Calibration for Improving the Medium-Range Soil Forecast over Central Tibet: Effects of Objective Metrics’ Diversity
Abstract
:1. Introduction
2. Methods
2.1. Calibration Schemes
2.1.1. Evolution Algorithms
2.1.2. Optional Evaluator
2.2. Composited Metrics
2.3. Performance Evaluation
2.3.1. Parameter
2.3.2. Objective
2.3.3. Simulation
3. Experiments
3.1. Model and Data
3.2. Experimental Description
4. Results
4.1. Case Perspective
4.1.1. Model Configure
4.1.2. Forecast Problem
4.2. Effects on Calibration
4.2.1. Optimal Parameters
4.2.2. Effectiveness and Efficiency
4.2.3. Optimal Simulation
Linear and Gaussian Fitting
Spatial Difference and Similarity
4.3. Effects on Forecast
4.3.1. Linear and Gaussian Fitting
4.3.2. Spatial Difference and Similarity
4.3.3. Surface States Intercomparison
4.4. Configure and Benefit
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Min, J.; Guo, Y.; Wang, G. Impacts of Soil Moisture on Typical Frontal Rainstorm in Yangtze River Basin. Atmosphere 2016, 7, 42. [Google Scholar] [CrossRef]
- Li, K.; Zhang, J.; Wu, L.; Yang, K.; Li, S. The role of soil temperature feedbacks for summer air temperature variability under climate change over East Asia. Earth’s Future 2022, 10, e2021EF002377. [Google Scholar] [CrossRef]
- García-García, A.; Cuesta-Valero, F.J.; Miralles, D.G.; Mahecha, M.D.; Quaas, J.; Reichstein, M.; Zscheischler, J.; Peng, J. Soil heat extremes can outpace air temperature extremes. Nat. Clim. Chang. 2023, 13, 1237–1241. [Google Scholar] [CrossRef]
- Guo, Y.; Shao, C.; Su, A. Investigation of Land-Atmosphere Coupling during the Extreme Rainstorm of 20 July 2021 over Central East China. Atmosphere 2023, 14, 1474. [Google Scholar] [CrossRef]
- Gao, Y.; Li, K.; Chen, F.; Jiang, Y.; Lu, C. Assessing and improving Noah-MP land model simulations for the central Tibetan Plateau. J. Geophys. Res. Atmos. 2015, 120, 9258–9278. [Google Scholar] [CrossRef]
- Li, C.; Lu, H.; Yang, K.; Han, M.; Wright, J.; Chen, Y.; Yu, L.; Xu, S.; Huang, X.; Gong, W. The Evaluation of SMAP Enhanced Soil Moisture Products Using High-Resolution Model Simulations and In-Situ Observations on the Tibetan Plateau. Remote Sens. 2018, 10, 535. [Google Scholar] [CrossRef]
- Chen, Y.; Yang, K.; He, J.; Qin, J.; Shi, J.; Du, J.; He, Q. Improving land surface temperature modeling for dry land of China. J. Geophys. Res. Atmos. 2011, 116, D20104. [Google Scholar] [CrossRef]
- He, Q.; Lu, H.; Yang, K.; Zhao, L.; Zou, M. Improving Land Surface Temperature Simulation of NOAH-MP on the Tibetan Plateau. In Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, 11–16 July 2021; pp. 6217–6220. [Google Scholar]
- Guo, Y.; Yuan, B.; Su, A.; Shao, C.; Gao, Y. Calibration for Improving the Medium-Range Soil Temperature Forecast of a Semiarid Region over Tibet: A Case Study. Atmosphere 2024, 15, 591. [Google Scholar] [CrossRef]
