Impact of Lockdowns on Air Pollution: Case Studies of Two Periods in 2022 in Guangzhou, China
Abstract
:1. Introduction
2. Data and Methods
2.1. Study Area and Period
2.2. Data Source
2.2.1. Ground Data
2.2.2. Satellite Data
2.2.3. Local Climate Zones (LCZ) Data
3. Results and Discussion
3.1. Changes in Ozone and Nitrogen Dioxide
3.2. Sensitivity Analysis of Ozone Generation
3.3. Changes in Other Pollutants
3.4. Monthly Variation of Pollutants in Urban and Suburban Areas
3.5. Comparison with Lockdowns in 2020
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- WHO. Air Pollution Data Portal. Available online: https://www.who.int/data/gho/data/themes/air-pollution (accessed on 14 November 2023).
- Wilson, E. EPIDEMIOLOGY Long-Term Exposure to Ozone Increases Risk of Death. Chem. Eng. News Arch. 2009, 87, 9. [Google Scholar] [CrossRef]
- Hanedar, A.; Alp, K.; Kaynak, B.; Avşar, E. Toxicity Evaluation and Source Apportionment of Polycyclic Aromatic Hydrocarbons (PAHs) at Three Stations in Istanbul, Turkey. Sci. Total Environ. 2014, 488–489, 437–446. [Google Scholar] [CrossRef] [PubMed]
- Kalemba-Drożdż, M. The Interaction between Air Pollution and Diet Does Not Influence the DNA Damage in Lymphocytes of Pregnant Women. Environ. Res. 2015, 136, 295–299. [Google Scholar] [CrossRef]
- Int Panis, L.; Provost, E.B.; Cox, B.; Louwies, T.; Laeremans, M.; Standaert, A.; Dons, E.; Holmstock, L.; Nawrot, T.; De Boever, P. Short-Term Air Pollution Exposure Decreases Lung Function: A Repeated Measures Study in Healthy Adults. Environ. Health 2017, 16, 60. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Bi, J.; Olde Rikkert, M.G.M. Early Warning Signals for Critical Transitions in Cardiopulmonary Health, Related to Air Pollution in an Urban Chinese Population. Environ. Int. 2018, 121, 240–249. [Google Scholar] [CrossRef]
- Unger, N.; Shindell, D.T.; Koch, D.M.; Streets, D.G. Cross Influences of Ozone and Sulfate Precursor Emissions Changes on Air Quality and Climate. Proc. Natl. Acad. Sci. USA 2006, 103, 4377–4380. [Google Scholar] [CrossRef]
- Jakovljević, T.; Lovreškov, L.; Jelić, G.; Anav, A.; Popa, I.; Fornasier, M.F.; Proietti, C.; Limić, I.; Butorac, L.; Vitale, M.; et al. Impact of Ground-Level Ozone on Mediterranean Forest Ecosystems Health. Sci. Total Environ. 2021, 783, 147063. [Google Scholar] [CrossRef]
- Feng, Z.; Kobayashi, K.; Li, P.; Xu, Y.; Tang, H.; Guo, A.; Paoletti, E.; Calatayud, V. Impacts of Current Ozone Pollution on Wheat Yield in China as Estimated with Observed Ozone, Meteorology and Day of Flowering. Atmos. Environ. 2019, 217, 116945. [Google Scholar] [CrossRef]
- Yue, X.; Unger, N.; Harper, K.; Xia, X.; Liao, H.; Zhu, T.; Xiao, J.; Feng, Z.; Li, J. Ozone and Haze Pollution Weakens Net Primary Productivity in China. Atmos. Chem. Phys. 2017, 17, 6073–6089. [Google Scholar] [CrossRef]
- Lapina, K.; Henze, D.K.; Milford, J.B.; Travis, K. Impacts of Foreign, Domestic, and State-Level Emissions on Ozone-Induced Vegetation Loss in the United States. Environ. Sci. Technol. 2016, 50, 806–813. [Google Scholar] [CrossRef]
- Bao, J.; Cao, J.; Gao, R.; Ren, Y.; Bi, F.; Wu, Z.; Chai, F.; Li, H. Process and Experience of Ozone Pollution Prevention and Control in Europe and Enlightenment to China. Res. Environ. Sci. 2021, 34, 890–901. [Google Scholar] [CrossRef]
- Chinese Society for Environmental Sciences, Ozone Pollution Control Professional Committee. China Blue Book on Prevention and Control of Atmospheric Ozone Pollution (2020); Science Press: Beijing, China, 2022. [Google Scholar]
- Blanchard, C.L.; Hidy, G.M. Ozone Response to Emission Reductions in the Southeastern United States. Atmos. Chem. Phys. 2018, 18, 8183–8202. [Google Scholar] [CrossRef]
- Chan, C.K.; Yao, X. Air Pollution in Mega Cities in China. Atmos. Environ. 2008, 42, 1–42. [Google Scholar] [CrossRef]
