The Effects of Urban Pollution on the “Gesù Nuovo” Façade (Naples, Italy): A Diagnostic Overview
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of Site and Diagnostic Investigations
2.1.1. Description of Site and Sources of Degradation
2.1.2. X-Ray Diffractometry
2.1.3. Optical, UV and IR LED Microscopy
2.2. FT-IR Spectroscopy
2.3. Chemical Characterization of Deposits
- -
- Extractable fraction (C10H22–C40H82).
- -
- Volatile fraction (C6H14–C10H22).
2.4. Biological Analyses
3. Results and Discussion
3.1. Diagnostic Investigations
3.1.1. X-Ray Diffractometry
3.1.2. Optical, UV and IR LED Microscopy
3.2. FT-IR Spectroscopy
3.3. Characterization of Deposits
3.3.1. Vertical Gradient of Chemical Species
3.3.2. Comparison Among Ionic Compositions
3.3.3. Metals
3.4. Biological Analyses
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Timoncini, A.; Brattich, E.; Bernardi, E.; Chiavari, C.; Tositti, L. Safeguarding outdoor cultural heritage materials in an ever-changing troposphere: Challenges and new guidelines for artificial ageing test. J. Cult. Herit. 2023, 59, 190–201. [Google Scholar] [CrossRef]
- Sicard, P.; Agathokleous, E.; Anenberg, S.C.; De Marco, A.; Paoletti, E.; Calatayud, V. Trends in urban air pollution over the last two decades: A global perspective. Sci. Total Environ. 2023, 858, 160064. [Google Scholar] [CrossRef] [PubMed]
- Harrison, R.M. Secondary pollutants. In Handbook of Air Pollution Analysis; Harrison, R.M., Perry, R., Eds.; Springer: Dordrecht, The Netherlands, 1986. [Google Scholar] [CrossRef]
- Singh, A.; Agrawal, M. Acid rain and its ecological consequences. J. Environ. Biol. 2008, 29, 15–24. [Google Scholar]
- Saiz-Jimenez, C.; Hermosin, B. Black crusts in the European built environment. Corros. Rev. 2004, 22, 381–394. [Google Scholar] [CrossRef]
- Ricciardi, M.; Faggiano, A.; Pironti, C.; Motta, O.; Carotenuto, M.; Comite, V.; Fermo, P.; Proto, A. Analysis of PAHs (polycyclic aromatic hydrocarbons) and other main components in black crusts collected from the Monumental Cemetery of Milan (Italy). J. Phys. Conf. Ser. 2022, 2204, 12027. [Google Scholar] [CrossRef]
- Warscheid, T.; Braams, J. Biodeterioration of stone: A review. Int. Biodeterior. Biodegrad. 2000, 46, 343–368. [Google Scholar] [CrossRef]
- Jain, A.; Bhadauria, S.; Kumar, V.; Chauhan, R.S. Biodeterioration of sandstone under the influence of different humidity levels in laboratory conditions. Build. Environ. 2009, 44, 1276–1284. [Google Scholar] [CrossRef]
- Alves, C.; Figueiredo, C.A.M.; Sanjurjo-Sánchez, J.; Hernández, A.C. Effects of water on natural stone in the built environment—A review. Geosciences 2021, 11, 459. [Google Scholar] [CrossRef]
- Sikiotis, D.; Kirkitsos, P. The adverse effects of nitrates on stone monuments. Sci. Total Environ. 1995, 171, 173–182. [Google Scholar] [CrossRef]
- Snethlage, R.; Sterflinger, K. Stone conservation. In Stone in Architecture; Siegesmund, S., Snethlage, R., Eds.; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar] [CrossRef]
- Comite, V.; Pozo-Antonio, J.S.; Cardell, C.; Randazzo, L.; La Russa, M.F.; Fermo, P. A multi-analytical approach for the characterization of black crusts on the façade of an historical cathedral. Microchem. J. 2020, 158, 105121. [Google Scholar] [CrossRef]
- Maravelaki-Kalaitzaki, P. Black crusts and patinas on Pentelic marble from the Parthenon and Erechtheum (Acropolis, Athens): Characterization and origin. Anal. Chim. Acta 2005, 532, 187–198. [Google Scholar] [CrossRef]
- Pozo-Antonio, J.S.; Pereira, M.F.C.; Rocha, C.S.A. Microscopic characterisation of black crusts on different substrates. Sci. Total Environ. 2017, 584–585, 291–306. [Google Scholar] [CrossRef]
