Atmospheric Black Carbon Evaluation in Two Sites of San Luis Potosí City During the Years 2018–2020
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling
2.2. Measurements and Procedure
3. Results
3.1. North Site Campaign at San Luis Potosi City Metropolitan Area
3.2. South Site Campaign at San Luis Potosi City
3.3. BC Concentration Analysis During the Contingency SARS-CoV-2 Period
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- WHO: World Health Organization. Fact Sheet N 313. 2 May 2018. Available online: https://www.who.int/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health (accessed on 14 August 2022).
- WHO: World Health Organization. WHO global air quality guidelines. Coast. Estuar. Process. 2021. Available online: https://www.who.int/publications/i/item/9789240034228 (accessed on 31 December 2024).
- WHO: World Health Organization. Health Effects of Particulate Matter. Policy Implications for Countries in Eastern Europe, Caucasus and Central ASIA. 2013. Regional Office for Europe. Available online: https://apps.who.int/iris/handle/10665/344854 (accessed on 21 August 2022).
- Aiken, A.C.; De Foy, B.; Wiedinmyer, C.; Decarlo, P.F.; Ulbrich, I.M.; Wehrli, M.N.; Jimenez, J.L. Mexico City aerosol analysis during MILAGRO using high resolution aerosol mass spectrometry at the urban supersite (T0)-Part 2: Analysis of the biomass burning contribution and the nonfossil carbon fraction. Atmos. Chem. Phys. 2010, 12, 5315–5341. [Google Scholar] [CrossRef]
- Kirchstetter, T.W.; Thatcher, T.L. Contribution of organic carbon to wood smoke particulate matter absorption of solar radiation. Atmos. Chem. Phys. 2012, 12, 6067–6072. [Google Scholar] [CrossRef]
- Solís, C.; Gómez, V.; Ortíz, E.; Chávez, E.; Miranda, J.; Aragón, J.; Martínez, M.A.; Castro, T.; Peralta, O. AMS 14C and chemical composition of atmospheric aerosols from Mexico City. Radiocarbon 2017, 59, 321–332. [Google Scholar] [CrossRef]
- Bond, T.C.; Dhoerty, S.J.; Fahey, D.W.; Forster, P.M.; Berntsen, T.; DeAngelo, B.J.; Flanner, M.G.; Ghan, S.; Kärcher, B.; Koch, D.; et al. Bounding the role of black carbon in the climate system: A scientific assesment. J. Geophys. Res. 2013, 118, 5380–5552. [Google Scholar] [CrossRef]
- Croft, B.; Lohmann, U.; Salzen, K.V. Black carbon ageing in the canadian centre for climate modelling and analysis atmospheric general circulation model. Atmos. Chem. Phys. Discuss. 2005, 5, 1931–1949. [Google Scholar] [CrossRef]
- Lack, D.A.; Moosmüller, H.; McMeeking, G.R.; Chakrabarty, R.K.; Baumgardner, D. Characterizing elemental, equivalent black, and refractory black carbon aerosol particles: A review of techniques, their limitations and uncertainties. Anal. Bioanal. Chem. 2014, 406, 99–122. [Google Scholar] [CrossRef] [PubMed]
- Yao, L.; Yang, L.; Chen, J.; Wang, X.; Xue, L.; Li, W.; Sui, X.; Wen, L.; Chi, J.; Zhu, Y.; et al. Characteristics of carbonaceous aerosols: Impact of biomass burning and secondary formation in summertime in a rural area of the North China Plain. Sci. Total Environ. 2016, 557–558, 520–530. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Balkanski, Y.; Boucher, O.; Ciais, P.; Schuster, G.L.; Chevallier, F.; Samset, B.H.; Liu, J.; Piao, S.; Valari, M.; et al. Estimation of global black carbon direct radiative forcing and its uncertainty constrained by observations. J. Geophys. Res. Atmos. 2016, 121, 5948–5971. [Google Scholar] [CrossRef]
- Watson, J.G. Visibility: Science and Regulation. J. Air Waste Manag. Assoc. 2002, 52, 628–713. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Schwarz, J.P.; Cao, J.; Gao, R.; Fahey, D.W.; Hu, T.; Huang, R.J.; Han, Y.; Shen, Z. Black carbon aerosol characterization in a remote area of Qinghai–Tibetan Plateau, western China. Sci. Total Environ. 2014, 479–480, 151–158. [Google Scholar] [CrossRef] [PubMed]
- Auffhammer, M.; Ramanathan, V.; Vincent, J.R. Integrated model shows that atmospheric brown clouds and greenhouse gases have reduced rice harvests in India. Proc. Natl. Acad. Sci. USA 2006, 103, 19668–19672. [Google Scholar] [CrossRef] [PubMed]
- UNEP. United Nations Environment Programme. An Assessment of Emissions and Mitigation Options for Black Carbon for the Arctic Council; Technical Report of the Arctic Council Task Force on ShortLived Climate Forcers 2011. Available online: https://www.unep.org/resources/report/assessment-emissions-and-mitigation-options-black-carbon-arctic-counciltechnical (accessed on 14 August 2022).