- Wang, T.; Xue, L.; Brimblecombe, P.; Lam, Y.F.; Li, L.; Zhang, L. Ozone Pollution in China: A Review of Concentrations, Meteorological Influences, Chemical Precursors, and Effects. Sci. Total Environ. 2017, 575, 1582–1596. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Hong, J.; Zhang, L.; Cooper, O.R.; Schultz, M.G.; Xu, X.; Wang, T.; Gao, M.; Zhao, Y.; Zhang, Y. Severe Surface Ozone Pollution in China: A Global Perspective. Environ. Sci. Technol. Lett. 2018, 5, 487–494. [Google Scholar] [CrossRef]
- Chen, L.; Zhu, J.; Liao, H.; Yang, Y.; Yue, X. Meteorological Influences on PM2.5 and O3 Trends and Associated Health Burden since China’s Clean Air Actions. Sci. Total Environ. 2020, 744, 140837. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Jacob, D.J.; Liao, H.; Shen, L.; Zhang, Q.; Bates, K.H. Anthropogenic Drivers of 2013–2017 Trends in Summer Surface Ozone in China. Proc. Natl. Acad. Sci. USA 2019, 116, 422–427. [Google Scholar] [CrossRef]
- Tan, Z.; Lu, K.; Jiang, M.; Su, R.; Dong, H.; Zeng, L.; Xie, S.; Tan, Q.; Zhang, Y. Exploring Ozone Pollution in Chengdu, Southwestern China: A Case Study from Radical Chemistry to O3-VOC-NOx Sensitivity. Sci. Total Environ. 2018, 636, 775–786. [Google Scholar] [CrossRef]
- Wang, W.-N.; Cheng, T.-H.; Gu, X.-F.; Chen, H.; Guo, H.; Wang, Y.; Bao, F.-W.; Shi, S.-Y.; Xu, B.-R.; Zuo, X.; et al. Assessing Spatial and Temporal Patterns of Observed Ground-Level Ozone in China. Sci. Rep. 2017, 7, 3651. [Google Scholar] [CrossRef]
- Xue, L.; Gu, R.; Wang, T.; Wang, X.; Saunders, S.; Blake, D.; Louie, P.K.K.; Luk, C.W.Y.; Simpson, I.; Xu, Z.; et al. Oxidative Capacity and Radical Chemistry in the Polluted Atmosphere of HongKong and Pearl River Delta Region: Analysis of a Severe Photochemical Smogepisode. Atmos. Chem. Phys. 2016, 16, 9891–9903. [Google Scholar] [CrossRef]
- Tang, X.; Zhang, Y.; Shao, M. Atmospheric Environmental Chemistry, 2nd ed.; Science Press: Beijing, China, 2006. [Google Scholar]
- Tang, G.; Wang, Y.; Li, X.; Ji, D.; Gao, X. Spatial-Temporal Variations of Surface Ozone and Ozone Control Strategy for Northern China. Atmos. Chem. Phys. 2011, 11, 26057–26109. [Google Scholar]
- Kavassalis, S.C.; Murphy, J.G. Understanding Ozone-Meteorology Correlations: A Role for Dry Deposition: Ozone-Meteorology Correlations: Dry Dep. Geophys. Res. Lett. 2017, 44, 2922–2931. [Google Scholar] [CrossRef]
- Dong, Y.; Li, J.; Guo, J.; Jiang, Z.; Chu, Y.; Chang, L.; Yang, Y.; Liao, H. The Impact of Synoptic Patterns on Summertime Ozone Pollution in the North China Plain. Sci. Total Environ. 2020, 735, 139559. [Google Scholar] [CrossRef] [PubMed]
- Liao, Z.; Gao, M.; Sun, J.; Fan, S. The Impact of Synoptic Circulation on Air Quality and Pollution-Related Human Health in the Yangtze River Delta Region. Sci. Total Environ. 2017, 607–608, 838–846. [Google Scholar] [CrossRef]
- Shi, Z.; Huang, L.; Li, J.; Ying, Q.; Zhang, H.; Hu, J. Sensitivity Analysis of the Surface Ozone and Fine Particulate Matter to Meteorological Parameters in China. Atmos. Chem. Phys. 2020, 20, 13455–13466. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, Y.; Hu, J.; Ying, Q.; Hu, X.-M. Relationships between Meteorological Parameters and Criteria Air Pollutants in Three Megacities in China. Environ. Res. 2015, 140, 242–254. [Google Scholar] [CrossRef]
- Liu, J.; Wang, L.; Li, M.; Liao, Z.; Sun, Y.; Song, T.; Gao, W.; Wang, Y.; Li, Y.; Ji, D.; et al. Quantifying the Impact of Synoptic Circulation Patterns on Ozone Variability in Northern China from April to October 2013–2017. Atmos. Chem. Phys. 2019, 19, 14477–14492. [Google Scholar] [CrossRef]
- Zhang, C.; Luo, S.; Zhao, W.; Wang, Y.; Zhang, Q.; Qu, C.; Liu, X.; Wen, X. Impacts of Meteorological Factors, VOCs Emissions and Inter-Regional Transport on Summer Ozone Pollution in Yuncheng. Atmosphere 2021, 12, 1661. [Google Scholar] [CrossRef]
- Torres-Jardón, R.; García-Reynoso, J.A.; Jazcilevich, A.; Ruiz-Suárez, L.G.; Keener, T.C. Assessment of the Ozone-Nitrogen Oxide-Volatile Organic Compound Sensitivity of Mexico City through an Indicator-Based Approach: Measurements and Numerical Simulations Comparison. J. Air Waste Manag. Assoc. 2009, 59, 1155–1172. [Google Scholar] [CrossRef]
- Kleinman, L.I. Low and High NOx Tropospheric Photochemistry. J. Geophys. Res. Atmos. 1994, 99, 16831–16838. [Google Scholar] [CrossRef]