- Bellopede, R.; Ferrero, A.; Manfredotti, L.; Marini, P.; Migliazza, M. Thermal stresses. In Fracture and Failure of Natural Building Stones; Kourkoulis, S.K., Ed.; Springer: Dordrecht, The Netherlands, 2006. [Google Scholar] [CrossRef]
- Chianese, E.; Riccio, A. Long-term variation in exposure to NO2 concentrations in the city of Naples, Italy: Results of a citizen science project. Sci. Total Environ. 2024, 25, 172799. [Google Scholar] [CrossRef] [PubMed]
- Chianese, E.; Tirimberio, G.; Appolloni, L.; Dinoi, A.; Contini, D.; Di Gilio, A.; Palmisani, J.; Cotugno, P.; Miniero, D.V.; Dusek, U.; et al. Chemical characterisation of PM10 from ship emissions: A study on samples from hydrofoil exhaust stacks. Environ. Sci. Pollut. Res. 2022, 29, 17723–17736. [Google Scholar] [CrossRef]
- Chianese, E.; Tirimberio, G.; Dinoi, A.; Cesari, D.; Contini, D.; Bonasoni, P.; Marinoni, A.; Andreoli, V.; Mannarino, V.; Moretti, S.; et al. Ionic and Elemental Composition of Particulate Matter during the Winter Season: A Comparative Study among Rural, Urban and Remote Sites in Southern Italy. Atmosphere 2022, 13, 356. [Google Scholar] [CrossRef]
- Riccio, A.; Chianese, E.; Tirimberio, G.; Prati, M.V. Emission factors of inorganic ions from road traffic: A case study from the city of Naples (Italy). Transp. Res. Part D Transp. Environ. 2017, 54, 239–249. [Google Scholar] [CrossRef]
- Comite, V.; Fermo, P. The effects of air pollution on cultural heritage: The case study of Santa Maria delle Grazie al Naviglio Grande (Milan). Eur. Phys. J. Plus 2018, 133, 556. [Google Scholar] [CrossRef]
- Schiattarella, A.; Iappelli, F. Gesù Nuovo Edizione con Note; Edizioni Eidos: Bergamo, Italy, 1985. [Google Scholar]
- Morillas, H.; Maguregui, M.; Gallego-Cartagena, E.; Marcaida, I.; Carral, N.; Madariaga, J.M. The influence of marine environment on the conservation state of Built Heritage: An overview study. Sci. Total Environ. 2020, 745, 140899. [Google Scholar] [CrossRef] [PubMed]
- Winkler, A.; Contardo, T.; Lapenta, V.; Sgamellotti, A.; Loppi, S. Assessing the impact of vehicular particulate matter on cultural heritage by magnetic biomonitoring at Villa Farnesina in Rome, Italy. Sci. Total Environ. 2022, 823, 153729. [Google Scholar] [CrossRef]
- Ozgen, S.; Cernuschi, S.; Caserini, S. An overview of nitrogen oxides emissions from biomass combustion for domestic heat production. Renew. Sustain. Energy Rev. 2021, 135, 110113. [Google Scholar] [CrossRef]
- Duliu, O.G.; Emandi, A.; Marinescu, M.; Cinteza, O.; Stanculescu, I.; Ionescu, L.; Filimon, D. Assessing the degradation status of the imperial doors of the ascension church, Grindu Commune, Romania. Appl. Sci. 2024, 14, 7565. [Google Scholar] [CrossRef]
- Griffiths, P.R. Fourier transform infrared spectrometry. Science 1983, 222, 297–302. [Google Scholar] [CrossRef]
- Cennamo, P.; De Rosa, A.; Scielzo, R.; Rippa, M.; Trojsi, G.; Chianese, E. Diagnostic investigation of the wall paints conservative state in a hypogeal room of the archaeological park of Baia (Italy). Acta IMEKO 2024, 13, 1–8. [Google Scholar] [CrossRef]
- Chianese, E.; Tirimberio, G.; Riccio, A. PM2.5 and PM10 in the urban area of Naples: Chemical composition, chemical properties and influence of air masses origin. J. Atmos. Chem. 2019, 76, 151–169. [Google Scholar] [CrossRef]
- Manuals and Guidelines, ISPRA n. 75/2011. In Procedure of the Analysis of Hydrocarbons >C12 in Contaminated Soils; ISPRA—Istituto Superiore per la Protezione e la Ricerca Ambientale: Roma, Italy, 2011; ISBN 978-88-448-0523-4.
