, R.S.; Ortiz-Gómez, R. Comparison of Four Methods to Select the Best Probability Distribution for Frequency Analysis of Annual Maximum Precipitation Using Monte Carlo Simulations. Theor. Appl. Climatol. 2021, 145, 1177–1192. [Google Scholar] [CrossRef]
- Chow, V.T. Statistical and Probability Analysis of Hydrologic Data. In Handbook of Applied Hydrology; McGraw-Hill: New York, NY, USA, 1964; pp. 81–97. [Google Scholar]
- Stedinger, J.R.; Vogel, R.M.; Foufoula-Georgiou, E. Frequency Analysis of Extreme Events; McGraw-Hill: New York, NY, USA, 1993; Chapter 18. [Google Scholar]
- Hosking, J.R.M.; Wallis, J.R. Regional Frequency Analysis; Cambridge University Press: Cambridge, UK, 1997; ISBN 9780521430456. [Google Scholar]
- Ramachandra Rao, A.; Hamed, K.H. Flood Frequency Analysis; Hamed, K., Rao, A.R., Eds.; CRC Press: Boca Raton, FL, USA, 2019; ISBN 9780429128813. [Google Scholar]
- World Meteorological Organization. Guide to Hydrological Practices, Volume II: Management of Water Resources and Application of Hydrological Practices, 6th ed.; World Meteorological Organization: Geneva, Switzerland, 2009. [Google Scholar]
- Salinas, J.L.; Castellarin, A.; Viglione, A.; Kohnová, S.; Kjeldsen, T.R. Regional Parent Flood Frequency Distributions in Europe—Part 1: Is the GEV Model Suitable as a Pan-European Parent? Hydrol. Earth Syst. Sci. 2014, 18, 4381–4389. [Google Scholar] [CrossRef]
- Castellarin, A.; Kohnová, S.; Gaál, L.; Fleig, A.; Salinas, J.L.; Toumazis, A.; Kjeldsen, T.; Macdonald, N. Review of Applied-Statistical Methods for Flood-Frequency Analysis in Europe; (NERC) Centre for Ecology & Hydrology: Bangor, UK, 2012; ISBN 9781906698324. [Google Scholar]
- Griffis, V.W.; Stedinger, J.R. Log-Pearson Type 3 Distribution and Its Application in Flood Frequency Analysis. I: Distribution Characteristics. J. Hydrol. Eng. 2007, 12, 482–491. [Google Scholar] [CrossRef]
- Ball, J.; Babister, M.; Nathan, R.; Weeks, W.; Weinmann, P.; Retallick, M.; Testoni, I. Australian Rainfall and Runoff: A Guide to Flood Estimation, 4th ed.; Commonwealth of Australia (Geoscience Australia): Canberra, Australia, 2016.
- Wang, Y.; McBean, E.A.; Jarrett, P. Identification of Changes in Heavy Rainfall Events in Ontario, Canada. Stoch. Environ. Res. Risk Assess. 2015, 29, 1949–1962. [Google Scholar] [CrossRef]
- Hansen, C.R. Comparison of Regional and At-Site Frequency Analysis Methods for the Estimation of Southern Alberta Extreme Rainfall. Can. Water Resour. J. Rev. Can. Des Ressour. Hydr. 2015, 40, 325–342. [Google Scholar] [CrossRef]
- Simonovic, S.P.; Schardong, A.; Sandink, D. Mapping Extreme Rainfall Statistics for Canada under Climate Change Using Updated Intensity-Duration-Frequency Curves. J. Water Resour. Plan. Manag. 2017, 143, 04016078. [Google Scholar] [CrossRef]
- Tan, X.; Gan, T.Y. Non-Stationary Analysis of the Frequency and Intensity of Heavy Precipitation over Canada and Their Relations to Large-Scale Climate Patterns. Clim. Dyn. 2017, 48, 2983–3001. [Google Scholar] [CrossRef]
- Environment Canada Engineering Climate Data Sets, Intensity–Duration–Frequency (IDF) Files. Available online: https://collaboration.cmc.ec.gc.ca/cmc/climate/Engineer_Climate/IDF/Documentation_and_Guidance/Notes_on_EC_IDF.pdf (accessed on 14 August 2025).
