Quantification of Polycyclic Aromatic Hydrocarbons (PAHs) in Various Fruit Types: A Comparative Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Sample Collection
2.3. Sample Pre-Treatment
2.4. Extraction Methodology Investigation
2.4.1. UVA-DLLME Procedure
2.4.2. SLE Procedure
2.5. GC-FID Conditions
2.6. Gas Chromatography Ion Trap Mass Spectrometry Analysis (GC-IT/MS)
3. Results and Discussion
3.1. Application to Real Samples
3.2. Fruit Contamination in Urban and Rural Areas
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Di Fiore, C.; De Cristofaro, A.; Nuzzo, A.; Notardonato, I.; Ganassi, S.; Iafigliola, L.; Sardella, G.; Ciccone, M.; Nugnes, D.; Passarella, S.; et al. Biomonitoring of Polycyclic Aromatic Hydrocarbons, Heavy Metals, and Plasticizers Residues: Role of Bees and Honey as Bioindicators of Environmental Contamination. Environ. Sci. Pollut. Res. 2023, 30, 44234–44250. [Google Scholar] [CrossRef] [PubMed]
- Jia, J.; Bi, C.; Zhang, J.; Chen, Z. Atmospheric Deposition and Vegetable Uptake of Polycyclic Aromatic Hydrocarbons (PAHs) Based on Experimental and Computational Simulations. Atmos. Environ. 2019, 204, 135–141. [Google Scholar] [CrossRef]
- Paris, A.; Ledauphin, J.; Poinot, P.; Gaillard, J.-L. Polycyclic Aromatic Hydrocarbons in Fruits and Vegetables: Origin, Analysis, and Occurrence. Environ. Pollut. 2018, 234, 96–106. [Google Scholar] [CrossRef] [PubMed]
- Bansal, V.; Kim, K.-H. Review of PAH Contamination in Food Products and Their Health Hazards. Environ. Int. 2015, 84, 26–38. [Google Scholar] [CrossRef]
- Zelinkova, Z.; Wenzl, T. The Occurrence of 16 EPA PAHs in Food—A Review. Polycycl. Aromat. Compd. 2015, 35, 248–284. [Google Scholar] [CrossRef]
- Naghashan, M.; Kargarghomsheh, P.; Nazari, R.R.; Mehraie, A.; Tooryan, F.; Shariatifar, N. Risk Assessment of PAHs in Fruit Juice Samples Marketed in City of Tehran, Iran. Environ. Sci. Pollut. Res. 2022, 30, 20077–20088. [Google Scholar] [CrossRef]
- Samsøe-Petersen, L.; Larsen, E.H.; Larsen, P.B.; Bruun, P. Uptake of Trace Elements and PAHs by Fruit and Vegetables from Contaminated Soils. Environ. Sci. Technol. 2002, 36, 3057–3063. [Google Scholar] [CrossRef]
- Ashraf, M.W.; Salam, A. Polycyclic Aromatic Hydrocarbons (PAHs) in Vegetables and Fruits Produced in Saudi Arabia. Bull. Environ. Contam. Toxicol. 2012, 88, 543–547. [Google Scholar] [CrossRef]
- Rojo Camargo, M.C.; Toledo, M.C.F. Polycyclic Aromatic Hydrocarbons in Brazilian Vegetables and Fruits. Food Control 2003, 14, 49–53. [Google Scholar] [CrossRef]
- Lee, Y.-N.; Lee, S.; Kim, J.-S.; Kumar Patra, J.; Shin, H.-S. Chemical Analysis Techniques and Investigation of Polycyclic Aromatic Hydrocarbons in Fruit, Vegetables and Meats and Their Products. Food Chem. 2019, 277, 156–161. [Google Scholar] [CrossRef]
- Al-Farhan, B.S.; Said, T.O.; El-Ghamdi, S.A.; Al-Alamie, A.Y. Distribution and Health Risk Assessment on Dietary Exposure of PAHs in Vegetables and Fruits of Asir, Saudi Arabia. Waste Manag. Bull. 2023, 1, 94–102. [Google Scholar] [CrossRef]
- Abdou, A.A.L.G.; Al Touby, S.S.J.; Hossain, M.A. Polycyclic Aromatic Hydrocarbons in Different Highly Consumes Local and Imported Fruits. Green Energy Environ. Technol. 2024. [Google Scholar]