- Sillman, S. The Use of NOy, H2O2, and HNO3 as Indicators for ozone-NOx-hydrocarbon Sensitivity in Urban Locations. J. Geophys. Res. Atmos. 1995, 100, 14175–14188. [Google Scholar] [CrossRef]
- Sillman, S. The Relation between Ozone, NOx and Hydrocarbons in Urban and Polluted Rural Environments. Atmos. Environ. 1999, 33, 1821–1845. [Google Scholar] [CrossRef]
- Tonnesen, G.S.; Dennis, R.L. Analysis of Radical Propagation Efficiency to Assess Ozone Sensitivity to Hydrocarbons and NOx: 1. Local Indicators of Instantaneous Odd Oxygen Production Sensitivity. J. Geophys. Res. Atmos. 2000, 105, 9213–9225. [Google Scholar] [CrossRef]
- Martin, R.V.; Fiore, A.M.; Van Donkelaar, A. Space-based Diagnosis of Surface Ozone Sensitivity to Anthropogenic Emissions. Geophys. Res. Lett. 2004, 31, L06120. [Google Scholar] [CrossRef]
- Li, R.; Xu, M.; Li, M.; Chen, Z.; Zhao, N.; Gao, B.; Yao, Q. Identifying the Spatiotemporal Variations in Ozone Formation Regimes across China from 2005 to 2019 Based on Polynomial Simulation and Causality Analysis. Atmos. Chem. Phys. 2021, 21, 15631–15646. [Google Scholar] [CrossRef]
- Liu, J.; Li, X.; Tan, Z.; Wang, W.; Yang, Y.; Zhu, Y.; Yang, S.; Song, M.; Chen, S.; Wang, H.; et al. Assessing the Ratios of Formaldehyde and Glyoxal to NO2 as Indicators of O3–NOx–VOC Sensitivity. Environ. Sci. Technol. 2021, 55, 10935–10945. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Dou, K.; Fan, G.; Huang, S.; Si, F.; Zhou, H.; Wang, Y.; Pei, C.; Tang, F.; Yang, D.; et al. Vertical Distributions of Tropospheric Formaldehyde, Nitrogen Dioxide, Ozone and Aerosol in Southern China by Ground-Based MAX-DOAS and LIDAR Measurements during PRIDE-GBA 2018 Campaign. Atmos. Environ. 2020, 226, 117384. [Google Scholar] [CrossRef]
- Sun, Y.; Liu, C.; Palm, M.; Vigouroux, C.; Notholt, J.; Hu, Q.; Jones, N.; Wang, W.; Su, W.; Zhang, W.; et al. Ozone Seasonal Evolution and Photochemical Production Regime in the Polluted Troposphere in Eastern China Derived from High-Resolution Fourier Transform Spectrometry (FTS) Observations. Atmos. Chem. Phys. 2018, 18, 14569–14583. [Google Scholar] [CrossRef]
- Gautam, S. COVID-19: Air Pollution Remains Low as People Stay at Home. Air Qual. Atmos. Health 2020, 13, 853–857. [Google Scholar] [CrossRef]
- Bao, R.; Zhang, A. Does Lockdown Reduce Air Pollution? Evidence from 44 Cities in Northern China. Sci. Total Environ. 2020, 731, 139052. [Google Scholar] [CrossRef]
- Tobías, A. Changes in Air Quality during the Lockdown in Barcelona (Spain) One Month into the SARS-CoV-2 Epidemic. Sci. Total Environ. 2020, 726, 138540. [Google Scholar] [CrossRef] [PubMed]
- Vignesh, V.G.; Jain, C.D.; Saikranthi, K.; Ratnam, M.V. Spatial Variability of Trace Gases (NO2, O3 and CO) over Indian Region during 2020 and 2021 COVID-19 Lockdowns. Environ. Monit. Assess. 2023, 195, 680. [Google Scholar] [CrossRef] [PubMed]
- Nakada, L.Y.K.; Urban, R.C. COVID-19 Pandemic: Impacts on the Air Quality during the Partial Lockdown in São Paulo State, Brazil. Sci. Total Environ. 2020, 730, 139087. [Google Scholar] [CrossRef] [PubMed]
- Othman, M.; Latif, M.T. Air Pollution Impacts from COVID-19 Pandemic Control Strategies in Malaysia. J. Clean. Prod. 2021, 291, 125992. [Google Scholar] [CrossRef]
- Nussbaumer, C.M.; Pozzer, A.; Tadic, I.; Röder, L.; Obersteiner, F.; Harder, H.; Lelieveld, J.; Fischer, H. Tropospheric Ozone Production and Chemical Regime Analysis during the COVID-19 Lockdown over Europe. Atmos. Chem. Phys. 2022, 22, 6151–6165. [Google Scholar] [CrossRef]
- Pei, Z.; Han, G.; Ma, X.; Su, H.; Gong, W. Response of Major Air Pollutants to COVID-19 Lockdowns in China. Sci. Total Environ. 2020, 743, 140879. [Google Scholar] [CrossRef]
- Shi, X.; Brasseur, G.P. The Response in Air Quality to the Reduction of Chinese Economic Activities During the COVID-19 Outbreak. Geophys. Res. Lett. 2020, 47, e2020GL088070. [Google Scholar] [CrossRef]
- Guangzhou Municipal Bureau of Statistics; Survey Office of the National Bureau of Statistics in Guangzhou. Guangzhou Statistical Yearbook; China Statistics Press: Beijing, China, 2023.