- Tomlin, A.S. Air Quality and Climate Impacts of Biomass Use as an Energy Source: A Review. Energy Fuels 2021, 35, 14213–14240. [Google Scholar] [CrossRef]
- Straif, K.; Cohen, A.; Samet, J. Air Pollution and Cancer. International Agency for Research on Cancer; IARC Scientific Publications: Lyon, France, 2013; p. 161. ISBN 978-92-832-2166-1/0300-5085. [Google Scholar]
- Schraufnagel, D.E.; Balmes, J.R.; Cowl, C.T.; De Matteis, S.; Jung, S.-H.; Mortimer, K.; Perez-Padilla, R.; Rice, M.B.; Riojas-Rodriguez, H.; Sood, A.; et al. Air Pollution and Noncommunicable Diseases. A Review by the Forum of International Respiratory Societies’ Environmental Committee, Part 1: The Damaging Effects of Air Pollution. Chest 2019, 155, 409–416. [Google Scholar] [CrossRef] [PubMed]
- Schraufnagel, D.E.; Balmes, J.R.; Cowl, C.T.; De Matteis, S.; Jung, S.-H.; Mortimer, K.; Perez-Padilla, R.; Rice, M.B.; Riojas-Rodriguez, H.; Sood, A.; et al. Air Pollution and Noncommunicable Diseases. A Review by the Forum of International Respiratory Societies’ Environmental Committee, Part 2: Air Pollution and Organ Systems. Chest 2019, 155, 417–426. [Google Scholar] [CrossRef]
- Hoffmann, B.; Moebus, S.; Dragano, N.; Stang, A.; Möhlenkamp, S.; Schmermund, A.; Memmesheimer, M.; Bröcker-Preuss, M.; Mann, K.; Erbel, R.; et al. Chronic Residential Exposure to Particulate Matter Air Pollution and Systemic Inflammatory Markers. Environ. Health Perspect. 2009, 117, 1302–1308. [Google Scholar] [CrossRef]
- Wyzga, R.E.; Rohr, A.C. Long-term particulate matter exposure: Attributing health effects to individual PM components. J. Air Waste Manag. Assoc. 2015, 65, 523–543. [Google Scholar] [CrossRef] [PubMed]
- Michael, S.; Montag, M.; Dott, W. Pro-inflammatory effects and oxidative stress in lung macrophages and epithelial cells induced by ambient particulate matter. Environ. Pollut. 2013, 183, 19–89. [Google Scholar] [CrossRef]
- Lippmann, M.; Chen, L.-C. Health effects of concentrated ambient air particulate matter (CAPs) and its components. Crit. Rev. Toxicol. 2009, 39, 865–913. [Google Scholar] [CrossRef] [PubMed]
- Knaapen, A.M.; Borm, P.J.; Albrecht, C.; Schins, R.P. Inhaled particles and lung cancer. Part A: Mechanisms. Int. J. Cancer 2004, 109, 799–809. [Google Scholar] [CrossRef] [PubMed]
- Aslam, I.; Roeffaers, M.B.J. Carbonaceous Nanoparticle Air Pollution: Toxicity and Detection in Biological Samples. Nanomaterials 2022, 12, 3948. [Google Scholar] [CrossRef]
- Karanasiou, A.; Alastuey, A.; Amato, F.; Renzi, M.; Stafoggia, M.; Tobias, A.; Reche, C.; Forastiere, F.; Gumy, S.; Mudu, P.; et al. Short-term health effects from outdoor exposure to biomass burning emissions: A review. Sci. Total Environ. 2021, 781, 146739. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Ruan, Z.; Wang, X.; Yang, Y.; Mason, T.G.; Lin, H.; Tian, L. Shortterm and long-term exposures to fine particulate matter constituents and health: A systematic review and meta-analysis. Environ. Pollut. 2019, 247, 874–882. [Google Scholar] [CrossRef]
- Pope, C.A., III; Dockery, D.W. Health Effects of Fine Particulate Air Pollution: Lines that Connect. J. Air Waste Manag. Assoc. 2006, 56, 709–742. [Google Scholar] [CrossRef]
- Pacyna, J.M.; Breivik, K.; Münch, J.; Fudala, J. European atmospheric emissions of selected persistent organic pollutants, 1970–1995. Atmos. Environ. 2003, 37, S119–S131. [Google Scholar] [CrossRef]
- Janssen, N.A.H.; Hoek, G.; Simic-Lawson, M.; Fischer, P.; van Bree, L.; Ten Brink, H.; Keuken, M.; Atkinson, R.W.; Anderson, H.R.; Brunekreef, B.; et al. Black Carbon as an Additional Indicator of the Adverse Health Effects of Airborne Particles Compared with PM10 and PM2.5. Environ. Health Perspect. 2011, 119, 1691–1699. [Google Scholar] [CrossRef] [PubMed]