- Khalili, F.; Shariatifar, N.; Dehghani, M.H.; Yaghmaeian, K.; Nodehi, R.N.; Yaseri, M. The analysis and probabilistic health risk assessment of PAHs in vegetables and fruits samples marketed Terhan Chemiometric. Glob. NEST J. 2021, 23, 497–508. [Google Scholar]
- Ianiri, G.; Di Fiore, C.; Passarella, S.; Notardonato, I.; Iannone, A.; Carriera, F.; Stillittano, V.; De Felice, V.; Russo, M.V.; Avino, P. Methodology for Determining Phthalate Residues by Ultrasound–Vortex-Assisted Dispersive Liquid–Liquid Microextraction and GC-IT/MS in Hot Drink Samples by Vending Machines. Analytica 2022, 3, 213–227. [Google Scholar] [CrossRef]
- Notardonato, I.; Passarella, S.; Ianiri, G.; Di Fiore, C.; Russo, M.V.; Avino, P. Analytical Scheme for Simultaneous Determination of Phthalates and Bisphenol A in Honey Samples Based on Dispersive Liquid–Liquid Microextraction Followed by GC-IT/MS. Effect of the Thermal Stress on PAE/BP-A Levels. MPs 2020, 3, 23. [Google Scholar] [CrossRef]
- Petrarca, M.H.; Vicente, E.; Amelia Verdiani Tfouni, S. Single-Run Gas Chromatography-Mass Spectrometry Method for the Analysis of Phthalates, Polycyclic Aromatic Hydrocarbons, and Pesticide Residues in Infant Formula Based on Dispersive Microextraction Techniques. Microchem. J. 2024, 197, 109824. [Google Scholar] [CrossRef]
- Faridi, A.; Nemati, M. Determination of Benzo(α)Pyrene in Infant Formula Using High Performance Liquid Chromatography and Dispersive Liquid–Liquid Microextraction. Pharm. Sci. 2023, 29, 246–251. [Google Scholar] [CrossRef]
- Zhao, X.; Fu, L.; Hu, J.; Li, J.; Wang, H.; Huang, C.; Wang, X. Analysis of PAHs in Water and Fruit Juice Samples by DLLME Combined with LC-Fluorescence Detection. Chroma 2009, 69, 1385–1389. [Google Scholar] [CrossRef]
- Pérez, R.A.; Albero, B. Ultrasound-assisted extraction methods for the determination of organic contaminants in solid and liquid samples. Trends Anal. Chem. 2023, 166, 117204. [Google Scholar] [CrossRef]
- Quigley, A.; Cummins, W.; Connolly, D. Dispersive Liquid-Liquid Microextraction in the Analysis of Milk and Dairy Products: A Review. J. Chem. 2016, 2016, 4040165. [Google Scholar] [CrossRef]
- Hubert, P.; Nguyen-Huu, J.-J.; Boulanger, B.; Chapuzet, E.; Chiap, P.; Cohen, N.; Compagnon, P.-A.; Dewé, W.; Feinberg, M.; Lallier, M.; et al. Harmonization of Strategies for the Validation of Quantitative Analytical Procedures. J. Pharm. Biomed. Anal. 2004, 36, 579–586. [Google Scholar] [CrossRef] [PubMed]
- Thiombane, M.; Albanese, S.; Di Bonito, M.; Lima, A.; Zuzolo, D.; Rolandi, R.; Qi, S.; De Vivo, B. Source Patterns and Contamination Level of Polycyclic Aromatic Hydrocarbons (PAHs) in Urban and Rural Areas of Southern Italian Soils. Environ. Geochem. Health 2019, 41, 507–528. [Google Scholar] [CrossRef] [PubMed]
- Soceanu, A.; Dobrinas, S.; Stanciu, G.; Popescu, V. Polycyclic aromatic hydrocarbons in vegetables grown in urban and rural areas. Environ. Eng. Manag. J. 2014, 9, 2311–2315. [Google Scholar]
- Zhou, R.; Yang, R.; Jing, C. Polycyclic Aromatic Hydrocarbons in Soils and Lichen from the Western Tibetan Plateau: Concentration Profiles, Distribution and Its Influencing Factors. Ecotoxicol. Environ. Saf. 2018, 152, 151–158. [Google Scholar] [CrossRef] [PubMed]