- Gupta, H.V.; Kling, H.; Yilmaz, K.K.; Martinez, G.F. Decomposition of the mean squared error and NSE performance criteria, Implications for improving hydrological modelling. J. Hydrol. 2009, 377, 80–91. [Google Scholar] [CrossRef]
- Kumar, S.; Kolassa, J.; Reichle, R.; Crow, W.; Lannoy, G.; Rosnay, P.; MacBean, N.; Girotto, M.; Fox, A.; Quaife, T.; et al. An agenda for land data assimilation priorities, Realizing the promise of terrestrial water, energy, and vegetation observations from space. J. Adv. Model. Earth Syst. 2022, 14, c2022MS003259. [Google Scholar] [CrossRef]
- Ma, Y.M.; Yao, T.D.; Zhong, L.; Wang, B.B.; Xu, X.D.; Hu, Z.Y.; Ma, W.Q.; Sun, F.L.; Han, C.B.; Li, M.S.; et al. Comprehensive study of energy and water exchange over the Tibetan Plateau: A review and perspective: From GAME/Tibet and CAMP/Tibet to TORP, TPEORP, and TPEITORP. Earth-Sci. Rev. 2023, 237, 104312. [Google Scholar] [CrossRef]
- Kennedy, J.; Eberhart, R.C. Particle swarm optimization. In Proceedings of the ICNN’95—International Conference on Neural Networks, Perth, WA, Australia, 27 November–1 December 1995; Volume 4, pp. 1942–1948. [Google Scholar]
- Duan, Q.S.; Soroosh, S.; Gupta, V. Optimal use of the SCE-UA global optimization method for calibrating watershed models. J. Hydrol. 1994, 158, 265–284. [Google Scholar] [CrossRef]
- Liu, Y.Q.; Gupta, H.V.; Sorooshian, S.; Bastidas, L.A.; Shuttleworth, W.J. Exploring parameter sensitivities of the land surface using a locally coupled land-atmosphere model. J. Geophys. Res. Atmos. 2004, 109, D21101. [Google Scholar] [CrossRef]
- Bastidas, L.A.; Hogue, T.S.; Sorooshian, S.; Gupta, H.V.; Shuttleworth, W.J. Parameter sensitivity analysis for different complexity land surface models using multicriteria methods. J. Geophys. Res. Atmos. 2006, 111, 20101. [Google Scholar] [CrossRef]
- Peng, F.; Sun, G.D. Identifying Sensitive Model Parameter Combinations for Uncertainties in Land Surface Process Simulations over the Tibetan Plateau. Water 2019, 11, 1724. [Google Scholar] [CrossRef]
- Gudmundsson, L.; Cuntz, M. Soil Parameter Model Intercomparison Project (SP-MIP): Assessing the influence of soil parameters on the variability of Land Surface Models. In Proceedings of the GEWEX–SoilWat Workshop, Leipzig, Germany, 28–30 June 2016; pp. 1–6. Available online: https://www.gewexevents.org/wp-content/uploads/GLASS2017_SP-MIP_Protocol.pdf (accessed on 30 August 2024).
- Chaney, N.W.; Herman, J.D.; Ek, M.B.; Wood, E.F. Deriving global parameter estimates for the Noah land surface model using FLUXNET and machine learning. J. Geophys. Res. Atmos. 2016, 121, 13218–13235. [Google Scholar] [CrossRef]
- Zeng, Y.; Anne, V.; Or, D.; Cuntz, M.; Gudmundsson, L.; Weihermueller, L.; Kollet, S.; Vanderborght, J.; Vereecken, H. GEWEX-ISMC SoilWat Project:Taking Stock and Looking Ahead. In Proceedings of the GEWEX GLASS Meeting, Online, 23–25 November 2020; pp. 4–9. Available online: https://gewex.org/gewex-content/files_mf/1633983474Q22021.pdf (accessed on 30 August 2024).