- Petzold, A.; Ogren, J.A.; Fiebig, M.; Laj, P.; Li, S.-M.; Baltensperger, U.; Holzer-Popp, T.; Kinne, S.; Pappalardo, G.; Sugimoto, N.; et al. Recommendations for reporting “black carbon” measurements. Atmos. Chem. Phys. 2013, 13, 8365–8379. [Google Scholar] [CrossRef]
- Mousavi, A.; Sowlat, M.H.; Hasheminassab, S.; Polidori, A.; Sioutas, C. Spatio-temporal trends and source apportionment of fossil fuel and biomass burning black carbon (BC) in the Los Angeles Basin. Sci. Total Environ. 2018, 640–641, 1231–1240. [Google Scholar] [CrossRef] [PubMed]
- Birmili, W.; Achtert, P.; Nowak, A.; Wehner, B.; Wiedensohler, A.; Takegawa, N.; Kondo, Y.; Miyazaki, Y.; Hu, M.; Zhu, T. Hygroscopic growth of tropospheric particle number size distributions over the North China Plain. J. Geophys. Res. 2009, 114, D00G07. [Google Scholar] [CrossRef]
- Kondo, Y.; Komazaki, Y.; Miyazaki, Y.; Moteki, N.; Takegawa, N.; Kodarna, D.; Deguchi, S.; Nogarni, M.; Fukuda, M.; Miyakawa, T.; et al. Temporal variations of elemental carbon in Tokyo. J. Geophys. Res. Atmos. 2006, 111, D12205. [Google Scholar] [CrossRef]
- Yang, F.; He, K.; Ye, B.; Chen, K.; Cha, L.; Cadle, S.H.; Chan, T.; Mulawa, P.A. One-year record of organic and elemental carbon in fine particles in downtown Beijing and Shanghai. Eur. Geosci. Union 2005, 5, 1449–1457. [Google Scholar] [CrossRef]
- Instituto Nacional de Ecologia y Cambio Climatico (INECC). Inventario Nacional de Emisiones de Gases y Compuestos de Efecto Invernadero 1990–2015, Resumen Informativo, Ciudad de México. 2018. Available online: https://datos.gob.mx/busca/dataset/inventario-nacional-de-emisiones-de-gases-y-compuestos-de-efecto-invernadero-inegycei (accessed on 31 December 2024).
- Aragón, P.A.; Campos, R.A.; Leyva, R.R.; Hernández, O.M.; Miranda, O.N.; Luszczewski-Kudra, A. Influencia de emisiones industriales en el polvo atmosférico de la ciudad de San Luis Potosí, México. Rev. Int. Contam. Ambient. 2006, 22, 1. [Google Scholar]
- Barrera, V.; Contreras, C.; Mugica-Alvarez, V.; Galindo, G.; Flores, R.; Miranda, J. PM2.5. Characterization and Source Apportionment using Positive Matrix Factorization at San Luis Potosi City, Mexico, during the years 2017–2018. Atmosphere 2023, 14, 1160. [Google Scholar] [CrossRef]
- Aragón, P.A.; Torres, V.G.; Santiago, J.P.; Monroy, F.M. Scanning and transmission electron microscope of suspended lead-rich particles in the air of San Luis Potosi, Mexico. Atmos. Environ. 2002, 36, 5235–5243. [Google Scholar] [CrossRef]
- Aragón, P.A.; Torres, V.G.; Monroy, F.M.; Luszczewski, K.A.; Leyva, R.R. Scanning electron microscope and statistical analysis of suspended heavy metal particles in San Luis Potosi, Mexico. Atmos. Environ. 2000, 34, 4103–4112. [Google Scholar] [CrossRef]
- Pineda, L.M.; Carbajal, N.; Campos, R.A.; Aragón, P.A.; García, A.R. Dispersion of atmospheric coarse particulate matter in the San Luis Potosí, Mexico, urban area. Atmósfera 2014, 27, 5–19. [Google Scholar] [CrossRef]
- SCT: Secretaria de Comunicaciones y Transporte. Infraestructura Dirección General de Servicios Técnicos. Datos Viales 2024. Available online: https://www.sct.gob.mx/fileadmin/DireccionesGrales/DGST/Datos_Viales_2024/24_SLP_DV2024.pdf (accessed on 21 November 2024).
- SEGAM: Secretaria de Ecología y Gestión Ambiental. Inventario de Emisiones a la Atmósfera Estado de San Luis Potosí, México. Reporte Final (2013). Available online: https://slp.gob.mx/segam/Documentos%20compartidos/ESTUDIOS%20PROGRAMAS%20Y%20PROYECTOS/InventarioEstataldeEmisiones_SLP-2011.pdf (accessed on 26 November 2024).
- INEGI: Instituto Nacional de Estadística y Geografía. Encuesta Intercensal 2015: Marco conceptual/INEGI, México. 2018. Available online: https://www.inegi.org.mx/rnm/index.php/catalog/214 (accessed on 13 December 2024).