- Davidson, D.A.; Wilkinson, A.C.; Blais, J.M.; Kimpe, L.E.; McDonald, K.M.; Schindler, D.W. Orographic Cold-Trapping of Persistent Organic Pollutants by Vegetation in Mountains of Western Canada. Environ. Sci. Technol. 2003, 37, 209–215. [Google Scholar] [CrossRef]
- Ravindra, K.; Sokhi, R.; Vangrieken, R. Atmospheric Polycyclic Aromatic Hydrocarbons: Source Attribution, Emission Factors and Regulation. Atmos. Environ. 2008, 42, 2895–2921. [Google Scholar] [CrossRef]
PAH | SLE (% R) | UVA-DLLME (% R) | ||||
---|---|---|---|---|---|---|
Sample 1 | Apple | Pear | Grape | Apple | Pear | Grape |
Acy | 37.1 ± 2.6 | 36.2 ± 4.3 | 35.1 ± 3.3 | 68.0 ± 1.2 | 69.1 ± 0.9 | 70.2 ± 0.5 |
Ace | 37.1 ± 1.9 | 32.5 ± 3.1 | 31.2 ± 3.1 | 68.4 ± 0.5 | 67.4 ± 1.2 | 69.1 ± 0.4 |
Fla | 75.5 ± 4.0 | 68.1 ± 3.8 | 66.2 ± 4.3 | 78.4 ± 0.6 | 80.0 ± 1.2 | 79.1 ± 0.5 |
Fle | 57.4 ± 3.2 | 53.1 ± 2.6 | 50.2 ± 2.3 | 87.4 ± 1.3 | 88.5 ± 1.4 | 89.1 ± 0.3 |
B[a]P | 65.8 ± 2.1 | 64.1 ± 3.2 | 61.2 ± 3.5 | 67.2 ± 1.3 | 68.3 ± 1.2 | 69.8 ± 1.2 |
B[b]P | 71.2 ± 2.1 | 70.1 ± 2.3 | 72.2 ± 4.1 | 78.4 ± 0.5 | 79.1 ± 0.2 | 80.1 ± 0.2 |
Ph | 75.3 ± 2.3 | 72.1 ± 3.6 | 72.3 ± 3.1 | 96.2 ± 0.8 | 98.0 ± 0.4 | 98.3 ± 1.3 |
Py | 73.6 ± 3.4 | 72.1 ± 2.5 | 70.2 ± 3.3 | 78.4 ± 0.3 | 80.1 ± 0.7 | 79.7 ± 1.2 |
PAH | R2 | LOD | LOQ | % R a | Intra-Day (1) b | Intra-Day (2) b | Inter-Day c | RDS (%) d |
---|---|---|---|---|---|---|---|---|
Acy | 0.9934 | 0.12 | 0.27 | 68.0 ± 1.2 | 66.3 ± 2.2 | 65.2 ± 3.2 | 65.6 ± 5.6 | 0.8 |
Ace | 0.9924 | 0.09 | 0.21 | 68.4 ± 0.5 | 67.2 ± 1.5 | 65.3 ± 3.5 | 66.7 ± 4.5 | 1.5 |
Fla | 0.9945 | 0.06 | 0.26 | 78.4 ± 0.6 | 75.4 ± 1.3 | 76.2 ± 3.4 | 76.0 ± 4.4 | 0.6 |
Fle | 0.9914 | 0.08 | 0.14 | 87.4 ± 1.3 | 85.3 ± 2.1 | 86.1 ± 4.7 | 85.8 ± 4.5 | 0.5 |
B[a]P | 0.9912 | 0.28 | 0.62 | 67.2 ± 1.3 | 65.1 ± 2.0 | 68.1 ± 3.3 | 67.3 ± 4.3 | 2.3 |
B[b]P | 0.9923 | 0.25 | 0.52 | 78.4 ± 0.5 | 76.3 ± 1.5 | 74.1 ± 2.7 | 75.3 ± 3.7 | 1.5 |
Ph | 0.9932 | 0.12 | 0.31 | 96.2 ± 0.8 | 93.6 ± 1.3 | 96.3 ± 2.1 | 94.8 ± 4.1 | 1.4 |
Py | 0.9915 | 0.11 | 0.38 | 78.4 ± 0.3 | 76.3 ± 1.4 | 75.2 ± 3.4 | 75.7 ± 3.5 | 0.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Fiore, C.; Maio, M.; Notardonato, I.; Avino, P. Quantification of Polycyclic Aromatic Hydrocarbons (PAHs) in Various Fruit Types: A Comparative Analysis. Atmosphere 2024, 15, 1028. https://doi.org/10.3390/atmos15091028
Di Fiore C, Maio M, Notardonato I, Avino P. Quantification of Polycyclic Aromatic Hydrocarbons (PAHs) in Various Fruit Types: A Comparative Analysis. Atmosphere. 2024; 15(9):1028. https://doi.org/10.3390/atmos15091028
Chicago/Turabian StyleDi Fiore, Cristina, Monica Maio, Ivan Notardonato, and Pasquale Avino. 2024. "Quantification of Polycyclic Aromatic Hydrocarbons (PAHs) in Various Fruit Types: A Comparative Analysis" Atmosphere 15, no. 9: 1028. https://doi.org/10.3390/atmos15091028
APA StyleDi Fiore, C., Maio, M., Notardonato, I., & Avino, P. (2024). Quantification of Polycyclic Aromatic Hydrocarbons (PAHs) in Various Fruit Types: A Comparative Analysis. Atmosphere, 15(9), 1028. https://doi.org/10.3390/atmos15091028