- Guangzhou Municipal Bureau of Ecology and Environment. 2022 Guangzhou Ecological Environment Status Report; China Environmental Science Press: Beijing, China, 2023.
- Chen, C.; Hong, Y.; LIU, L.; Tan, H.; Wu, M.; Situ, S.; Bu, Q.; Cheng, Y.; Zhou, Y. Analysis of Two Typical Ozone Pollution Processes in Foshan in Spring. Acta Sci. Circumstantiae 2022, 42, 304–314. [Google Scholar] [CrossRef]
- Zhan, J.; Wang, M.; Liu, Y.; Feng, C.; Gan, T.; Li, L.; Ou, R.; Ding, H. Impact of the ‘13th Five-Year Plan’ Policy on Air Quality in Pearl River Delta, China: A Case Study of Haizhu District in Guangzhou City Using WRF-Chem. Appl. Sci. 2020, 10, 5276. [Google Scholar] [CrossRef]
- Lin, C.; Song, Y.; Louie, P.K.K.; Yuan, Z.; Li, Y.; Tao, M.; Li, C.; Fung, J.C.H.; Ning, Z.; Lau, A.K.H.; et al. Risk Tradeoffs between Nitrogen Dioxide and Ozone Pollution during the COVID-19 Lockdowns in the Greater Bay Area of China. Atmos. Pollut. Res. 2022, 13, 101549. [Google Scholar] [CrossRef]
- Theys, N.; Hedelt, P.; De Smedt, I.; Lerot, C.; Yu, H.; Vlietinck, J.; Pedergnana, M.; Arellano, S.; Galle, B.; Fernandez, D.; et al. Global Monitoring of Volcanic SO2 Degassing with Unprecedented Resolution from TROPOMI Onboard Sentinel-5 Precursor. Sci. Rep. 2019, 9, 2643. [Google Scholar] [CrossRef] [PubMed]
- Van Geffen, J.; Eskes, H.; Compernolle, S.; Pinardi, G.; Verhoelst, T.; Lambert, J.-C.; Sneep, M.; Ter Linden, M.; Ludewig, A.; Boersma, K.F.; et al. Sentinel-5P TROPOMI NO2 Retrieval: Impact of Version v2.2 Improvements and Comparisons with OMI and Ground-Based Data. Atmos. Meas. Tech. 2022, 15, 2037–2060. [Google Scholar] [CrossRef]
- Shikwambana, L.; Kganyago, M. Assessing the Responses of Aviation-Related SO2 and NO2 Emissions to COVID-19 Lockdown Regulations in South Africa. Remote Sens. 2021, 13, 4156. [Google Scholar] [CrossRef]
- Shikwambana, L.; Mokgoja, B.; Mhangara, P. A Qualitative Assessment of the Trends, Distribution and Sources of Methane in South Africa. Sustainability 2022, 14, 3528. [Google Scholar] [CrossRef]
- Shikwambana, L.; Mhangara, P.; Mbatha, N. Trend Analysis and First Time Observations of Sulphur Dioxide and Nitrogen Dioxide in South Africa Using TROPOMI/Sentinel-5 P Data. Int. J. Appl. Earth Obs. Geoinf. 2020, 91, 102130. [Google Scholar] [CrossRef]
- HARP. Available online: https://atmospherictoolbox.org/harp/ (accessed on 9 March 2024).
- Nirdesh. Monitoring Air Pollution with Satellite Data Using Sentinel 5-P in Python. Available online: https://nirdeshthekumar.medium.com/monitoring-air-pollution-with-satellite-data-using-sentinel-5-p-in-python-2bbc6e1acef4 (accessed on 9 March 2024).