- CSA. Development, Interpretation and Use of Rainfall Intensity-Duration-Frequency (IDF) Information: A Guideline for Canadian Water Resources Practitioners, 1st ed.; CSA: Toronto, ON, Canada, 2010. [Google Scholar]
- Laio, F.; Di Baldassarre, G.; Montanari, A. Model Selection Techniques for the Frequency Analysis of Hydrological Extremes. Water Resour. Res. 2009, 45, W07416. [Google Scholar] [CrossRef]
- Haddad, K.; Rahman, A. Selection of the Best Fit Flood Frequency Distribution and Parameter Estimation Procedure: A Case Study for Tasmania in Australia. Stoch. Environ. Res. Risk Assess. 2011, 25, 415–428. [Google Scholar] [CrossRef]
- Nguyen, T.-H.; El Outayek, S.; Lim, S.H.; Nguyen, V.-T.-V. A Systematic Approach to Selecting the Best Probability Models for Annual Maximum Rainfalls—A Case Study Using Data in Ontario (Canada). J. Hydrol. 2017, 553, 49–58. [Google Scholar] [CrossRef]
- Benyahya, L.; Gachon, P.; St-Hilaire, A.; Laprise, R. Frequency Analysis of Seasonal Extreme Precipitation in Southern Quebec (Canada): An Evaluation of Regional Climate Model Simulation with Respect to Two Gridded Datasets. Hydrol. Res. 2014, 45, 115–133. [Google Scholar] [CrossRef]
- Mandal, S.; Choudhury, B.U. Estimation and Prediction of Maximum Daily Rainfall at Sagar Island Using Best Fit Probability Models. Theor. Appl. Climatol. 2015, 121, 87–97. [Google Scholar] [CrossRef]
- Tfwala, C.M.; van Rensburg, L.D.; Schall, R.; Mosia, S.M.; Dlamini, P. Precipitation Intensity-Duration-Frequency Curves and Their Uncertainties for Ghaap Plateau. Clim. Risk Manag. 2017, 16, 1–9. [Google Scholar] [CrossRef]
- Yuan, J.; Emura, K.; Farnham, C.; Alam, M.A. Frequency Analysis of Annual Maximum Hourly Precipitation and Determination of Best Fit Probability Distribution for Regions in Japan. Urban Clim. 2018, 24, 276–286. [Google Scholar] [CrossRef]
- Soltani, S.; Almasi, P.; Helfi, R.; Modarres, R.; Mohit Esfahani, P.; Ghadami Dehno, M. A New Approach to Explore Climate Change Impact on Rainfall Intensity–Duration–Frequency Curves. Theor. Appl. Climatol. 2020, 142, 911–928. [Google Scholar] [CrossRef]
- Gado, T.A.; Salama, A.M.; Zeidan, B.A. Selection of the Best Probability Models for Daily Annual Maximum Rainfalls in Egypt. Theor. Appl. Climatol. 2021, 144, 1267–1284. [Google Scholar] [CrossRef]
- Aksu, H.; Cetin, M.; Aksoy, H.; Yaldiz, S.G.; Yildirim, I.; Keklik, G. Spatial and Temporal Characterization of Standard Duration-Maximum Precipitation over Black Sea Region in Turkey. Nat. Hazards 2022, 111, 2379–2405. [Google Scholar] [CrossRef]
- Ng, J.L.; Huang, Y.F.; Tan, S.K.; Lee, J.C.; Md Noh, N.I.F.; Thian, S.Y. Comparative Evaluation of Various Parameter Estimation Methods for Extreme Rainfall in Kelantan River Basin. Theor. Appl. Climatol. 2024, 155, 1759–1775. [Google Scholar] [CrossRef]
