Climate Warming Has Contributed to the Rise of Timberlines on the Eastern Tibetan Plateau but Slowed in Recent Years
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.2.1. Landsat Satellite Imagery
2.2.2. Annual NDVI
Category | Data | Sources | Spatial Resolution |
---|---|---|---|
Satellite Imagery | LANDSAT/LT05/C02/T1_L2/LT05_131039_20001007 | Google Earth Engine https://developers.google.com/earth-engine/datasets/catalog/landsat accessed on 7 October 2023 | 30 m × 30 m |
LANDSAT/LT05/C02/T1_L2/LT05_131039_20070301 | |||
LANDSAT/LC08/C02/T1_L2/LC08_131039_20141201 | |||
LANDSAT/LC08/C02/T1_L2/LC08_131039_20211001 | |||
Annual NDVI | MOD13Q1 | Google Earth Engine https://developers.google.com/earth-engine/datasets/catalog/MODIS_061_MOD13Q1 accessed on 13 November 2023 | 250 m × 250 m |
Elevation | ASTER GDEMV3 | Geospatial Data Cloud https://www.gscloud.cn/ accessed on 25 November 2023 | 30 m × 30 m |
Climate | Maximum temperature | National Tibetan Plateau Data Center https://data.tpdc.ac.cn/ accessed on 25 November 2023 | 1000 m × 1000 m |
Mean temperature | |||
Minimum temperature | |||
Precipitation |
2.2.3. Elevation
2.2.4. Climate
2.3. Data Processing and Analysis
2.3.1. Timberline Extraction
2.3.2. Timberline Vegetation Change
2.4. Data Analysis and Visualization
3. Results
3.1. Timberline Climate Change
3.2. Timberline Elevation and Vegetation Changes
3.2.1. Timberline Extraction Results
3.2.2. Timberline Elevation Change
3.2.3. Timberline NDVI Change
3.3. Impacts of Climate Change on Timberline Vegetation
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, Y.; Liang, E.; Lu, X.; Camarero, J.J.; Babst, F.; Shen, M.; Peñuelas, J. Warming-induced shrubline advance stalled by moisture limitation on the Tibetan Plateau. Ecography 2021, 44, 1631–1641. [Google Scholar] [CrossRef]
- Guo, M.; Zhang, Y.; Wang, X.; Gu, F.; Liu, S. The responses of dominant tree species to climate warming at the treeline on the eastern edge of the Tibetan Plateau. For. Ecol. Manag. 2018, 425, 21–26. [Google Scholar] [CrossRef]
- Zhou, T.; Zhang, W. Anthropogenic warming of Tibetan Plateau and constrained future projection. Environ. Res. Lett. 2021, 16, 044039. [Google Scholar] [CrossRef]
- Kummel, M.; McGarigal, A.; Kummel, M.; Earnest, C.; Feiden, M. Tree establishment and growth drive treeline advance and change treeline form on Pikes Peak (Colorado) in response to recent anthropogenic warming. Can. J. For. Res. 2021, 51, 1458–1471. [Google Scholar] [CrossRef]
- Hansson, A.; Dargusch, P.; Shulmeister, J. A review of modern treeline migration, the factors controlling it and the implications for carbon storage. J. Mt. Sci. 2021, 18, 291–306. [Google Scholar] [CrossRef]
- Camarero, J.J.; Gazol, A.; Sanchez-Salguero, R.; Fajardo, A.; McIntire, E.J.B.; Gutierrez, E.; Batllori, E.; Boudreau, S.; Carrer, M.; Diez, J.; et al. Global fading of the temperature-growth coupling at alpine and polar treelines. Glob. Chang. Biol. 2021, 27, 1879–1889. [Google Scholar] [CrossRef]