- Stephens, G.; Polcher, J.; Zeng, X.B.; van Oevelen, P.; Poveda, G.; Bosilovich, M.; Ahn, M.H.; Balsamo, G.; Duan, Q.Y.; Hegerl, G.; et al. The First 30 Years of GEWEX. Bull. Am. Meteorol. Soc. 2023, 104, E126–E157. [Google Scholar] [CrossRef]
- Zhao, X.; Liu, C.; Tong, B.; Li, Y.; Wang, L.; Ma, Y.; Gao, Z. Study on Surface Process Parameters and Soil Thermal Parameters at Shiquanhe in the Western Qinghai-Xizang Plateau. Plateau Meteorol 2021, 40, 711–723. (In Chinese) [Google Scholar]
- Sun, S.; Chen, B.; Che, T.; Zhang, H.; Chen, J.; Che, M.; Lin, X.; Guo, L. Simulating the Qinghai—Tibetan Plateau seasonal frozen soil moisture and improving model’s parameters—A case study in the upper reaches of Heihe River. Plateau Meteorol. 2017, 36, 643–656. (In Chinese) [Google Scholar]
- Chen, F.; Dudhia, J. Coupling an advanced land-surface/hydrology model with the Penn State/NCAR MM5 modeling system. Part I, Model implementation and sensitivity. Mon. Weather. Rev. 2001, 129, 569–585. [Google Scholar] [CrossRef]
- Hogue, T.S.; Bastidas, L.A.; Gupta, H.V.; Sorooshian, S. Evaluating model performance and parameter behavior for varying levels of land surface model complexity. Water Resour. Res. 2006, 42, W08430. [Google Scholar] [CrossRef]
- Rosero, E.; Yang, Z.L.; Gulden, L.E.; Niu, G.Y.; Gochis, D.J. Evaluating Enhanced Hydrological Representations in Noah LSM over Transition Zones: Implications for Model Development. J. Hydrometeorol. 2009, 10, 600–622. [Google Scholar] [CrossRef]
- Yang, K.; Qin, J.; Zhao, L.; Chen, Y.; Tang, W.; Han, M.; Lazhu; Chen, Z.; Lv, N.; Ding, B.; et al. A multi-scale soil moisture and freeze-thaw monitoring network on the third pole. Bull. Am. Meteorol. Soc. 2013, 94, 1907–1916. [Google Scholar] [CrossRef]
- Yang, K.; Chen, Y.Y.; Qin, J. Some practical notes on the land surface modeling in the Tibetan Plateau. Hydrol. Earth Syst. Sci. 2009, 13, 687–701. [Google Scholar] [CrossRef]
- Coon, E.T.; David Moulton, J.; Painter, S.L. Managing complexity in simulations of land surface and near-surface processes. Environ. Model. Softw. 2016, 78, 134–149. [Google Scholar] [CrossRef]
- Fisher, R.A.; Koven, C.D. Perspectives on the Future of Land Surface Models and the Challenges of Representing Complex Terrestrial Systems. J. Adv. Model. Earth Syst. 2020, 12, e2018MS001453. [Google Scholar] [CrossRef]
- Crow, W.T.; Wood, E.F.; Pan, M. Multiobjective calibration of land surface model evapotranspiration predictions using streamflow observations and spaceborne surface radiometric temperature retrievals. J. Geophys. Res. Atmos. 2003, 108, 4725. [Google Scholar] [CrossRef]
- Coudert, B.; Ottle, C.; Boudevillain, B.; Demarty, J.; Guillevic, P. Contribution of thermal infrared remote sensing data in multiobjective calibration of a dual-source SVAT model. J. Hydrometeorol. 2006, 7, 404–420. [Google Scholar] [CrossRef]
- Khaki, M. Land Surface Model Calibration Using Satellite Remote Sensing Data. Sensors 2023, 23, 1848. [Google Scholar] [CrossRef]