- Ibrahim, M.N. Four-Parameter Kappa Distribution for Modeling Precipitation Extremes: A Practical Simplified Method for Parameter Estimation in Light of the L-Moment. Theor. Appl. Climatol. 2022, 150, 567–591. [Google Scholar] [CrossRef]
- de Bodas Terassi, P.M.; Pontes, P.R.M.; Xavier, A.C.F.; Cavalcante, R.B.L.; de Oliveira Serrão, E.A.; Sobral, B.S.; de Oliveira-Júnior, J.F.; de Melo, A.M.Q.; Baratto, J. A Comprehensive Analysis of Regional Disaggregation Coefficients and Intensity-Duration-Frequency Curves for the Itacaiúnas Watershed in the Eastern Brazilian Amazon. Theor. Appl. Climatol. 2023, 154, 863–880. [Google Scholar] [CrossRef]
- Fischer, T.; Su, B.; Luo, Y.; Scholten, T. Probability Distribution of Precipitation Extremes for Weather Index–Based Insurance in the Zhujiang River Basin, South China. J. Hydrometeorol. 2012, 13, 1023–1037. [Google Scholar] [CrossRef]
- Beskow, S.; Caldeira, T.L.; de Mello, C.R.; Faria, L.C.; Guedes, H.A.S. Multiparameter Probability Distributions for Heavy Rainfall Modeling in Extreme Southern Brazil. J. Hydrol. Reg. Stud. 2015, 4, 123–133. [Google Scholar] [CrossRef]
- Kim, H.; Kim, S.; Shin, H.; Heo, J.-H. Appropriate Model Selection Methods for Nonstationary Generalized Extreme Value Models. J. Hydrol. 2017, 547, 557–574. [Google Scholar] [CrossRef]
- Kumar, V.; Shanu; Jahangeer. Statistical Distribution of Rainfall in Uttarakhand, India. Appl. Water Sci. 2017, 7, 4765–4776. [Google Scholar] [CrossRef]
- Umar, S.; Lone, M.A.; Goel, N.K. Modeling of Annual Rainfall Extremes in the Jhelum River Basin, North Western Himalayas. Sustain. Water Resour. Manag. 2021, 7, 59. [Google Scholar] [CrossRef]
- Karahan, H.; Ozkan, E. Best Fitting Distributions for the Standard Duration Annual Maximum Precipitations in the Aegean Region. Pamukkale Univ. J. Eng. Sci. 2013, 19, 152–157. [Google Scholar] [CrossRef]
- Haktanir, T.; Citakoglu, H.; Seckin, N. Regional Frequency Analyses of Successive-Duration Annual Maximum Rainfalls by L-Moments Method. Hydrol. Sci. J. 2016, 61, 647–668. [Google Scholar] [CrossRef]
- Mascaro, G. Comparison of Local, Regional, and Scaling Models for Rainfall Intensity–Duration–Frequency Analysis. J. Appl. Meteorol. Climatol. 2020, 59, 1519–1536. [Google Scholar] [CrossRef]
- Coronado-Hernández, Ó.E.; Merlano-Sabalza, E.; Díaz-Vergara, Z.; Coronado-Hernández, J.R. Selection of Hydrological Probability Distributions for Extreme Rainfall Events in the Regions of Colombia. Water 2020, 12, 1397. [Google Scholar] [CrossRef]
- Moccia, B.; Mineo, C.; Ridolfi, E.; Russo, F.; Napolitano, F. Probability Distributions of Daily Rainfall Extremes in Lazio and Sicily, Italy, and Design Rainfall Inferences. J. Hydrol. Reg. Stud. 2021, 33, 100771. [Google Scholar] [CrossRef]