- U.S. EPA Method 3545, Pressurized Fluid Extraction. In Test Methods for Evaluating Solid Waste, 3rd ed.; Update III; U.S. EPA SW-846; U.S. Government Printing Office: Washington, DC, USA, 1995.
- Hongoh, Y.; Yuzawa, H.; Ohkuma, M.; Kudo, T. Evaluation of primers and PCR conditions for the analysis of 16S rRNA genes from a natural environment. FEMS Microbiol. Lett. 2003, 221, 299–304. [Google Scholar] [CrossRef]
- Countway, P.D.; Gast, R.J.; Savai, P.; Caron, D.A. Protistan diversity estimates based on 18S rDNA from seawater incubations in the western north Atlantic. J. Eukaryot. Microbiol. 2005, 52, 95–106. [Google Scholar] [CrossRef] [PubMed]
- Nawawi, O.; Abdullah, M.P.; Yusuf, C.Y.L. A strategy for in-house production of a positive selection cloning vector from the commercial pJET1.2/blunt cloning vector at minimal cost. Biotech 2022, 12, 216. [Google Scholar] [CrossRef] [PubMed]
- Koob, S.P. The use of Paraloid B-72 as an adhesive: Its application for archaeological ceramics and other materials. Stud. Conserv. 1986, 31, 7–14. [Google Scholar] [CrossRef]
- Keene, W.C.; Pszenny, A.A.P.; Galloway, J.N.; Hawley, M.E. Sea-salt corrections and interpretation of constituent ratios in marine precipitation. J. Geophys. Res. 1986, 91, 6647. [Google Scholar] [CrossRef]
- Hawley, M.E.; Galloway, J.N.; Keene, W.C. Standard error calculations for non-seasalt constituents in marine precipitation. Water Air Soil Pollut. 1988, 42, 87–102. [Google Scholar] [CrossRef]
- Zhang, Q.; Mao, H.; Zhang, Y.; Wu, L. Characterization of PM-Bound Heavy Metal at Road Environment in Tianjin: Size Distribution and Source Identification. Atmosphere 2021, 12, 1130. [Google Scholar] [CrossRef]
- Fang, G.C.; Chang, C.N.; Chu, C.C.; Wu, Y.S.; Fu, P.P.C.; Chang, S.C.; Yang, I.L. Fine (PM2.5), coarse (PM2.5–10), and metallic elements of suspended particulates for incense burning at Tzu Yun Yen temple in central Taiwan. Chemosphere 2003, 51, 983–991. [Google Scholar] [CrossRef]
- Bruggemann, H.; Gottschalk, G. Clostridia: Molecular Biology in the Post-Genomic Era; Caister Academic Press: Wymondham, UK, 2009. [Google Scholar]
- Campbell, L.L.; Postgate, J.R. Classification of the spore-forming sulfate-reducing bacteria. Bacteriol. Rev. 1965, 29, 359–363. [Google Scholar] [CrossRef] [PubMed]
- Krijsheld, P.; Bleichrodt, R.; van Velus, G.J.; Wang, F.; Müller, W.H.; Dijksterhuis, J.; Wösten, H.A.B. Development in Aspergillus. Stud. Mycrology 2013, 74, 1–29. [Google Scholar] [CrossRef] [PubMed]
- Carter, S.B.; Nokes, S.E.; Crofcheck, C.L. The influence of environmental temperature and substrate initial moisture content on Aspergillus niger growth and phytase production in solid-state cultivation. Trans. ASAE 2004, 47, 945–949. [Google Scholar] [CrossRef]