- Dembélé, M.; Hrachowitz, M.; Savenije, H.H.G.; Mariéthoz, G.; Schaefli, B. Improving the Predictive Skill of a Distributed Hydrological Model by Calibration on Spatial Patterns with Multiple Satellite Data Sets. Water Resour. Res. 2020, 56, e2019WR026085. [Google Scholar] [CrossRef]
- Zhou, J.; Wu, Z.; Crow, W.T.; Dong, J.; He, H. Improving Spatial Patterns Prior to Land Surface Data Assimilation via Model Calibration Using SMAP Surface Soil Moisture Data. Water Resour. Res. 2020, 56, e2020WR027770. [Google Scholar] [CrossRef]
- Abhervé, R.; Roques, C.; Gauvain, A.; Longuevergne, L.; Louaisil, S.; Aquilina, L.; de Dreuzy, J.-R. Calibration of groundwater seepage against the spatial distribution of the stream network to assess catchment-scale hydraulic properties. Hydrol. Earth Syst. Sci. 2023, 27, 3221–3239. [Google Scholar] [CrossRef]
- Adeyeri, O.E.; Folorunsho, A.H.; Ayegbusi, K.I.; Bobde, V.; Adeliyi, T.E.; Ndehedehe, C.E.; Akinsanola, A.A. Land surface dynamics and meteorological forcings modulate land surface temperature characteristics. Sustain. Cities Soc. 2024, 101, 105072. [Google Scholar] [CrossRef]
- Cunha, A.P.M.A.; Alvalá, R.C.S.; Sampaio, G.; Shimizu, M.H.; Costa, M.H. Calibration and Validation of the Integrated Biosphere Simulator (IBIS) for a Brazilian Semiarid Region. J. Appl. Meteorol. Clim. 2013, 52, 2753–2770. [Google Scholar] [CrossRef]
- Burke, E.J.; Shuttleworth, W.J.; Houser, P.R. Impact of horizontal and vertical heterogeneities on retrievals using multiangle microwave brightness temperature data. IEEE Trans. Geosci. Remote Sens. 2004, 42, 1495–1501. [Google Scholar] [CrossRef]
- Hagedorn, B. Hydrograph separation through multi objective optimization: Revealing the importance of a temporally and spatially constrained baseflow solute source. J. Hydrol. 2020, 590, 125349. [Google Scholar] [CrossRef]
- Kuban, M.; Parajka, J.; Tong, R.; Pfeil, I.; Vreugdenhil, M.; Sleziak, P.; Adam, B.; Szolgay, J.; Kohnová, S.; Hlavcová, K. Incorporating Advanced Scatterometer Surface and Root Zone Soil Moisture Products into the Calibration of a Conceptual Semi-Distributed Hydrological Model. Water 2021, 13, 3366. [Google Scholar] [CrossRef]
- Zitzler, E.; Thiele, L.; Laumanns, M.; Fonseca, C.M.; da Fonseca, V.G. Performance assessment of multiobjective optimizers: An analysis and review. IEEE Trans. Evol. Comput. 2003, 7, 117–132. [Google Scholar] [CrossRef]
- Coello, C.A.C.; Lamont, G.B.; Veldhuizen, D.A.V. Evolutionary Algorithms for Solving Multi-Objective Problems Second Edition; Springer: New York, NY, USA, 2007; pp. 1–800. [Google Scholar]
- Loridan, T.; Grimmond, C.S.B.; Grossman-Clarke, S.; Chen, F.; Tewari, M.; Manning, K.; Martilli, A.; Kusaka, H.; Best, M. Trade-offs and responsiveness of the single-layer urban canopy parametrization in WRF: An offline evaluation using the MOSCEM optimization algorithm and field observations. Q. J. R. Meteorol. Soc. 2010, 136, 997–1019. [Google Scholar] [CrossRef]
- Yapo, P.; Gupta, H.; Sorooshian, S. Multi-objective global optimization for hydrologic models. J. Hydrol. 1998, 204, 83–97. [Google Scholar] [CrossRef]
