Study on CO2 Emission Forecast of “Four Provinces of Mountains and Rivers” Based on Time-SeriesMachine Learning
Abstract
:1. Introduction
2. Methods
2.1. Method Flow
2.2. Time-Series Forecasting
2.3. Machine Learning
2.3.1. BP Neural Network (BPNN)
2.3.2. Support Vector Machine Regression (SVM)
2.3.3. Random Forests (RF)
- (1)
- Principle of random forest algorithm
- (2)
- Importance Analysis of Random Forests
2.3.4. Accuracy Verification
2.4. Correlation Analysis and Trend Test
- (1)
- Pearson correlation analysis
- (2)
- Mann–Kenddall (MK) test
3. The CO2 Emission–Influencing Indicators System Was Established
3.1. Acquisition of CO2 Emission–Influencing Indicators
3.2. Analysis of Time-Series Characteristics of CO2 Emission–Influencing Indicators
3.3. Importance Analysis of CO2 Emission–Influencing Indicators in each Province
4. Modeling of CO2 Emission Forecasting
4.1. Parameter Optimization and Model Optimization of Forecasting Model
4.2. CO2 Emission Forecast of the Four Provinces of Mountains and Rivers
5. Discussion
5.1. Optimization of CO2 Emission Forecasting Model
5.2. Analysis of CO2 Emission–Influencing Indicators
5.3. Forecasting and Analysis of CO2 Emissions
5.4. Limitations and Potential Impact on Results
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fang, H. Carbon peak and carbon neutrality: A strategic opportunity for China’s health system. Chin. Med. J. 2022, 102, 90–93. [Google Scholar]
- Ambade, B.; Sankar, T.K.; Panicker, A.; Gautam, A.S.; Gautam, S. Characterization, seasonal variation, source apportionment and health risk assessment of black carbon over an urban region of East India. Urban Clim. 2021, 38, 100896. [Google Scholar] [CrossRef]
- Luo, M.; Qin, S.; Chang, H.; Zhang, A. Disaggregation method of carbon emission: A case study in Wuhan, China. Sustainability 2019, 11, 2093. [Google Scholar] [CrossRef]
- Dai, S.; Niu, D.; Han, Y. Forecasting of energy-related CO2 emissions in China based on GM (1, 1) and least squares support vector machine optimized by modified shuffled frog lea** algorithm for sustainability. Sustainability 2018, 10, 958. [Google Scholar] [CrossRef]
- Long, X.; Naminse, E.Y.; Du, J.; Zhuang, J. Nonrenewable energy, renewable energy, carbon dioxide emissions and economic growth in China from 1952 to 2012. Renew. Sustain. Energy Rev. 2015, 52, 680–688. [Google Scholar] [CrossRef]
- Wang, L.P.; Li, C. Development of Logistics Enterprises in Low-Carbon Era; Social Sciences Academic Press: Beijing, China, 2016; pp. 95–100. [Google Scholar]
- Ambade, B.; Kumar, A.; Latif, M. Emission sources, Characteristics and risk assessment of particulate bound Polycyclic Aromatic Hydrocarbons (PAHs) from traffic sites. Res. Sq. 2021, 15. [Google Scholar] [CrossRef]
- Sankar, T.K.; Ambade, B.; Mahato, D.K.; Kumar, A.; Jangde, R. Anthropogenic fine aerosol and black carbon distribution over urban environment. J. Umm Al-Qura Univ. Appl. Sci. 2023, 9, 471–480. [Google Scholar] [CrossRef]
- Wang, W.; Wang, J. Determinants investigation and peak prediction of CO2 emissions in China’s transport sector utilizing bio-inspired extreme learning machine. Environ. Sci. Pollut. Res. 2021, 28, 55535–55553. [Google Scholar] [CrossRef]
- Ağbulut, U. Forecasting of transportation-related energy demand and CO2 emissions in Turkey with different machine learning algorithms. Sustain. Prod. Consum. 2022, 1, 141–157. [Google Scholar] [CrossRef]
- Pan, S.Y.; Zhang, M.L. Forecasting and influencing factors of carbon dioxide emissions in Gansu province based on BP neural network. Environ. Eng. 2023, 41, 61–68+85. [Google Scholar]
- Alam, T.; AlArjani, A. A Comparative Study of CO2 Emission Forecasting in the Gulf Countries Using Autoregressive Integrated Moving Average, Artificial Neural Network, and Holt-Winters Exponential Smoothing Models. Adv. Meteorol. 2021, 2021, 8322590. [Google Scholar] [CrossRef]