- Juma, B.; Olang, L.O.; Hassan, M.; Chasia, S.; Bukachi, V.; Shiundu, P.; Mulligan, J. Analysis of Rainfall Extremes in the Ngong River Basin of Kenya: Towards Integrated Urban Flood Risk Management. Phys. Chem. Earth Parts A/B/C 2021, 124, 102929. [Google Scholar] [CrossRef]
- Bonaccorso, B.; Aronica, G.T. Estimating Temporal Changes in Extreme Rainfall in Sicily Region (Italy). Water Resour. Manag. 2016, 30, 5651–5670. [Google Scholar] [CrossRef]
- Hajani, E.; Rahman, A. Design Rainfall Estimation: Comparison between GEV and LP3 Distributions and at-Site and Regional Estimates. Nat. Hazards 2018, 93, 67–88. [Google Scholar] [CrossRef]
- García-Marín, A.P.; Morbidelli, R.; Saltalippi, C.; Cifrodelli, M.; Estévez, J.; Flammini, A. On the Choice of the Optimal Frequency Analysis of Annual Extreme Rainfall by Multifractal Approach. J. Hydrol. 2019, 575, 1267–1279. [Google Scholar] [CrossRef]
- Nguyen, V.-T.-V.; Tao, D.; Bourque, A. On Selection of Probability Distributions for Representing Annual Extreme Rainfall Series. In Proceedings of the Global Solutions for Urban Drainage, Portland, OR, USA, 8 September 2002; American Society of Civil Engineers: Reston, VA, USA, 2012; pp. 1–10. [Google Scholar]
- Fisher, R.A.; Tippett, L.H.C. Limiting Forms of the Frequency Distribution of the Largest or Smallest Member of a Sample. Math. Proc. Camb. Philos. Soc. 1928, 24, 180–190. [Google Scholar] [CrossRef]
- Rahman, A.; Zaman, M.A.; Haddad, K.; El Adlouni, S.; Zhang, C. Applicability of Wakeby Distribution in Flood Frequency Analysis: A Case Study for Eastern Australia. Hydrol. Process. 2015, 29, 602–614. [Google Scholar] [CrossRef]
- Anghel, C.G.; Ianculescu, D. Probabilistic Forecasting of Peak Discharges Using L-Moments and Multi-Parameter Statistical Models. Water 2025, 17, 1908. [Google Scholar] [CrossRef]
- Martins, A.L.A.; Liska, G.R.; Beijo, L.A.; Menezes, F.S.d.; Cirillo, M.Â. Generalized Pareto Distribution Applied to the Analysis of Maximum Rainfall Events in Uruguaiana, RS, Brazil. SN Appl. Sci. 2020, 2, 1479. [Google Scholar] [CrossRef]
- Singirankabo, E.; Iyamuremye, E. Modelling Extreme Rainfall Events in Kigali City Using Generalized Pareto Distribution. Meteorol. Appl. 2022, 29, e2076. [Google Scholar] [CrossRef]
- Stephens, M.A. Tests of Fit for the Logistic Distribution Based on the Empirical Distribution Function. Biometrika 1979, 66, 591–595. [Google Scholar] [CrossRef]
- Anderson, T.W.; Darling, D.A. Asymptotic Theory of Certain ‘Goodness of Fit’ Criteria Based on Stochastic Processes. Ann. Math. Stat. 1952, 23, 193–212. [Google Scholar] [CrossRef]
- Filliben, J.J. The Probability Plot Correlation Coefficient Test for Normality. Technometrics 1975, 17, 111–117. [Google Scholar] [CrossRef]
- Hosking, J.R.M. L-Moments: Analysis and Estimation of Distributions Using Linear Combinations of Order Statistics. J. R. Stat. Soc. Ser. B Stat. Methodol. 1990, 52, 105–124. [Google Scholar] [CrossRef]