- Romero, S.M.; Giudicessi, S.L.; Vitale, R.G. Is the fungus Aspergillus a threat to cultural heritage? J. Cult. Herit. 2021, 51, 107–124. [Google Scholar] [CrossRef]
Description | Quartz | Calcite | Gypsum | Iron Oxides | K-Feldspar | Pyroxene |
---|---|---|---|---|---|---|
Marble from arm (A) | ++ | +++ | ± | |||
Mortar bedding (B) | ++ | +++ | ± | ± | ± | |
Grouting from junction (C) | ++ | +++ | ± | ± | + | ± |
Marble from fracture (D) | ++ | +++ | ± |
PATINA COLOUR | WAVELENGTH | INTERPRETATION |
---|---|---|
GREY | 1732; 1646; 1431; 1372; 1328; 1235; 1014 | Paraloid + volcanic matter |
YELLOW | 1732; 1371; 1235; 1014 | Paraloid |
WHITISH | 1405; 1180; 1120; 1090; 872; 712 | Calcite + gypsum |
Sample | Calcium (mg/g) | Std Dev | Sulphate (mg/g) | Std Dev | SS-SO4/NSS-SO4 |
---|---|---|---|---|---|
C7 | 40.534 | 0.486 | 143.982 | 1.728 | 0.005 |
C5 | 1.726 | 0.026 | 0.364 | 0.005 | 0.105 |
C1 | 37.177 | 0.409 | 135.695 | 1.493 | 0.003 |
C12 | 45.145 | 0.632 | 138.764 | 1.943 | 0.002 |
C3 | 122.553 | 1.471 | 441.284 | 4.854 | 0.002 |
C4 | 35.596 | 0.498 | 71.472 | 1.001 | 0.012 |
C6 | 10.859 | 0.163 | 2.715 | 0.035 | 0.198 |
SCI | 15.301 | 0.184 | 52.683 | 0.632 | 0.001 |
SC | 6.267 | 0.100 | 6.031 | 0.066 | 0.371 |
I2 | 29.241 | 0.351 | 115.780 | 1.621 | 0.046 |
SI | 31.765 | 0.413 | 122.575 | 1.593 | 0.003 |
SM | 30.195 | 0.362 | 1.168 | 0.012 | 0.132 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Rosa, A.; Cennamo, P.; Saltarelli, C.; Trojsi, G.; Rimauro, J.; Vigorito, M.R.; Chianese, E. The Effects of Urban Pollution on the “Gesù Nuovo” Façade (Naples, Italy): A Diagnostic Overview. Atmosphere 2025, 16, 68. https://doi.org/10.3390/atmos16010068
De Rosa A, Cennamo P, Saltarelli C, Trojsi G, Rimauro J, Vigorito MR, Chianese E. The Effects of Urban Pollution on the “Gesù Nuovo” Façade (Naples, Italy): A Diagnostic Overview. Atmosphere. 2025; 16(1):68. https://doi.org/10.3390/atmos16010068
Chicago/Turabian StyleDe Rosa, Alessandro, Paola Cennamo, Chiara Saltarelli, Giorgio Trojsi, Juri Rimauro, Maria Rosaria Vigorito, and Elena Chianese. 2025. "The Effects of Urban Pollution on the “Gesù Nuovo” Façade (Naples, Italy): A Diagnostic Overview" Atmosphere 16, no. 1: 68. https://doi.org/10.3390/atmos16010068
APA StyleDe Rosa, A., Cennamo, P., Saltarelli, C., Trojsi, G., Rimauro, J., Vigorito, M. R., & Chianese, E. (2025). The Effects of Urban Pollution on the “Gesù Nuovo” Façade (Naples, Italy): A Diagnostic Overview. Atmosphere, 16(1), 68. https://doi.org/10.3390/atmos16010068