- Hansen, A.D.A.; Rosen, H.; Novakov, T. The aethalometer—An instrument for the real-time measurement of optical absorption by aerosol particles. Sci. Total Environ. 1984, 36, 191–196. [Google Scholar] [CrossRef]
- Drinovec, L.; Močnik, G.; Zotter, P.; Prévôt, A.S.H.; Ruckstuhl, C.; Coz, E.; Rupakheti, M.; Sciare, J.; Müller, T.; Wiedensohler, A.; et al. The “dual-spot” Aethalometer: An improved measurement of aerosol black carbon with real-time loading compensation. Atmos. Meas. Tech. 2015, 8, 1965–1979. [Google Scholar] [CrossRef]
- SEMARNAT: Secretaría de Medio Ambiente y Recursos Naturales. SINAICA. National Monitoring Network Datasets. 2021. Available online: http://sinaica.ine.gob.mx/ (accessed on 25 June 2021).
- Méndez Espinosa, J.F.; Pinto Herrera, L.C.; Galvis Remolina, B.R.; Pachón, J.E. Estimación de factores de emisión de material particulado resuspendido antes, durante y después de la pavimentación de una vía en Bogotá. Cienc. Ing. Neogranadina 2017, 27, 43–60. [Google Scholar] [CrossRef]
- Draxler, R.R.; Rolph, G.D. HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory) Model access via NOAA ARL READY Website 2010. Available online: https://ready.arl.noaa.gov/HYSPLIT.php (accessed on 11 December 2024).
- Carslaw, D.C.; Ropkins, K. Openair—An R package for air quality data analysis. Environ. Model. Softw. 2012, 27–28, 52–61. [Google Scholar] [CrossRef]
- Clarke, K.C. Advances in geographic information systems, computers. Environ. Urban Syst. 1986, 10, 175–184. [Google Scholar] [CrossRef]
- NOM-025-SSA1-2014; SSA: Secretaria de Salud. Mexican Official Standard, Permissible Limits for PM10 and PM2.5 Suspended Particle Concentrations in Air and Evaluation Criteria. Diario Oficial de la Federación: Mexico City, Mexico, 2014.
- Thamban, N.M.; Tripathi, S.N.; Moosakutty, S.P.; Kuntamukkala, P.; Kanawade, V.P. Internally mixed black carbon in the Indo-Gangetic Plain and its effect on absorption enhancement. Atmos. Res. 2017, 197, 211–223. [Google Scholar] [CrossRef]
- Leyte-Lugo, M.; Sandoval, B.; Salcedo, D.; Peralta, O.; Castro, T.; Alvarez-Ospina, H. Variations of Black Carbon Concentrations in Two Sites in Mexico: A High-Altitude National Park and a Semi-Urban Site. Atmosphere 2022, 13, 216. [Google Scholar] [CrossRef]
- Enroth, J.; Saarikoski, S.; Niemi, J.; Kousa, A.; Ježek, I.; Močnik, G.; Carbone, S.; Kuuluvainen, H.; Rönkkö, T.; Hillamo, R.; et al. Chemical and physical characterization of traffic particles in four different highway environments in the Helsinki metropolitan area, Atmos. Chem. Phys. 2016, 16, 5497–5512. [Google Scholar] [CrossRef]
- NASA-FIRMS. Fire Information for Resource Management System. Available online: https://firms.modaps.eosdis.nasa.gov/map (accessed on 21 August 2021).
- NOM-022-SSA1-2019; SSA: Secretaría de Salud. Mexican Official Standard, Criteria for Evaluating Ambient Air Quality with Respect to Sulfur Dioxide (SO2). Standard Values for the Concentration of Sulfur Dioxide (SO2) in Ambient Air, as a Measure to Protect the Health of the Population. Diario Oficial de la Federación: Mexico City, Mexico, 2019.
- NOM-023-SSA1-2021; SSA: Secretaría de Salud. Mexican Official Standard, Environmental Health. Criteria for Evaluating Ambient Air Quality with Respect to Nitrogen Dioxide (NO2). Standard Values for the Concentration of Nitrogen Dioxide (NO2) in Ambient Air, as a Measure to Protect the Health of the Population. Diario Oficial de la Federación: Mexico City, Mexico, 2021.
- NOM-172-SEMARNAT-2019; SEMARNAT: Secretaría de Medio Ambiente y Recursos Naturales. Norma Oficial Mexicana, Lineamientos Para la Obtención y Comunicación del Índice de Calidad del Aire y Riesgos a la Salud. Diario Oficial de la Federación: Ciudad de Mexico, Mexico, 2019.