- Xin, R.; Li, X.; Shi, Y.; Li, L.; Zhang, Y.; Liu, C.; Dai, Y. Study of Urban Thermal Environment and Local Circulations of Guangdong-Hong Kong-Macao Greater Bay Area Using WRF and Local Climate Zones. J. Geophys. Res. Atmos. 2023, 128, e2022JD038210. [Google Scholar] [CrossRef]
- Stewart, I.D.; Oke, T.R. Local Climate Zones for Urban Temperature Studies. Bull. Am. Meteorol. Soc. 2012, 93, 1879–1900. [Google Scholar] [CrossRef]
- Jagarnath, M.; Thambiran, T. Greenhouse Gas Emissions Profiles of Neighbourhoods in Durban, South Africa—An Initial Investigation. Environ. Urban. 2018, 30, 191–214. [Google Scholar] [CrossRef]
- Burnett, R.T.; Stieb, D.; Brook, J.R.; Cakmak, S.; Dales, R.; Raizenne, M.; Vincent, R.; Dann, T. Associations between Short-Term Changes in Nitrogen Dioxide and Mortality in Canadian Cities. Arch. Environ. Health 2004, 59, 228–236. [Google Scholar] [CrossRef]
- Chu, B.; Zhang, S.; Liu, J.; Ma, Q.; He, H. Significant Concurrent Decrease in PM2.5 and NO2 Concentrations in China during COVID-19 Epidemic. J. Environ. Sci. 2021, 99, 346–353. [Google Scholar] [CrossRef]
- Otmani, A. Impact of COVID-19 Lockdown on PM10, SO2 and NO2 Concentrations in Salé City (Morocco). Sci. Total Environ. 2020, 735, 139541. [Google Scholar] [CrossRef] [PubMed]
- Toscano, D.; Murena, F. The Effect on Air Quality of Lockdown Directives to Prevent the Spread of SARS-CoV-2 Pandemic in Campania Region—Italy: Indications for a Sustainable Development. Sustainability 2020, 12, 5558. [Google Scholar] [CrossRef]
- Mor, S. Impact of COVID-19 Lockdown on Air Quality in Chandigarh, India: Understanding the Emission Sources during Controlled Anthropogenic Activities. Chemosphere 2021, 263, 127978. [Google Scholar] [CrossRef] [PubMed]
- Heintzelman, A.; Filippelli, G.; Lulla, V. Substantial Decreases in U.S. Cities’ Ground-Based NO2 Concentrations during COVID-19 from Reduced Transportation. Sustainability 2021, 13, 9030. [Google Scholar] [CrossRef]
- Chen, L.-W.A.; Chien, L.-C.; Li, Y.; Lin, G. Nonuniform Impacts of COVID-19 Lockdown on Air Quality over the United States. Sci. Total Environ. 2020, 745, 141105. [Google Scholar] [CrossRef]
- Habibi, H.; Awal, R.; Fares, A.; Ghahremannejad, M. COVID-19 and the Improvement of the Global Air Quality: The Bright Side of a Pandemic. Atmosphere 2020, 11, 1279. [Google Scholar] [CrossRef]
- Kerimray, A.; Baimatova, N.; Ibragimova, O.P.; Bukenov, B.; Kenessov, B.; Plotitsyn, P.; Karaca, F. Assessing Air Quality Changes in Large Cities during COVID-19 Lockdowns: The Impacts of Traffic-Free Urban Conditions in Almaty, Kazakhstan. Sci. Total Environ. 2020, 730, 139179. [Google Scholar] [CrossRef]
- Wang, H.; Huang, C.; Tao, W.; Gao, Y.; Wang, S.; Jing, S.; Wang, W.; Yan, R.; Wang, Q.; An, J.; et al. Seasonality and Reduced Nitric Oxide Titration Dominated Ozone Increase during COVID-19 Lockdown in Eastern China. Npj Clim. Atmos. Sci. 2022, 5, 24. [Google Scholar] [CrossRef]
- Lee, J.D.; Drysdale, W.S.; Finch, D.P.; Wilde, S.E.; Palmer, P.I. UK Surface NO2 Levels Dropped by 42% during the COVID-19 Lockdown: Impact on Surface O3. Atmos. Chem. Phys. 2020, 20, 15743–15759. [Google Scholar] [CrossRef]
- Cazorla, M.; Herrera, E.; Palomeque, E.; Saud, N. What the COVID-19 Lockdown Revealed about Photochemistry and Ozone Production in Quito, Ecuador. Atmos. Pollut. Res. 2021, 12, 124–133. [Google Scholar] [CrossRef]
- Rathod, A.; Sahu, S.K.; Singh, S.; Beig, G. Anomalous Behaviour of Ozone under COVID-19 and Explicit Diagnosis of O3-NOx-VOCs Mechanism. Heliyon 2021, 7, e06142. [Google Scholar] [CrossRef] [PubMed]
- Zhao, F.; Liu, C.; Cai, Z.; Liu, X.; Bak, J.; Kim, J.; Hu, Q.; Xia, C.; Zhang, C.; Sun, Y.; et al. Ozone Profile Retrievals from TROPOMI: Implication for the Variation of Tropospheric Ozone during the Outbreak of COVID-19 in China. Sci. Total Environ. 2021, 764, 142886. [Google Scholar] [CrossRef] [PubMed]