- Lu, X.; Liang, E.; Wang, Y.; Babst, F.; Camarero, J.J.; Grytnes, J.A. Mountain treelines climb slowly despite rapid climate warming. Glob. Ecol. Biogeogr. 2020, 30, 305–315. [Google Scholar] [CrossRef]
- Lyu, L.; Zhang, Q.-B.; Pellatt, M.G.; Büntgen, U.; Li, M.-H.; Cherubini, P. Drought limitation on tree growth at the Northern Hemisphere’s highest tree line. Dendrochronologia 2019, 53, 40–47. [Google Scholar] [CrossRef]
- Singh, S.P.; Sharma, S.; Dhyani, P.P. Himalayan arc and treeline: Distribution, climate change responses and ecosystem properties. Biodivers. Conserv. 2019, 28, 1997–2016. [Google Scholar] [CrossRef]
- Liang, E.; Wang, Y.; Piao, S.; Lu, X.; Camarero, J.J.; Zhu, H.; Zhu, L.; Ellison, A.M.; Ciais, P.; Penuelas, J. Species interactions slow warming-induced upward shifts of treelines on the Tibetan Plateau. Proc. Natl. Acad. Sci. USA 2016, 113, 4380–4385. [Google Scholar] [CrossRef]
- Korner, C. ‘Fading of the temperature-growth coupling’ in treeline trees reflects a conceptual bias. Glob. Chang. Biol. 2021, 27, 3951–3952. [Google Scholar] [CrossRef] [PubMed]
- Franke, A.K.; Feilhauer, H.; Bräuning, A.; Rautio, P.; Braun, M. Remotely sensed estimation of vegetation shifts in the polar and alpine tree-line ecotone in Finnish Lapland during the last three decades. For. Ecol. Manag. 2019, 454, 117668. [Google Scholar] [CrossRef]
- Dial, R.J.; Smeltz, T.S.; Sullivan, P.F.; Rinas, C.L.; Timm, K.; Geck, J.E.; Tobin, S.C.; Golden, T.S.; Berg, E.C. Shrubline but not treeline advance matches climate velocity in montane ecosystems of south-central Alaska. Glob. Chang. Biol. 2016, 22, 1841–1856. [Google Scholar] [CrossRef]
- Guo, D.; Yu, E.; Wang, H. Will the Tibetan Plateau warming depend on elevation in the future? J. Geophys. Res. Atmos. 2016, 121, 3969–3978. [Google Scholar] [CrossRef]
- Liu, B.; Li, Y.; Eckstein, D.; Zhu, L.; Dawadi, B.; Liang, E. Has an extending growing season any effect on the radial growth of Smith fir at the timberline on the southeastern Tibetan Plateau? Trees 2012, 27, 441–446. [Google Scholar] [CrossRef]
- Yang, L.; Cui, G.; Zhao, W.; Zhang, Z.; Luo, T.; Zhang, L. Sensitivity of radial growth of subalpine conifer trees to climate warming on the southeastern Tibetan Plateau. Glob. Ecol. Conserv. 2023, 43, e02470. [Google Scholar] [CrossRef]
- Qin, L.; Liu, K.; Shang, H.; Zhang, T.; Yu, S.; Zhang, R. Minimum temperature during the growing season limits the radial growth of timberline Schrenk spruce (P. schrenkiana). Agric. For. Meteorol. 2022, 322, 109004. [Google Scholar] [CrossRef]
- Zheng, L.; Shi, P.; Zhou, T.; Hou, G.; Song, M.; Yu, F. Tree Regeneration Patterns on Contrasting Slopes at Treeline Ecotones in Eastern Tibet. Forests 2021, 12, 1605. [Google Scholar] [CrossRef]
- Myers-Smith, I.H.; Hik, D.S. Climate warming as a driver of tundra shrubline advance. J. Ecol. 2018, 106, 547–560. [Google Scholar] [CrossRef]
- He, W.; Ye, C.; Sun, J.; Xiong, J.; Wang, J.; Zhou, T. Dynamics and Drivers of the Alpine Timberline on Gongga Mountain of Tibetan Plateau-Adopted from the Otsu Method on Google Earth Engine. Remote Sens. 2020, 12, 2651. [Google Scholar] [CrossRef]