- Retama, A.; Baumgardner, D.; Raga, G.B.; McMeeking, G.R.; Walker, J.W. Seasonal and diurnal trends in black carbon properties and co-pollutants in Mexico City. Atmos. Chem. Phys. 2015, 15, 9693–9709. [Google Scholar] [CrossRef]
- Limon, M.T.; Carbajal, R.P.; Hernandez, M.L.; Saldarriaga, N.H.; Lopez, L.A.; Cosio, R.R.; Arriaga, C.J.; Smith, W. Black carbon in PM2.5, data from two urban sites in Guadalajara, Mexico during 2008. Atmos. Pollut. Res. 2008, 2, 358–365. [Google Scholar] [CrossRef]
- Peralta, O.; Ortínez-Alvarez, A.; Basaldud, R.; Santiago, N.; Alvarez-Ospina, H.; De la Cruz, K.; Barrera, V.; De la Luz Espinosa, M.; Saavedra, I.; Castro, T.; et al. Atmospheric black carbon concentrations in Mexico. Atmos. Res. 2019, 230, 104626. [Google Scholar] [CrossRef]
- Squizzato, S.; Cazzaro, M.; Innocente, E.; Visin, F.; Hopke, P.K.; Rampazzo, G. Urban air quality in a mid-size city-PM2.5 composition, sources and identification of impact areas: From local to long range contributions. Atmos. Res. 2016, 186, 51–62. [Google Scholar] [CrossRef]
- Wren, S.N.; Liggio, J.; Han, Y.; Hayden, K.; Lu, G.; Mihele, C.M.; Mittermeier, R.L.; Stroud, C.; Wentzell, J.J.B.; Brook, J.R. Elucidating real-world vehicle emission factors from mobile measurements over a large metropolitan region: A focus on isocyanic acid, hydrogen cyanide, and black carbon. Atmos. Chem. Phys. 2018, 18, 16979–17001. [Google Scholar] [CrossRef]
- Bahadur, R.; Feng, Y.; Russell, L.M.; Ramanathan, V. Impact of California’s air pollution laws on black carbon and their implications for direct radiative forcing. Atmos. Environ. 2011, 45, 1162–1167. [Google Scholar] [CrossRef]
- EEA: European Environmental Agency. EMEP/EEA Air Pollutant Emission Inventory Guidebook 2019. Technical Guidance to Prepare National Emission Inventories. Available online: https://www.eea.europa.eu/publications/emep-eea-guidebook-2019 (accessed on 21 August 2024).
- Berumen-Rodriguez, A.A.; Pérez-Vázquez, F.J.; Díaz-Barriga, F.; Marquez-Mireles, L.E.; Flores-Rodriguez, R. Revisión del impacto del sector ladrillero sobre el ambiente y la salud humana en México. Salud Pública Méx. 2021, 63, 100–108. [Google Scholar] [CrossRef] [PubMed]
- Berumen-Rodríguez, A.A.; Díaz de León-Martínez, L.; Zamora-Mendoza, B.N.; Orta-Arellanos, H.; Saldaña-Villanueva, K.; Barrera-López, V.; Gómez-Gómez, A.; Pérez-Vázquez, F.J.; Díaz-Barriga, F.; Flores-Ramírez, R. Evaluation of respiratory function and biomarkers of exposure to mixtures of pollutants in brick-kilns workers from a marginalized urban area in Mexico. Environ. Sci. Pollut. Res. Int. 2021, 28, 67833–67842. [Google Scholar] [CrossRef]
- Díaz de León-Martínez, L.; Flores-Ramírez, R.; Rodriguez-Aguilar, M.; Berumen-Rodríguez, A.; Pérez-Vázquez, F.J.; Díaz-Barriga, F. Analysis of urinary metabolites of polycyclic aromatic hydrocarbons in precarious workers of highly exposed occupational scenarios in Mexico. Environ. Sci. Pollut. Res. Int. 2021, 28, 23087–23098. [Google Scholar] [CrossRef] [PubMed]
- Berumen Rodríguez, A.A.; Alcántara Quintana, L.E.; Pérez Vázquez, F.J.; Zamora Mendoza, B.N.; Díaz de León Martínez, L.; Díaz Barriga, F.; Flores Ramírez, R. Assessment of inflammatory cytokines in exhaled breath condensate and exposure to mixtures of organic pollutants in brick workers. Environ. Sci. Pollut. Res. 2023, 30, 13270–13282. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez, A.B.; Torres, I.R.; Martinez LD, D.L.; Barriga, F.D.; Ramirez, R.F. Caracterización y biomonitoreo de contaminantes orgánicos e inorgánicos en una zona ladrillera de San Luis Potosí. Acta Toxicol. Argent. 2022, 30, 161–171. Available online: https://www.scielo.org.ar/scielo.php?script=sci_issuetoc&pid=1851-374320220003&lng=es&nrm=iso (accessed on 11 June 2024).