- Vrugt, J.A.; Gupta, H.V.; Bastidas, L.A.; Bouten, W.; Sorooshian, S. Effective and efficient algorithm for multiobjective optimization of hydrologic models. Water Resour. Res. 2003, 39, 1214. [Google Scholar] [CrossRef]
- Fenicia, F.; Savenije, H.H.G.; Matgen, P.; Pfister, L. A comparison of alternative multiobjective calibration strategies for hydrological modeling. Water Resour. Res. 2007, 43, W03434. [Google Scholar] [CrossRef]
- Deng, L.; Guo, S.; Yin, J.; Zeng, Y.; Chen, K. Multi-objective optimization of water resources allocation in Han River basin (China) integrating efficiency, equity and sustainability. Sci. Rep. 2022, 12, 798. [Google Scholar] [CrossRef] [PubMed]
- Dumedah, G.; Berg, A.A.; Wineberg, M. An Integrated Framework for a Joint Assimilation of Brightness Temperature and Soil Moisture Using the Nondominated Sorting Genetic Algorithm II. J. Hydrometeorol. 2011, 12, 1596–1609. [Google Scholar] [CrossRef]
- Li, M.; Yang, S.; Liu, X. Pareto or Non-Pareto: Bi-Criterion Evolution in Multiobjective Optimization. IEEE Trans. Evol. Comput. 2016, 20, 645–665. [Google Scholar] [CrossRef]
- Liu, Y.; Zhu, N.; Li, K.; Li, M.; Zheng, J.; Li, K. An angle dominance criterion for evolutionary many-objective optimization. Inf. Sci. 2020, 509, 376–399. [Google Scholar] [CrossRef]
- Pool, S.; Vis, M.; Seibert, J. Evaluating model performance: Towards a non-parametric variant of the Kling-Gupta efficiency. Hydrol. Sci. J. 2018, 63, 1941–1953. [Google Scholar] [CrossRef]
- Knoben, W.J.M.; Freer, J.E.; Woods, R.A. Technical note: Inherent benchmark or not? Comparing Nash–Sutcliffe and Kling–Gupta efficiency scores. Hydrol. Earth Syst. Sci. 2019, 23, 4323–4331. [Google Scholar] [CrossRef]
- Vrugt, J.A.; de Oliveira, D.Y. Confidence intervals of the Kling-Gupta efficiency. J. Hydrol. 2022, 612, 127968. [Google Scholar] [CrossRef]
- Mathevet, T.; Le Moine, N.; Andréassian, V.; Gupta, H.; Oudin, L. Multi-objective assessment of hydrological model performances using Nash–Sutcliffe and Kling–Gupta efficiencies on a worldwide large sample of watersheds. Comptes Rendus Geosci. 2023, 355, 117–141. [Google Scholar] [CrossRef]
- Chai, T.; Draxler, R.R. Root mean square error (RMSE) or mean absolute error (MAE)?—Arguments against avoiding RMSE in the literature. Geosci. Model Dev. 2014, 7, 1247–1250. [Google Scholar] [CrossRef]
- Hodson, T.O. Root-mean-square error (RMSE) or mean absolute error (MAE): When to use them or not. Geosci. Model Dev. 2022, 15, 5481–5487. [Google Scholar] [CrossRef]
- Armstrong, R.A. Should Pearson’s correlation coefficient be avoided? Ophthalmic Physiol. Opt. 2019, 39, 316–327. [Google Scholar] [CrossRef]
- Schober, P.; Boer, C.; Schwarte, L.A. Correlation Coefficients: Appropriate Use and Interpretation. Anesth. Analg. 2018, 126, 1763–1768. [Google Scholar] [CrossRef] [PubMed]
- Cheng, C.L.; Shalabh; Garg, G. Coefficient of determination for multiple measurement error models. J. Multivar. Anal. 2014, 126, 137–152. [Google Scholar] [CrossRef]