- Baldasano, J.M. COVID-19 Lockdown Effects on Air Quality by NO2 in the Cities of Barcelona and Madrid (Spain). Sci. Total Environ. 2020, 741, 140353. [Google Scholar] [CrossRef] [PubMed]
- Ordóñez, C.; Garrido-Perez, J.M.; García-Herrera, R. Early Spring Near-Surface Ozone in Europe during the COVID-19 Shutdown: Meteorological Effects Outweigh Emission Changes. Sci. Total Environ. 2020, 747, 141322. [Google Scholar] [CrossRef]
- Sicard, P.; De Marco, A.; Agathokleous, E.; Feng, Z.; Xu, X.; Paoletti, E.; Rodriguez, J.J.D.; Calatayud, V. Amplified Ozone Pollution in Cities during the COVID-19 Lockdown. Sci. Total Environ. 2020, 735, 139542. [Google Scholar] [CrossRef] [PubMed]
- Sillman, S.; He, D. Some Theoretical Results Concerning O3-NOx-VOC Chemistry and NOx-VOC Indicators. J. Geophys. Res. Atmos. 2002, 107, ACH-26. [Google Scholar] [CrossRef]
- Duncan, B.N.; Prados, A.I.; Lamsal, L.N.; Liu, Y.; Streets, D.G.; Gupta, P.; Hilsenrath, E.; Kahn, R.A.; Nielsen, J.E.; Beyersdorf, A.J.; et al. Satellite Data of Atmospheric Pollution for U.S. Air Quality Applications: Examples of Applications, Summary of Data End-User Resources, Answers to FAQs, and Common Mistakes to Avoid. Atmos. Environ. 2014, 94, 647–662. [Google Scholar] [CrossRef]
- Souri, A.H.; Nowlan, C.R.; Wolfe, G.M.; Lamsal, L.N.; Chan Miller, C.E.; Abad, G.G.; Janz, S.J.; Fried, A.; Blake, D.R.; Weinheimer, A.J.; et al. Revisiting the Effectiveness of HCHO/NO2 Ratios for Inferring Ozone Sensitivity to Its Precursors Using High Resolution Airborne Remote Sensing Observations in a High Ozone Episode during the KORUS-AQ Campaign. Atmos. Environ. 2020, 224, 117341. [Google Scholar] [CrossRef]
- Fu, S.; Guo, M.; Fan, L.; Deng, Q.; Han, D.; Wei, Y.; Luo, J.; Qin, G.; Cheng, J. Ozone Pollution Mitigation in Guangxi (South China) Driven by Meteorology and Anthropogenic Emissions during the COVID-19 Lockdown. Environ. Pollut. 2021, 272, 115927. [Google Scholar] [CrossRef]
- Mertens, M.; Jöckel, P.; Matthes, S.; Nützel, M.; Grewe, V.; Sausen, R. COVID-19 Induced Lower-Tropospheric Ozone Changes. Environ. Res. Lett. 2021, 16, 064005. [Google Scholar] [CrossRef]
- Duncan, B.N.; Yoshida, Y.; Olson, J.R.; Sillman, S.; Martin, R.V.; Lamsal, L.; Hu, Y.; Pickering, K.E.; Retscher, C.; Allen, D.J.; et al. Application of OMI Observations to a Space-Based Indicator of NOx and VOC Controls on Surface Ozone Formation. Atmos. Environ. 2010, 44, 2213–2223. [Google Scholar] [CrossRef]
- Xu, J.; Zhu, F.; Ge, X.; Li, H.; Zhao, X.; Tian, W.; Zhang, X.; Bai, Y.; An, F.; Wang, S. Research Progress on Volatile Organic Compounds Emissions from Coal-Fired Power Plants. Curr. Pollut. Rep. 2022, 8, 303–314. [Google Scholar] [CrossRef]
- Jonidi Jafari, A.; Charkhloo, E.; Pasalari, H. Urban Air Pollution Control Policies and Strategies: A Systematic Review. J. Environ. Health Sci. Eng. 2021, 19, 1911–1940. [Google Scholar] [CrossRef] [PubMed]
- Amato, F.; Pandolfi, M.; Escrig, A.; Querol, X.; Alastuey, A.; Pey, J.; Perez, N.; Hopke, P.K. Quantifying Road Dust Resuspension in Urban Environment by Multilinear Engine: A Comparison with PMF2. Atmos. Environ. 2009, 43, 2770–2780. [Google Scholar] [CrossRef]
- Ostro, B.; Malig, B.; Hasheminassab, S.; Berger, K.; Chang, E.; Sioutas, C. Associations of Source-Specific Fine Particulate Matter With Emergency Department Visits in California. Am. J. Epidemiol. 2016, 184, 450–459. [Google Scholar] [CrossRef]
- Li, X.; Qiao, Y.; Zhu, J.; Shi, L.; Wang, Y. The “APEC Blue” Endeavor: Causal Effects of Air Pollution Regulation on Air Quality in China. J. Clean. Prod. 2017, 168, 1381–1388. [Google Scholar] [CrossRef]
- Goolsbee, A.; Syverson, C. Fear, Lockdown, and Diversion: Comparing Drivers of Pandemic Economic Decline 2020. J. Public Econ. 2021, 193, 104311. [Google Scholar] [CrossRef]
- Kanitkar, T. The COVID-19 Lockdown in India: Impacts on the Economy and the Power Sector. Glob. Transit. 2020, 2, 150–156. [Google Scholar] [CrossRef]
- Pathak, M. Spatial Heterogeneity in Global Atmospheric CO during the COVID–19 Lockdown: Implications for Global and Regional Air Quality Policies. Environ. Pollut. 2023, 335, 122269. [Google Scholar] [CrossRef]