- Xu, D.; Geng, Q.; Jin, C.; Xu, Z.; Xu, X. Tree Line Identification and Dynamics under Climate Change in Wuyishan National Park Based on Landsat Images. Remote Sens. 2020, 12, 2890. [Google Scholar] [CrossRef]
- Ye, P.; Yu, B.; Chen, W.; Liu, K.; Ye, L. Rainfall-induced landslide susceptibility mapping using machine learning algorithms and comparison of their performance in Hilly area of Fujian Province, China. Nat. Hazards 2022, 113, 965–995. [Google Scholar] [CrossRef]
- Arekhi, M.; Yesil, A.; Ozkan, U.Y.; Balik Sanli, F. Detecting treeline dynamics in response to climate warming using forest stand maps and Landsat data in a temperate forest. For. Ecosyst. 2018, 5, 23. [Google Scholar] [CrossRef]
- Ma, X.; Bai, H.; Deng, C.; Wu, T. Sensitivity of Vegetation on Alpine and Subalpine Timberline in Qinling Mountains to Temperature Change. Forests 2019, 10, 1105. [Google Scholar] [CrossRef]
- Wang, Y.; Shen, X.; Tong, S.; Zhang, M.; Jiang, M.; Lu, X. Aboveground Biomass of Wetland Vegetation Under Climate Change in the Western Songnen Plain. Front. Plant Sci. 2022, 13, 941689. [Google Scholar] [CrossRef] [PubMed]
- Meng, X.; Gao, X.; Li, S.; Lei, J. Spatial and Temporal Characteristics of Vegetation NDVI Changes and the Driving Forces in Mongolia during 1982–2015. Remote Sens. 2020, 12, 603. [Google Scholar] [CrossRef]
- Ruan, Z.; Kuang, Y.; He, Y.; Zhen, W.; Ding, S. Detecting Vegetation Change in the Pearl River Delta Region Based on Time Series Segmentation and Residual Trend Analysis (TSS-RESTREND) and MODIS NDVI. Remote Sens. 2020, 12, 4049. [Google Scholar] [CrossRef]
- Kern, A.; Marjanović, H.; Barcza, Z. Spring vegetation green-up dynamics in Central Europe based on 20-year long MODIS NDVI data. Agric. For. Meteorol. 2020, 287, 107969. [Google Scholar] [CrossRef]
- Feng, Y.; Shi, S.; Peng, P.; Zhou, Q.; Wang, H.; Liu, X. Lengthening of the growth season, not increased water availability, increased growth of Picea likiangensis var. rubescens plantations on eastern Tibetan Plateau due to climate change. Web Ecol. 2022, 22, 47–58. [Google Scholar] [CrossRef]
- Peng, S. 1-km Monthly Maximum Temperature Dataset for China (1901–2021). National Tibetan Plateau Data Center [Dataset]. 2020. Available online: https://zenodo.org/records/3114194 (accessed on 25 November 2023).
- Peng, S. 1-km Monthly Mean Temperature Dataset for China (1901–2021). National Tibetan Plateau Data Center [Dataset]. 2020. Available online: https://data.tpdc.ac.cn/en/data/71ab4677-b66c-4fd1-a004-b2a541c4d5bf/ (accessed on 25 November 2023).
- Peng, S. 1-km Monthly Minimum Temperature Dataset for China (1901–2021). National Tibetan Plateau Data Center [Dataset]. 2020. Available online: https://zenodo.org/records/3114194 (accessed on 25 November 2023).
- Peng, S. 1-km Monthly Precipitation Dataset for China (1901–2021). National Tibetan Plateau Data Center [Dataset]. 2020. Available online: https://zenodo.org/records/3185722 (accessed on 25 November 2023).