North Site (2018–2019) | South Site (2019–2020) |
---|---|
Site: “Estación Biblioteca—SEGAM” (BIB) | Site: “Facultad de Ciencias Sociales y Humanidades—UASLP” (FCSYH) |
Classification Site: SubUrban | Classification Site: Urban and Industrial |
BC: Aethalometer AE-33 (Magee Scientific Company, Ljubljana, Slovenia) | BC: Aethalometer AE-33 (Magee Scientific Company, Ljubljana, Slovenia) |
PM10: DustTrak DRX aerosol monitor model 8534 (TSI Instruments, Minnesota, USA, 2014) | PM2.5: BAM 1020 equipment (Met One Instruments, OR, USA, 2012) |
PM10: BAM 1020 equipment (Met One Instruments, OR, USA, 2012) | PM10: BAM 1020 equipment (Met One Instruments, OR, USA, 2012)) |
CO: Serinus 30 Ecotech Carbon Monoxide Analyzer, VA, USA. | NO2: BAM 1020 equipment for NOx Model 2042i (Thermo Fisher Scientific, Massachusetts, USA) |
SO2: Serinus 50 Ecotech equipment, VA, USA. | SO2: Serinus 50 Ecotech equipment, VA, USA. |
Meteorological data: Anderson weather station. | Meterorological data: Global Data Assimilation System (GDAS) and HYSPLIT backward trajectories, USA. |
One Year Monitoring Campaign from November 2018 to November 2019. | ||||||||
---|---|---|---|---|---|---|---|---|
N | Mean | Std Dev | Median | Min. | Max. | Q 0.25 | Q 0.75 | |
PM10 (µg m−3) | 7995 | 46.8 | 30.4 | 40.0 | 1.0 | 312.0 | 27.0 | 58.0 |
PM10 d (µg m−3) | 4115 | 48.2 | 36.1 | 38.5 | 3.8 | 596.3 | 27.0 | 57.8 |
BC (µg m−3) | 8404 | 1.106 | 1.404 | 0.6466 | 0.1221 | 23.78 | 0.4415 | 1.157 |
BCbb (µg m−3) | 8404 | 0.0345 | 0.1036 | 0.0001 | 0.0001 | 3.958 | 0.0001 | 0.0374 |
BCff (µg m−3) | 8404 | 1.072 | 1.383 | 0.6137 | 0.0072 | 23.78 | 0.4275 | 1.106 |
SO2 (ppm) | 6382 | 8.833 | 8.787 | 2.620 | 0.2620 | 94.32 | 2.620 | 15.72 |
CO (ppm) | 7421 | 0.8718 | 0.7627 | 0.5800 | 0.0001 | 8.870 | 0.3600 | 1.150 |
N | Mean | SD | Median | Min. | Max. | Q 0.25 | Q 0.75 | |
---|---|---|---|---|---|---|---|---|
Cold Season (October, November, December) Year 2018 | ||||||||
BC | 1980 | 1.445 | 1.722 | 0.8676 | 0.1383 | 18.04 | 0.4926 | 1.644 |
BCbb | 1980 | 0.0553 | 0.1900 | 0.0001 | 0.0001 | 3.958 | 0.0001 | 0.0416 |
BCff | 1980 | 1.390 | 1.654 | 0.8340 | 0.1383 | 16.00 | 0.4752 | 1.564 |
PM10 | 1595 | 44.49 | 34.34 | 34.00 | 2.000 | 246.0 | 22.00 | 57.00 |
PM10d | 1980 | 46.01 | 39.87 | 34.75 | 12.00 | 596.2 | 23.00 | 55.50 |
SO2 (ppm) | 1931 | 0.0068 | 0.0021 | 0.0060 | 0.0040 | 0.0360 | 0.0060 | 0.0070 |
CO (ppm) | 1416 | 1.737 | 1.053 | 1.600 | 0.0100 | 8.870 | 0.9875 | 2.420 |
Dry Season (January, February, March) Year 2019 | ||||||||
BC | 2161 | 1.230 | 1.638 | 0.6995 | 0.1797 | 23.78 | 0.4764 | 1.274 |
BCbb | 2161 | 0.0439 | 0.1630 | 0.0085 | 0.0001 | 3.958 | 0.0001 | 0.0495 |
BCff | 2161 | 1.186 | 1.589 | 0.6630 | 0.1797 | 23.78 | 0.4577 | 1.203 |
PM10 | 1940 | 53.47 | 35.67 | 45.00 | 2.000 | 295.0 | 29.00 | 66.00 |
PM10d | 2159 | 51.038 | 36.66 | 41.00 | 3.750 | 596.2 | 30.75 | 60.50 |
SO2 (ppm) | 1461 | 0.0046 | 0.0032 | 0.0060 | 0.0010 | 0.0300 | 0.0010 | 0.0070 |