- Contessi, D.; Recati, A.; Rizzi, M. Phase diagram detection via Gaussian fitting of number probability distribution. Phys. Rev. B 2023, 107, L121403. [Google Scholar] [CrossRef]
- Eberhart, R.C.; Shi, Y. Comparing inertia weights and constriction factors in particle swarm optimization. Proc. IEEE 2000, 1, 84–88. [Google Scholar]
- Clerc, M.; Kennedy, J. The particle swarm—Explosion, stability, and convergence in a multidimensional complex space. IEEE Trans. Evol. Comput. 2002, 6, 58–73. [Google Scholar] [CrossRef]
- Shami, T.M.; El-Saleh, A.A.; Alswaitti, M.; Al-Tashi, Q.; Summakieh, M.A.; Mirjalili, S. Particle Swarm Optimization: A Comprehensive Survey. IEEE Access 2022, 10, 10031–10061. [Google Scholar] [CrossRef]
- Naeini, M.R.; Analui, B.; Gupta, H.V.; Duan, Q.; Sorooshian, S. Three decades of the Shuffled Complex Evolution (SCE-UA) optimization algorithm: Review and applications. Sci. Lranica Transaclions A Civ. Eng. 2019, 26, 2015–2031. [Google Scholar] [CrossRef]
- Deng, Y.; Yang, Q.; Zuo, H.; Li, W. Land Surface Model and Particle Swarm Optimization Algorithm Based on the Model-Optimization Method for Improving Soil Moisture Simulation in a Semi-Arid Region. PLoS ONE 2016, 11, e0151576. [Google Scholar] [CrossRef]
- Yang, Q.; Ling, C.; Du, B.; Wang, L.; Yang, Y. Application of the particle swarm optimization in the land surface model parameters calibration. Plateau Meteorol. 2017, 36, 1060–1071. (In Chinese) [Google Scholar]
- Ketabchi, H.; Ataie-Ashtiani, B. Evolutionary algorithms for the optimal management of coastal groundwater: A comparative study toward future challenges. J. Hydrol. 2015, 520, 193–213. [Google Scholar] [CrossRef]
- Jeon, J.-H.; Park, C.-G.; Engel, B. Comparison of Performance between Genetic Algorithm and SCE-UA for Calibration of SCS-CN Surface Runoff Simulation. Water 2014, 6, 3433–3456. [Google Scholar] [CrossRef]
- Taylor, K.E. Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res. Atmos. 2001, 106, 7183–7192. [Google Scholar] [CrossRef]
- Rodell, M.; Houser, P.R.; Jambor, U.; Gottschalck, J.; Mitchell, K.; Meng, C.; Arsenault, K.; Cosgrove, B.; Radakovich, J.; Bosilovich, M.; et al. The Global Land Data Assimilation System. Bull. Am. Meteorol. Soc. 2004, 85, 381–394. [Google Scholar] [CrossRef]
- Yang, K.; He, J.; Tang, W.; Lu, H.; Qin, J.; Chen, Y.; Li, X. China Meteorological Forcing Dataset (1979–2018). TPDC. 2019. Available online: https://data.tpdc.ac.cn/en/data/8028b944-daaa-4511-8769-965612652c49 (accessed on 30 August 2024).
- Yu, Y.; Pi, Y.; Yu, X.; Ta, Z.; Sun, L.; Disse, M.; Zeng, F.; Li, Y.; Chen, X.; Yu, R. Climate change, water resources and sustainable development in the arid and semi-arid lands of Central Asia in the past 30 years. J. Arid. Land 2018, 11, 1–14. [Google Scholar] [CrossRef]
- Yu, Y.; Chen, X.; Malik, I.; Wistuba, M.; Cao, Y.G.; Hou, D.D.; Ta, Z.J.; He, J.; Zhang, L.Y.; Yu, R.D.; et al. Spatiotemporal changes in water, land use, and ecosystem services in Central Asia considering climate changes and human activities. J. Arid. Land 2021, 13, 881–890. [Google Scholar] [CrossRef]