- He, J.; Shi, X.; Fu, Y. Identifying vegetation restoration effectiveness and driving factors on different micro-topographic types of hilly Loess Plateau: From the perspective of ecological resilience. J. Environ. Manag. 2021, 289, 112562. [Google Scholar] [CrossRef]
- Feng, Y.; Wang, J.; Zhou, Q.; Bai, M.; Peng, P.; Zhao, D.; Guan, Z.; Liu, X. Quantitative analysis of vegetation restoration and potential driving factors in a typical subalpine region of the Eastern Tibet Plateau. PeerJ 2022, 10, e13358. [Google Scholar] [CrossRef] [PubMed]
- Dai, L.; Ke, X.; Guo, X.; Du, Y.; Zhang, F.; Li, Y.; Li, Q.; Lin, L.; Peng, C.; Shu, K.; et al. Responses of biomass allocation across two vegetation types to climate fluctuations in the northern Qinghai-Tibet Plateau. Ecol. Evol. 2019, 9, 6105–6115. [Google Scholar] [CrossRef]
- Gao, Y.; Zhou, X.; Wang, Q.; Wang, C.; Zhan, Z.; Chen, L.; Yan, J.; Qu, R. Vegetation net primary productivity and its response to climate change during 2001-2008 in the Tibetan Plateau. Sci. Total Environ. 2013, 444, 356–362. [Google Scholar] [CrossRef]
- Zhang, Z.; Chang, J.; Xu, C.Y.; Zhou, Y.; Wu, Y.; Chen, X.; Jiang, S.; Duan, Z. The response of lake area and vegetation cover variations to climate change over the Qinghai-Tibetan Plateau during the past 30 years. Sci. Total Environ. 2018, 635, 443–451. [Google Scholar] [CrossRef] [PubMed]
- Sakio, H.; Masuzawa, T. Advancing Timberline on Mt. Fuji between 1978 and 2018. Plants 2020, 9, e1537. [Google Scholar] [CrossRef] [PubMed]
- Maher, C.T.; Dial, R.J.; Pastick, N.J.; Hewitt, R.E.; Jorgenson, M.T.; Sullivan, P.F. The climate envelope of Alaska’s northern treelines: Implications for controlling factors and future treeline advance. Ecography 2021, 44, 1710–1722. [Google Scholar] [CrossRef]
- Srur, A.M.; Villalba, R.; Rodríguez-Catón, M.; Amoroso, M.M.; Marcotti, E. Climate and Nothofagus pumilio Establishment at Upper Treelines in the Patagonian Andes. Front. Earth Sci. 2018, 6, 57. [Google Scholar] [CrossRef]
- Dolezal, J.; Kurnotova, M.; Stastna, P.; Klimesova, J. Alpine plant growth and reproduction dynamics in a warmer world. New Phytol. 2020, 228, 1295–1305. [Google Scholar] [CrossRef] [PubMed]
- Urza, A.K.; Weisberg, P.J.; Dilts, T. Evidence of widespread topoclimatic limitation for lower treelines of the Intermountain West, United States. Ecol. Appl. 2020, 30, e02158. [Google Scholar] [CrossRef]
- Conlisk, E.; Castanha, C.; Germino, M.J.; Veblen, T.T.; Smith, J.M.; Kueppers, L.M.; Matlack, G. Declines in low-elevation subalpine tree populations outpace growth in high-elevation populations with warming. J. Ecol. 2017, 105, 1347–1357. [Google Scholar] [CrossRef]
- Shen, X.; Liu, B.; Jiang, M.; Wang, Y.; Wang, L.; Zhang, J.; Lu, X. Spatiotemporal Change of Marsh Vegetation and Its Response to Climate Change in China From 2000 to 2019. J. Geophys. Res. Biogeosci. 2021, 126, e2020JG006154. [Google Scholar] [CrossRef]