- Vogel, R.M.; Fennessey, N.M. L Moment Diagrams Should Replace Product Moment Diagrams. Water Resour. Res. 1993, 29, 1745–1752. [Google Scholar] [CrossRef]
- Boudrissa, N.; Cheraitia, H.; Halimi, L. Modelling Maximum Daily Yearly Rainfall in Northern Algeria Using Generalized Extreme Value Distributions from 1936 to 2009. Meteorol. Appl. 2017, 24, 114–119. [Google Scholar] [CrossRef]
- Młyński, D.; Wałęga, A.; Petroselli, A.; Tauro, F.; Cebulska, M. Estimating Maximum Daily Precipitation in the Upper Vistula Basin, Poland. Atmosphere 2019, 10, 43. [Google Scholar] [CrossRef]
- Nguyen, V.-T.-V.; Nguyen, T.-H. Statistical Modeling of Extreme Rainfall Processes (SMExRain): A Decision Support Tool for Extreme Rainfall Frequency Analyses. Procedia Eng. 2016, 154, 624–630. [Google Scholar] [CrossRef]
- Öztekin, T. Wakeby Distribution for Representing Annual Extreme and Partial Duration Rainfall Series. Meteorol. Appl. 2007, 14, 381–387. [Google Scholar] [CrossRef]
- Ibrahim, M.N. Generalized Distributions for Modeling Precipitation Extremes Based on the L Moment Approach for the Amman Zara Basin, Jordan. Theor. Appl. Climatol. 2019, 138, 1075–1093. [Google Scholar] [CrossRef]
Distribution | Probability Density Function | Parameters |
---|---|---|
GEV | ||
GLO | ||
P3 | ||
LP3 | ||
LN3 | ||
GPA | ||
NOR | ||
WAK |
Rank | |||||
---|---|---|---|---|---|
Distribution | KS | AD | PPCC | ZDIST | Average |
WAK | 1 | 1 | 1 | 2 | 1.25 |
GEV | 1 | 1 | 3 | 6 | 2.75 |
LP3 | 7 | 7 | 2 | 3 | 4.75 |
PE3 | 2 | 3 | 4 | 7 | 4.00 |
GLO | 3 | 2 | 6 | 1 | 3.00 |
LN3 | 4 | 4 | 7 | 4 | 4.75 |
NOR | 6 | 5 | 5 | 5 | 5.25 |
GPA | 5 | 6 | 8 | 8 | 6.75 |
Distribution | 15 min | 30 min | 1 h | 3 h | 6 h | 12 h | 24 h |
---|---|---|---|---|---|---|---|
WAK | 2.2 | 2.2 | 2.6 | 2.4 | 2.2 | 2.4 | 2.3 |
GEV | 2.9 | 3.0 | 3.0 | 2.9 | 2.9 | 2.8 | 3.0 |
LP3 | 3.0 | 3.2 | 3.0 | 3.4 | 3.4 | 3.3 | 3.7 |
PE3 | 4.7 | 4.7 | 4.5 | 4.4 | 4.8 | 4.7 | 4.7 |
GLO | 4.7 | 4.6 | 4.9 | 4.7 | 4.6 | 4.6 | 4.1 |
LN3 | 5.3 | 5.2 | 4.9 | 4.9 | 5.0 | 5.0 | 4.9 |
NOR | 6.5 | 6.6 | 6.6 | 6.6 | 6.6 | 6.6 | 6.7 |
GPA | 6.7 | 6.6 | 6.5 | 6.7 | 6.6 | 6.7 | 6.7 |
Distribution | 15 min | 30 min | 1 h | 3 h | 6 h | 12 h | 24 h | Overall |
---|---|---|---|---|---|---|---|---|
WAK | 65% | 67% | 59% | 62% | 68% | 59% | 65% | 90% |
GEV | 21% | 21% | 22% | 20% | 21% | 30% | 21% | 6% |
LP3 | 9% | 7% | 10% | 7% | 5% | 1% | 9% | 0% |
PE3 | 1% | 1% | 4% | 4% | 0% | 0% | 1% | 0% |
GLO | 2% | 2% | 4% | 6% | 6% | 7% | 2% | 1% |
LN3 | 1% | 1% | 1% | 1% | 0% | 2% | 1% | 2% |
NOR | 0% | 0% | 0% | 0% | 0% | 0% | 0% | 0% |
GPA | 0% | 0% | 0% | 0% | 0% | 0% | 0% | 0% |
Distribution | KS | AD | PPCC | ZDIST | Average |
---|---|---|---|---|---|