- Chen, Y.Y.; Yang, K.; Zhou, D.G.; Qin, J.; Guo, X.F. Improving the Noah Land Surface Model in Arid Regions with an Appropriate Parameterization of the Thermal Roughness Length. J. Hydrometeorol. 2010, 11, 995–1006. [Google Scholar] [CrossRef]
- Li, M.; Wu, P.; Ma, Z. A comprehensive evaluation of soil moisture and soil temperature from third-generation atmospheric and land reanalysis data sets. Int. J. Clim. 2020, 40, 5744–5766. [Google Scholar] [CrossRef]
- Min, J.Z.; Che, L.; Guo, Y.K. Testing and application of a land data assimilation system using automatic weather station data. Trans. Atmos. Sci. 2016, 39, 318–328. (In Chinese) [Google Scholar]
- Guo, Y.; Wang, G.; Shen, F.; Min, J. Comparison of two correction schemes on soil moisture assimilation based on the ensemble square root filter. Jiangsu Agric. Sci. 2018, 46, 210–218. (In Chinese) [Google Scholar]
- Li, X.; Liu, F.; Ma, C.; Hou, J.; Zheng, D.; Ma, H.; Bai, Y.; Han, X.; Vereecken, H.; Yang, K.; et al. Land Data Assimilation: Harmonizing Theory and Data in Land Surface Process Studies. Rev. Geophys. 2024, 62, e2022RG000801. [Google Scholar] [CrossRef]
- Bastrikov, V.; MacBean, N.; Bacour, C.; Santaren, D.; Kuppel, S.; Peylin, P. Land surface model parameter optimization using in situ flux data: Comparison of gradient-based versus random search algorithms (a case study using ORCHIDEE v1.9.5.2). Geosci. Model Dev. 2018, 11, 4739–4754. [Google Scholar] [CrossRef]
- Sawada, Y. Machine Learning Accelerates Parameter Optimization and Uncertainty Assessment of a Land Surface Model. J. Geophys. Res. Atmos. 2020, 125, e2020JD032688. [Google Scholar] [CrossRef]
- Yu, Y.; Cao, Y.G.; Hou, D.D.; Disse, M.; Brieden, A.; Zhang, H.Y.; Yu, R.D. The study of artificial intelligence for predicting land use changes in an arid ecosystem. J. Geogr. Sci. 2022, 32, 717–734. [Google Scholar] [CrossRef]
Metric | Reference Formula * | Direction, Optima | |
---|---|---|---|
CCS | Correlation coefficients [58] | ||
EKGE | Enhanced Kling–Gupta efficiency [9] | ||
EMO | Enhanced multiple objectives | ||
MAES | Mean absolute errors [57] | ||
NSES | Nash–Sutcliffe efficiencies [55] | ||
PKGE | Pareto-dominant KGE | ||
PMO | Pareto-dominant MO | ||
RMSES | Root mean square errors [56] |
Metrics | Vegetation (Hp, Hs) * | Soil (Hp, Hs) | General (Hp, Hs) | Initial (Hp, Hs) |
---|---|---|---|---|
CCS | 0, | 0, | 1, | 0, 1 |
EKGE | 0, 0 | 1, 3 | 2, 2 | 4, 2 |
EMO | 0, 0 | 2, 2 | 2, 2 | 3, 2 |
MAES | 0, 0 | 1, 1 | 1, 1 | 2, 1 |
NSES | 0, 0 | 0, 0 | 0, 0 | 2, 0 |
PKGE | 0, 0 | 0, 0 | 0, 0 | 0, 0 |
PMO | 0,0 | 0, 0 | 0, 0 | 0, 0 |
RMSES | 0, 0 | 2, 1 | 1, 1 | 2, 0 |
Metrics | Vegetation (PNL, ONR) * | Soil (PNL, ONR) | General (PNL, ONR) | Initial (PNL, ONR) |
---|---|---|---|---|
CCS | NA, −2 | NA, −1 | 1, −2 | NA, −1 |
EKGE | 2, −1 | 2, 2 | 2, 1 | 2, 1 |
EMO | NA, −1 | 3, 3 | 3, 2 | 1, 5 |
MAES | NA, −5 | 2, −1 | 3, 0 | NA, 2 |
NSES | NA, −5 | NA, −1 | NA, −2 | NA, 2 |
PKGE | NA, −1 | NA, −2 | NA, −2 | NA, −4 |
PMO | NA, 0 | 1, 3 | NA, −1 | NA, 0 |
RMSES | NA, −3 | 4, 4 | 3, 1 | NA, 1 |
Metrics | (s, r2) * | (s, r2) | (s, r2) | (s, r2) |