CO (ppm) | 1548 | 0.9765 | 0.7041 | 0.7100 | 0.0100 | 3.930 | 0.4500 | 1.390 |
Warm Dry Season (April, May, June) Year 2019 | ||||||||
BC | 2019 | 0.8284 | 1.003 | 0.5836 | 0.1258 | 15.45 | 0.4176 | 0.8782 |
BCbb | 2019 | 0.0407 | 0.0628 | 0.0118 | 0.0000 | 0.4771 | 0.0001 | 0.0607 |
BCff | 2019 | 0.7877 | 1.005 | 0.5362 | 0.0072 | 15.45 | 0.3942 | 0.8045 |
PM10 | 2099 | 49.69 | 28.96 | 44.00 | 1.000 | 312.0 | 31.00 | 62.00 |
PM10d | ------ | ---------- | ---------- | ---------- | ---------- | ---------- | ---------- | ---------- |
SO2 (ppm) | 1161 | 0.0007 | 0.0008 | 0.0010 | 0.0001 | 0.0130 | 0.0001 | 0.0010 |
CO (ppm) | 2167 | 0.6701 | 0.3544 | 0.5900 | 0.0700 | 2.420 | 0.4000 | 0.8800 |
Rainy Season (July, August, September) Year 2019 | ||||||||
BC | 2004 | 0.9452 | 1.134 | 0.5618 | 0.1221 | 10.9514 | 0.4098 | 0.9558 |
BCbb | 2004 | 0.0119 | 0.0287 | 0.0001 | 0.0001 | 0.3522 | 0.0001 | 0.0109 |
BCff | 2004 | 0.9334 | 1.134 | 0.5500 | 0.1221 | 10.9514 | 0.4040 | 0.9369 |
PM10 | 2098 | 40.36 | 20.73 | 37.00 | 1.000 | 255.0 | 27.00 | 50.00 |
PM10d | ------ | ------ | ------ | ------ | ------ | ------ | ------ | ------ |
SO2 (ppm) | 1669 | 0.0006 | 0.0011 | 0.0001 | 0.0001 | 0.0190 | 0.0001 | 0.0010 |
CO (ppm) | 2047 | 0.4652 | 0.2526 | 0.3700 | 0.0001 | 1.760 | 0.2950 | 0.5600 |
One Year Monitoring Campaign from December 2019 to November 2020. | ||||||||
---|---|---|---|---|---|---|---|---|
N | Mean | SD | Median | Min. | Max. | Q 0.25 | Q 0.75 | |
PM10 (µg m−3) | 4785 | 33.8 | 22.7 | 29.0 | 0.001 | 243.0 | 19.0 | 43.0 |
PM2.5 (µg m−3) | 2402 | 17.2 | 14.7 | 14.0 | 1.00 | 153.0 | 8.0 | 21.0 |
BC (µg m−3) | 7561 | 1.963 | 2.541 | 1.136 | 0.0792 | 46.82 | 0.6768 | 2.079 |
BCbb (µg m−3) | 7561 | 0.1700 | 0.2034 | 0.1224 | 0.0001 | 2.914 | 0.0608 | 0.2139 |
BCff (µg m−3) | 7561 | 1.793 | 2.516 | 0.9627 | 0.0001 | 46.82 | 0.5599 | 1.841 |
SO2 (ppm) | 7788 | 0.0023 | 0.0024 | 0.0020 | 0.0010 | 0.0780 | 0.0010 | 0.0020 |
NO2 (ppm) | 6803 | 0.0130 | 0.0098 | 0.0100 | 0.0010 | 0.0770 | 0.0060 | 0.0170 |
N | Mean | SD | Median | Min. | Max. | Q 0.25 | Q 0.75 | |
---|---|---|---|---|---|---|---|---|
Dry Season. Year 2020 | ||||||||
BC | 1824 | 2.728 | 3.270 | 1.607 | 0.1087 | 46.82 | 1.054 | 3.079 |
BCbb | 1824 | 0.2085 | 0.2375 | 0.1670 | 0.0001 | 2.833 | 0.0806 | 0.2628 |
BCff | 1824 | 2.519 | 3.247 | 1.402 | 0.0896 | 46.82 | 0.8862 | 2.818 |
PM10 | 176 | 49.40 | 22.13 | 44.00 | 19.00 | 152.0 | 33.75 | 61.50 |
PM2.5 | 1679 | 16.65 | 14.11 | 13.00 | 1.000 | 153.0 | 8.000 | 21.00 |
SO2 (ppm) | 1957 | 0.0030 | 0.0026 | 0.0020 | 0.0010 | 0.0330 | 0.0020 | 0.0030 |
NO2 (ppm) | 2075 | 0.0166 | 0.0109 | 0.0140 | 0.0010 | 0.0610 | 0.0080 | 0.0230 |
Dry Warm Season. Year 2020 | ||||||||
BC | 2184 | 1.608 | 2.0467 | 1.010 | 0.190 | 24.72 | 0.6263 | 1.688 |
BCbb | 2184 | 0.178 | 0.1899 | 0.1324 | 0.0001 | 2.284 | 0.0658 | 0.2299 |
BCff | 2184 | 1.429 | 2.053 | 0.8250 | 0.0001 | 24.72 | 0.5118 | 1.423 |
PM10 | 2007 | 35.89 | 24.34 | 31.00 | 1.000 | 243.0 | 20.00 | 47.00 |