- Dang, H.-A.H.; Trinh, T.-A. Does the COVID-19 Lockdown Improve Global Air Quality? New Cross-National Evidence on Its Unintended Consequences. J. Environ. Econ. Manag. 2021, 105, 102401. [Google Scholar] [CrossRef]
- Jiang, P.; Fu, X.; Fan, Y.V.; Klemeš, J.J.; Chen, P.; Ma, S.; Zhang, W. Spatial-Temporal Potential Exposure Risk Analytics and Urban Sustainability Impacts Related to COVID-19 Mitigation: A Perspective from Car Mobility Behaviour. J. Clean. Prod. 2021, 279, 123673. [Google Scholar] [CrossRef] [PubMed]
- Muhammad, S.; Long, X.; Salman, M. COVID-19 Pandemic and Environmental Pollution: A Blessing in Disguise? Sci. Total Environ. 2020, 728, 138820. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Wang, Z.; Cui, L.; Fu, H.; Zhang, L.; Kong, L.; Chen, W.; Chen, J. Air Pollution Characteristics in China during 2015–2016: Spatiotemporal Variations and Key Meteorological Factors. Sci. Total Environ. 2019, 648, 902–915. [Google Scholar] [CrossRef] [PubMed]
- Madineni, V.R.; Dasari, H.P.; Karumuri, R.; Viswanadhapalli, Y.; Perumal, P.; Hoteit, I. Natural Processes Dominate the Pollution Levels during COVID-19 Lockdown over India. Sci. Rep. 2021, 11, 15110. [Google Scholar] [CrossRef]
- Yi, Z.; Wang, Y.; Chen, W.; Guo, B.; Zhang, B.; Che, H.; Zhang, X. Classification of the Circulation Patterns Related to Strong Dust Weather in China Using a Combination of the Lamb–Jenkinson and k-Means Clustering Methods. Atmosphere 2021, 12, 1545. [Google Scholar] [CrossRef]
Period | Meteorological Station | Year | Selected Dates |
---|---|---|---|
BASE1 | 59284 | 2017 | 10, 11, 12, 13, 14, 15, 16, 17, 20, 21, 23, 24, 25, 26, 27, 28 |
2018 | 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 21, 22, 23, 24, 25, 26, 27, 28, 29 | ||
2019 | 10, 11, 12, 13, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28 | ||
59285 | 2017 | 12, 13, 14, 15, 16, 17, 20, 21, 24, 25, 26, 27, 28, 29 | |
2018 | 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 22, 23, 24, 25, 26, 27, 28, 29 | ||
2019 | 11, 12, 13, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28 | ||
59287 | 2017 | 9, 10, 11, 12, 13, 15, 16, 17, 20, 21, 23, 24, 25, 26, 27, 28, 29 | |
2018 | 9, 10, 11, 12, 13, 15, 16, 22, 23, 24, 25, 26, 27, 28, 29 | ||
2019 | 10, 11, 12, 13, 15, 16, 17, 18, 21, 22, 23, 24, 25, 26, 27, 28 | ||
59294 | 2017 | 9, 10, 11, 12, 13, 16, 17, 20, 21, 23, 24, 25, 26, 27, 29 | |
2018 | 10, 11, 12, 13, 14, 15, 16, 17, 18, 22, 23, 24, 25, 26, 27, 28, 29 | ||
2019 | 11, 12, 13, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28 | ||
59481 | 2017 | 9, 10, 11, 12, 13, 14, 15, 16, 17, 20, 21, 23, 24, 25, 26, 27, 28, 29 | |
2018 | 9, 10, 11, 12, 13, 14, 16, 17, 18, 21, 22, 23, 24, 25, 26, 27, 28, 29 | ||
2019 | 10, 11, 12, 13, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29 | ||
BASE2 | 59284 | 2017 | 6, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29 |
2018 | 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29 | ||
2019 | 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29 | ||
59285 | 2017 | 6, 7, 9, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 25, 26, 27, 28, 29 | |
2018 | 6, 7, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 23, 24, 27, 28, 29 | ||
2019 | 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 29 | ||
59287 | 2017 | 6, 8, 9, 10, 11, 12, 15, 16, 17, 19, 25, 27, 28, 29 | |
2018 | 6, 7, 9, 10, 11, 13, 14, 15, 17, 20, 23, 24, 27, 28, 29 | ||
2019 | 6, 9, 10, 11, 12, 15, 16, 17, 19, 20, 21, 22, 23, 24, 26, 29 | ||
59294 | 2017 | 7, 9, 10, 15, 16, 17, 20, 21, 24, 26, 27, 28, 29 | |
2018 | 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 20, 21, 24, 27, 28, 29 | ||
2019 | 6, 9, 10, 11, 12, 13, 15, 16, 17, 21, 22, 23, 24, 27 | ||
59481 | 2017 | 6, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29 | |
2018 | 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 27, 28, 29 | ||