- Ge, W.; Deng, L.; Wang, F.; Han, J. Quantifying the contributions of human activities and climate change to vegetation net primary productivity dynamics in China from 2001 to 2016. Sci. Total Environ. 2021, 773, 145648. [Google Scholar] [CrossRef] [PubMed]
- Luo, Z.; Wu, W.; Yu, X.; Song, Q.; Yang, J.; Wu, J.; Zhang, H. Variation of Net Primary Production and Its Correlation with Climate Change and Anthropogenic Activities over the Tibetan Plateau. Remote Sens. 2018, 10, 1352. [Google Scholar] [CrossRef]
- Li, X.; Xiao, J.; He, B. Higher absorbed solar radiation partly offset the negative effects of water stress on the photosynthesis of Amazon forests during the 2015 drought. Environ. Res. Lett. 2018, 13, 044005. [Google Scholar] [CrossRef]
- Zhao, A.; Wang, D.; Xiang, K.; Zhang, A. Vegetation photosynthesis changes and response to water constraints in the Yangtze River and Yellow River Basin, China. Ecol. Indic. 2022, 143, 109331. [Google Scholar] [CrossRef]
- Sankey, T.; Belmonte, A.; Massey, R.; Leonard, J.; Disney, M.; Armenteras, D. Regional-scale forest restoration effects on ecosystem resiliency to drought: A synthesis of vegetation and moisture trends on Google Earth Engine. Remote Sens. Ecol. Conserv. 2020, 7, 259–274. [Google Scholar] [CrossRef]
- Keyimu, M.; Li, Z.; Liu, G.; Fu, B.; Fan, Z.; Wang, X.; Wu, X.; Zhang, Y.; Halik, U. Tree-ring based minimum temperature reconstruction on the southeastern Tibetan Plateau. Quat. Sci. Rev. 2021, 251, 106712. [Google Scholar] [CrossRef]
- Zindros, A.; Radoglou, K.; Milios, E.; Kitikidou, K. Tree Line Shift in the Olympus Mountain (Greece) and Climate Change. Forests 2020, 11, 985. [Google Scholar] [CrossRef]
Year | Altitude (m) | Standard Deviation | Shift (m) | Shift Rate (m/Year) |
---|---|---|---|---|
2000 | 4224.20 | 116.49 | / | / |
2007 | 4247.07 | 95.75 | +22.87 | +2.86 |
2014 | 4270.30 | 89.86 | +23.23 | +2.90 |
2021 | 4273.03 | 89.39 | +2.73 | +0.34 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, X.; Feng, Y.; Zang, H.; Zhao, D.; Zhang, S.; Cai, Z.; Wang, J.; Peng, P. Climate Warming Has Contributed to the Rise of Timberlines on the Eastern Tibetan Plateau but Slowed in Recent Years. Atmosphere 2024, 15, 1083. https://doi.org/10.3390/atmos15091083
Peng X, Feng Y, Zang H, Zhao D, Zhang S, Cai Z, Wang J, Peng P. Climate Warming Has Contributed to the Rise of Timberlines on the Eastern Tibetan Plateau but Slowed in Recent Years. Atmosphere. 2024; 15(9):1083. https://doi.org/10.3390/atmos15091083
Chicago/Turabian StylePeng, Xuefeng, Yu Feng, Han Zang, Dan Zhao, Shiqi Zhang, Ziang Cai, Juan Wang, and Peihao Peng. 2024. "Climate Warming Has Contributed to the Rise of Timberlines on the Eastern Tibetan Plateau but Slowed in Recent Years" Atmosphere 15, no. 9: 1083. https://doi.org/10.3390/atmos15091083
APA StylePeng, X., Feng, Y., Zang, H., Zhao, D., Zhang, S., Cai, Z., Wang, J., & Peng, P. (2024). Climate Warming Has Contributed to the Rise of Timberlines on the Eastern Tibetan Plateau but Slowed in Recent Years. Atmosphere, 15(9), 1083. https://doi.org/10.3390/atmos15091083