WAK | 2.39 | 2.82 | 1.72 | 1.22 | 2.04 |
GEV | 3.27 | 3.08 | 3.03 | 2.48 | 2.96 |
LP3 | 3.98 | 3.55 | 3.46 | 2.97 | 3.49 |
PE3 | 4.33 | 3.79 | 3.54 | 5.03 | 4.17 |
GLO | 4.38 | 3.98 | 3.95 | 5.43 | 4.44 |
LN3 | 4.62 | 4.51 | 5.80 | 5.27 | 5.05 |
NOR | 6.57 | 6.58 | 6.70 | 6.56 | 6.60 |
GPA | 6.46 | 7.69 | 7.79 | 7.04 | 7.24 |
Study | Rainfall | Site/Region—Country | Goodness of Fit Test | Best Fit PDF |
---|---|---|---|---|
[28] | sub-daily and daily max. | Black Sea region—Türkiye | AD | GEV |
[32] | 5-day max. | Zhujiang River Basin—China | KS, AD, χ2 | WAK |
[25] | 1 h max. | Japan | χ2 | LP3 |
[41] | daily max. | Lazzio, Sicily—Italy | RMSE, KS | GEV |
[46] | 5 min, 1 h max. | Southern Quebec—Canada | Q-Q plot, RMSE, RRMSE, MAE, CC | WAK, GEV, NOR |
[57] | daily max. | Northern—Algeria | KS, Q-Q plot | GUM, GEV |
[44] | sub-daily, daily, 2-,3-day max. | New South Wales—Australia | KS, AD, χ2 | LP3, GEV |
[58] | daily max. | Upper Vistula Basin, Poland | RMSE, R2,PWRMSE | GEV |
[38] | sub-daily and daily max. | Inland (Central) Anatolia—Türkiye | ZDIST | GLO, NOR, GEV |
[45] | sub-daily and daily max. | Umbria Region—Italy | ZDIST | GLO, NOR, GEV |
[37] | sub-daily and daily max. | Aegean region—Türkiye | KS, AD, χ2 | GAM, LN2, GEV |
[42] | monthly and annual daily max. | Ngong River Basin—Kenya | KS, AD, Cramér–von Mises | PE3, GEV |
[39] | sub-daily and daily max. | Arizona—USA | Cramér–von Mises, Lilliefors, AD | GEV |
[21] | sub-daily and daily max. | Ontario region—Canada | RMSE, RRMSE, CC MAE, AIC, BIC | PE3, GEV, GNO |
[59] | sub-daily and daily max | Ontario region —Canada | Q-Q plot, RMSE, RRMSE, MAE, CC | GEV |
[36] | daily max. | Jhelum River basin—India | KS, AD, χ2, RMSE, Q-Q plot | LP3, GEV |
[60] | daily max. | SE and NE USA | AD | WAK |
[61] | daily max. | Amman Zara Basin—Jordan | KS | GLO, GEV, NOR |
[27] | daily max. | Egypt | RMSE, RRMSE, CC, BIASr, AIC, BIC | LP3, LN2, EXP |
[43] | sub-daily and daily max. | Sicily region—Italy | ZDIST | LN3, GEV |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Temel, I.; Asikoglu, O.L.; Alp, H. Examining the Probabilistic Characteristics of Maximum Rainfall in Türkiye. Atmosphere 2025, 16, 1177. https://doi.org/10.3390/atmos16101177
Temel I, Asikoglu OL, Alp H. Examining the Probabilistic Characteristics of Maximum Rainfall in Türkiye. Atmosphere. 2025; 16(10):1177. https://doi.org/10.3390/atmos16101177
Chicago/Turabian StyleTemel, Ibrahim, Omer Levend Asikoglu, and Harun Alp. 2025. "Examining the Probabilistic Characteristics of Maximum Rainfall in Türkiye" Atmosphere 16, no. 10: 1177. https://doi.org/10.3390/atmos16101177
APA StyleTemel, I., Asikoglu, O. L., & Alp, H. (2025). Examining the Probabilistic Characteristics of Maximum Rainfall in Türkiye. Atmosphere, 16(10), 1177. https://doi.org/10.3390/atmos16101177