---|---|---|---|---|
CCS | 0.29, 0.11 | 0.03, 0.01 | 0, 0 | 0.1, 0.01 |
EKGE | 0.91, 0.9 | 0.73, 0.75 | 0.18, 0.03 | 0.23, 0.05 |
EMO | 0.96, 0.92 | 0.83, 0.84 | 0.14, 0.1 | 0.11, 0.04 |
MAES | 0.76, 0.6 | 0.44, 0.55 | 0.13, 0.05 | 0.06, 0.01 |
NSES | 0.57, 0.39 | 0.25, 0.2 | −0.41, 0.05 | −0.44, 0.08 |
PKGE | 0.19, 0.04 | 0.26, 0.11 | −0.57, 0.1 | −0.56, 0.11 |
PMO | 0.68, 0.31 | 0.74, 0.48 | −0.63, 0.11 | −0.51, 0.09 |
RMSES | 0.77, 0.57 | 0.16, 0.13 | 0.12, 0.05 | 0.09, 0.02 |
Metrics | (f, c) * | (f, c) | (f, c) | (f, c) |
---|---|---|---|---|
CCS | 350, −0.04 | 295, 0.11 | 216, 2.13 | 167, 1.07 |
EKGE | 1276, 0 | 608, 0 | 142, 4.37 | 204, 2.48 |
EMO | 1178, 0 | 386, 0.01 | 170, 0.85 | 206, 1.23 |
MAES | 344, 0.01 | 416, 0.02 | 200, −0.06 | 230, 0.88 |
NSES | 274, 0.05 | 230, 0.05 | 169, 5.86 | 213, 5.03 |
PKGE | 322, 0.08 | 325, 0.11 | 237, 4.91 | 152, 5.01 |
PMO | 480, 0.02 | 444, 0.03 | 300, 6.10 | 224, 5.19 |
RMSES | 426, −0.02 | 296, 0 | 200, 0.16 | 206, 1.29 |
Metrics | (s, r2) * | (s, r2) | (s, r2) | (s, r2) |
---|---|---|---|---|
CCS | −0.32, 0.08 | −0.07, 0.02 | 0.04, 0 | 0.15, 0.04 |
EKGE | 0.98, 0.84 | 0.84, 0.84 | 0.04, 0.01 | 0.1, 0.04 |
EMO | 0.96, 0.78 | 0.86, 0.82 | 0.09, 0.08 | 0.1, 0.07 |
MAES | 0.83, 0.58 | 0.42, 0.37 | 0.14, 0.07 | 0.15, 0.07 |
NSES | 0.75, 0.45 | 0.31, 0.27 | −0.45, 0.07 | −0.33, 0.05 |
PKGE | −0.04, 0 | −0.21, 0.14 | −0.53, 0.1 | −0.54, 0.1 |
PMO | 0.52, 0.30 | 0.46, 0.31 | −0.58, 0.11 | −0.46, 0.09 |
RMSES | 0.77, 0.56 | 0.16, 0.08 | 0.13, 0.08 | 0.14, 0.09 |
Metrics | (f, c) * | (f, c) | (f, c) | (f, c) |
---|---|---|---|---|
CCS | 189, 0.15 | 225, 0.07 | 187, 3.2 | 181, −0.38 |
EKGE | 383, 0 | 363, 0 | 143, −0.09 | 189, 3.39 |
EMO | 416, 0 | 359, 0 | 175, −1.41 | 148, −0.98 |
MAES | 359, −0.01 | 284, 0 | 181, 0.49 | 206, 0.29 |
NSES | 343, 0.06 | 322, 0.05 | 204, 5.81 | 210, 4.56 |
PKGE | 234, 0.13 | 365, 0.06 | 214, 4.9 | 217, 5.69 |
PMO | 367, 0.01 | 323, 0.04 | 221, 6.17 | 187, 5.47 |
RMSES | 293, −0.02 | 326, 0.01 | 194, 0.55 | 198, 0.32 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, Y.; Shao, C.; Niu, G.; Xu, D.; Gao, Y.; Yuan, B. Calibration for Improving the Medium-Range Soil Forecast over Central Tibet: Effects of Objective Metrics’ Diversity. Atmosphere 2024, 15, 1107. https://doi.org/10.3390/atmos15091107
Guo Y, Shao C, Niu G, Xu D, Gao Y, Yuan B. Calibration for Improving the Medium-Range Soil Forecast over Central Tibet: Effects of Objective Metrics’ Diversity. Atmosphere. 2024; 15(9):1107. https://doi.org/10.3390/atmos15091107
Chicago/Turabian StyleGuo, Yakai, Changliang Shao, Guanjun Niu, Dongmei Xu, Yong Gao, and Baojun Yuan. 2024. "Calibration for Improving the Medium-Range Soil Forecast over Central Tibet: Effects of Objective Metrics’ Diversity" Atmosphere 15, no. 9: 1107. https://doi.org/10.3390/atmos15091107
APA StyleGuo, Y., Shao, C., Niu, G., Xu, D., Gao, Y., & Yuan, B. (2024). Calibration for Improving the Medium-Range Soil Forecast over Central Tibet: Effects of Objective Metrics’ Diversity. Atmosphere, 15(9), 1107. https://doi.org/10.3390/atmos15091107