2019 | 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29 | ||
LOCK1 | 59284 | 2022 | 13, 14, 17, 18, 19, 20, 21, 22, 28, 29 |
59285 | 2022 | 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 25, 26, 27, 29 | |
59287 | 2022 | 16, 21, 22, 28, 29 | |
59294 | 2022 | 16, 17, 18, 19, 21, 22, 26, 28, 29 | |
59481 | 2022 | 13, 14, 16, 17, 18, 19, 20, 21, 22, 28, 29 | |
LOCK2 | 59284 | 2022 | 6, 7, 8, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21 |
59285 | 2022 | 6, 7, 8, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29 | |
59287 | 2022 | 6, 7, 9, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 27, 28, 29 | |
59294 | 2022 | 6, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 27, 28, 29 | |
59481 | 2022 | 13, 15, 16, 17, 19, 20, 21, 27 | |
S5P1 | 59284 | 2019 | 10, 11, 12, 13, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28 |
59285 | 2019 | 11, 12, 13, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28 | |
59287 | 2019 | 10, 11, 12, 13, 15, 16, 17, 18, 21, 22, 23, 24, 25, 26, 27, 28 | |
59294 | 2019 | 11, 12, 13, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28 | |
59481 | 2019 | 10, 11, 12, 13, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29 | |
S5P2 | 59284 | 2019 | 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29 |
59285 | 2019 | 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 29 | |
59287 | 2019 | 6, 9, 10, 11, 12, 15, 16, 17, 19, 20, 21, 22, 23, 24, 26, 29 | |
59294 | 2019 | 6, 9, 10, 11, 12, 13, 15, 16, 17, 21, 22, 23, 24, 27 | |
59481 | 2019 | 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29 |
Pollutant | Period | Western Guangzhou | Central Guangzhou | All |
---|---|---|---|---|
O3 (µg/m3) | LOCK1 | 88.01 ± 2.87 | 43.00 ± 4.01 | 65.50 ± 24.85 |
LOCK2 | 120.89 ± 10.82 | 87.07 ± 3.23 | 103.98 ± 19.85 | |
BASE1 | 88.79 ± 2.90 | 96.94 ± 9.08 | 92.86 ± 7.50 | |
BASE2 | 94.28 ± 1.65 | 97.71 ± 1.19 | 95.99 ± 2.28 | |
NO2 (µg/m3) | LOCK1 | 34.71 ± 4.92 | 29.53 ± 8.44 | 32.12 ± 6.80 |
LOCK2 | 43.35 ± 8.57 | 36.83 ± 16.27 | 40.09 ± 12.16 | |
BASE1 | 60.01 ± 3.81 | 50.51 ± 21.68 | 55.26 ± 14.87 | |
BASE2 | 50.88 ± 4.76 | 42.20 ± 21.76 | 46.54 ± 15.31 | |
PM2.5 (µg/m3) | LOCK1 | 22.24 ± 1.63 | 15.93 ± 1.89 | 19.08 ± 3.80 |
LOCK2 | 35.63 ± 4.10 | 32.13 ± 5.23 | 33.88 ± 4.62 | |
BASE1 | 40.98 ± 0.22 | 36.83 ± 6.77 | 38.91 ± 4.85 | |
BASE2 | 38.09 ± 3.63 | 38.84 ± 4.39 | 38.47 ± 3.62 | |
PM10 (µg/m3) | LOCK1 | 40.20 ± 3.16 | 31.4 ± 6.10 | 35.80 ± 6.49 |
LOCK2 | 59.41 ± 3.37 | 60.09 ± 8.26 | 59.75 ± 5.66 | |
BASE1 | 67.30 ± 3.64 | 63.20 ± 14.92 | 65.25 ± 9.97 | |
BASE2 | 63.56 ± 3.34 | 64.71 ± 16.67 | 64.14 ± 10.77 | |
SO2 (µg/m3) | LOCK1 | 5.43 ± 1.93 | 7.07 ± 1.53 | 6.25 ± 1.80 |
LOCK2 | 7.24 ± 0.56 | 6.06 ± 0.88 | 6.65 ± 0.92 | |
BASE1 | 10.85 ± 2.29 | 11.32 ± 3.63 | 11.08 ± 2.72 | |
BASE2 | 9.29 ± 1.02 | 8.99 ± 0.11 | 9.14 ± 0.67 | |
CO (mg/m3) | LOCK1 | 0.74 ± 0.02 | 0.82 ± 0.13 | 0.78 ± 0.09 |
LOCK2 | 0.78 ± 0.10 | 0.80 ± 0.13 | 0.79 ± 0.11 | |
BASE1 | 0.90 ± 0.02 | 0.78 ± 0.07 | 0.84 ± 0.08 | |
BASE2 | 0.89 ± 0.03 | 0.76 ± 0.09 | 0.82 ± 0.09 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, X.; Li, X.-X.; Xin, R.; Zhang, Y.; Liu, C.-H. Impact of Lockdowns on Air Pollution: Case Studies of Two Periods in 2022 in Guangzhou, China. Atmosphere 2024, 15, 1144. https://doi.org/10.3390/atmos15091144
Zhao X, Li X-X, Xin R, Zhang Y, Liu C-H. Impact of Lockdowns on Air Pollution: Case Studies of Two Periods in 2022 in Guangzhou, China. Atmosphere. 2024; 15(9):1144. https://doi.org/10.3390/atmos15091144
Chicago/Turabian StyleZhao, Xinlei, Xian-Xiang Li, Rui Xin, Yuejuan Zhang, and Chun-Ho Liu. 2024. "Impact of Lockdowns on Air Pollution: Case Studies of Two Periods in 2022 in Guangzhou, China" Atmosphere 15, no. 9: 1144. https://doi.org/10.3390/atmos15091144
APA StyleZhao, X., Li, X. -X., Xin, R., Zhang, Y., & Liu, C. -H. (2024). Impact of Lockdowns on Air Pollution: Case Studies of Two Periods in 2022 in Guangzhou, China. Atmosphere, 15(9), 1144. https://doi.org/10.3390/atmos15091144