PM2.5 | ------ | ------ | ------ | ------ | ------ | ------ | ------ | ------ |
SO2 (ppm) | 2133 | 0.0017 | 0.0009 | 0.0020 | 0.0010 | 0.0220 | 0.0010 | 0.0020 |
NO2 (ppm) | 2072 | 0.0079 | 0.0052 | 0.0070 | 0.0010 | 0.0330 | 0.0040 | 0.0100 |
Rainy Season. Year 2020 | ||||||||
BC | 2208 | 1.285 | 1.534 | 0.7879 | 0.0792 | 21.25 | 0.5145 | 1.388 |
BCbb | 2208 | 0.1162 | 0.0983 | 0.0919 | 0.0001 | 0.9278 | 0.0548 | 0.1547 |
BCff | 2208 | 1.169 | 1.526 | 0.6716 | 0.0001 | 21.25 | 0.4249 | 1.224 |
PM10 | 1749 | 26.74 | 16.74 | 25.00 | 1.000 | 120.0 | 16.00 | 35.00 |
PM2.5 | ----- | ----- | ----- | ----- | ----- | ----- | ----- | ----- |
SO2 (ppm) | 2115 | 0.0016 | 0.0009 | 0.0010 | 0.0010 | 0.0140 | 0.0010 | 0.0020 |
NO2 (ppm) | 1132 | 0.0097 | 0.0056 | 0.0080 | 0.0010 | 0.0710 | 0.0060 | 0.0123 |
Cold Season. Year 2020 | ||||||||
BC | 853 | 2.367 | 3.170 | 1.118 | 0.2488 | 26.56 | 0.7172 | 2.550 |
BCbb | 853 | 0.1363 | 0.1370 | 0.1075 | 0.0001 | 1.388 | 0.0555 | 0.1823 |
BCff | 853 | 2.230 | 3.180 | 0.9694 | 0.2140 | 26.56 | 0.6081 | 2.386 |
PM10 | 853 | 39.98 | 25.08 | 34.00 | 1.000 | 187.0 | 25.00 | 51.00 |
PM2.5 | ---- | ---- | ---- | ---- | ---- | ---- | ---- | ---- |
SO2 (ppm) | 853 | 0.0025 | 0.0043 | 0.0020 | 0.0010 | 0.0780 | 0.0010 | 0.0020 |
NO2 (ppm) | 800 | 0.0132 | 0.0073 | 0.0110 | 0.0020 | 0.0480 | 0.0070 | 0.0180 |
Season | BC (μg m−3) | BCff (μg m−3) | BCbb (μg m−3) | PM10 (μg m−3) | PM2.5 (μg m−3) | SO2 (ppm) | NO2 (ppm) |
---|---|---|---|---|---|---|---|
Pre-COVID-2 | 2.853 ± 0.0712 | 2.623 ± 0.0700 | 0.2300 ± 0.0065 | --------- | 17.07 ± 0.3304 | 0.0033 ± 0.0001 | 0.0180 ± 0.0002 |
COVID Contingency | 1.709 ± 0.0440 | 1.528 ± 0.0442 | 0.1810 ± 0.0038 | 36.98 ± 0.5231 | 17.53 ± 1.146 | 0.0018 ± 0.0001 | 0.0082 ± 0.0001 |
Post-COVID-2 | 1.5774 ± 0.0385 | 1.455 ± 0.0385 | 0.1229 ± 0.0020 | 31.08 ± 0.4079 | --------- | 0.0018 ± 0.0001 | 0.0111 ± 0.0001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barrera, V.; Guerrero, C.; Galindo, G.; Salcedo, D.; Ruiz, A.; Contreras, C. Atmospheric Black Carbon Evaluation in Two Sites of San Luis Potosí City During the Years 2018–2020. Atmosphere 2025, 16, 65. https://doi.org/10.3390/atmos16010065
Barrera V, Guerrero C, Galindo G, Salcedo D, Ruiz A, Contreras C. Atmospheric Black Carbon Evaluation in Two Sites of San Luis Potosí City During the Years 2018–2020. Atmosphere. 2025; 16(1):65. https://doi.org/10.3390/atmos16010065
Chicago/Turabian StyleBarrera, Valter, Cristian Guerrero, Guadalupe Galindo, Dara Salcedo, Andrés Ruiz, and Carlos Contreras. 2025. "Atmospheric Black Carbon Evaluation in Two Sites of San Luis Potosí City During the Years 2018–2020" Atmosphere 16, no. 1: 65. https://doi.org/10.3390/atmos16010065
APA StyleBarrera, V., Guerrero, C., Galindo, G., Salcedo, D., Ruiz, A., & Contreras, C. (2025). Atmospheric Black Carbon Evaluation in Two Sites of San Luis Potosí City During the Years 2018–2020. Atmosphere, 16(1), 65. https://doi.org/10.3390/atmos16010065