- Zhang, J.; Niu, W.; Yang, Y.; Hou, D.; Dong, B. Machine learning prediction models for compressive strength of calcined sludge-cement composites. Constr. Build. Mater. 2022, 346, 128442. [Google Scholar] [CrossRef]
- Meng, Y.; Noman, H. Predicting CO2 Emission Footprint Using AI through Machine Learning. Atmosphere 2022, 13, 1871. [Google Scholar] [CrossRef]
- Zhao, H.; Huang, G.; Yan, N. Forecasting energy-related CO2 emissions employing a novel SSA-LSSVM model: Considering structural factors in China. Energies 2018, 11, 781. [Google Scholar] [CrossRef]
- Fang, D.; Hao, P.; Wang, Z.; Hao, J. Analysis of the influence mechanism of CO2 emissions and verification of the environmental Kuznets curve in China. Int. J. Environ. Res. Public Health 2019, 16, 944. [Google Scholar] [CrossRef]
- Xu, X.H.; Rogers, R.A.; Estrada, M.A.R. A Novel Prediction Model: ELM-ABC for Annual GDP in the Case of SCO Countries. Comput. Econ. 2023, 62, 1545–1566. [Google Scholar] [CrossRef]
- Zeng, H.; Shao, B.; Bian, G.; Dai, H.; Zhou, F. Analysis of influencing factors and trend forecast of CO2 emission in Chengdu-Chongqing urban agglomeration. Sustainability 2022, 14, 1167. [Google Scholar] [CrossRef]
- Wen, T.; Liu, Y.; Bai, Y.H.; Liu, H. Modeling and forecasting CO2 emissions in China and its regions using a novel ARIMA-LSTM model. Heliyon 2023, 9, e21241. [Google Scholar] [CrossRef]
- Lian, Y.Q.; Su, D.H.; Shi, S.X. Prediction of carbon peak in Fujian Province based on STIRPAT and CNN-LSTM combination model. Environ. Sci. 2024, 1–15. [Google Scholar] [CrossRef]
- Rumelhart, D.E.; Hinton, G.E.; Williams, R.J. Learning representations by back-propagating errors. Nature 1986, 323, 533–536. [Google Scholar] [CrossRef]
- Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Mantel, N.; Haenszel, W. Statistical aspects of the analysis of data from retrospective studies of disease. J. Natl. Cancer Inst. 1959, 22, 719–748. [Google Scholar]
- Zhao, Q.; Li, J.; Li, C.Y. Analysis of Factors Estimation and Influence of Regional CO2 Emissions-A Case of Shandong Province Example. In Proceedings of the 2015 International Symposium on Energy Science and Chemical Engineering (Isesce 2015), Guangzhou, China, 12–13 December 2015; Volume 45, pp. 277–281. [Google Scholar]
- Bai, Y.F.; Zhang, W.R.; Liu, J.P.; Yu, Y. Research on forecasting method of per capita carbon emission in urban demonstration area based on environmental Kuznets curve. Ecol. Econ. 2022, 38, 35–42+84. [Google Scholar]
- HNPBS. Statistical Yearbook of Henan Province. China Statistical Publishing House, Henan 1999–2021. 2023. Available online: https://tjj.henan.gov.cn/tjfw/tjcbw/tjnj/ (accessed on 1 March 2024).
- HBPBS. Statistical Yearbook of Hebei Province. China Statistical Publishing House, Hebei 1999–2021. 2023. Available online: http://tjj.hebei.gov.cn/ (accessed on 1 March 2024).
- SDPBS. Statistical Yearbook of Shandong Province. China Statistical Publishing House, Shandong 1999–2021. 2023. Available online: http://tjj.shandong.gov.cn/ (accessed on 1 March 2024).
- SXPBS. Statistical Yearbook of Shanxi Province. China Statistical Publishing House, Shanxi 1999–2021. 2023. Available online: http://tjj.shanxi.gov.cn/ (accessed on 1 March 2024).
- Xu, J.; Guan, Y.; Oldfield, J.; Guan, D.; Shan, Y. China carbon emission accounts 2020–2021. Appl. Energy 2024, 360, 122837. [Google Scholar] [CrossRef]
- Guan, Y.; Shan, Y.; Huang, Q.; Chen, H.; Wang, D.; Hubacek, K. Assessment to China’s recent emission pattern shifts. Earth’s Future 2021, 9, e2021EF002241. [Google Scholar] [CrossRef]
- Shan, Y.; Huang, Q.; Guan, D.; Hubacek, K. China CO2 emission accounts 2016–2017. Sci. Data 2020, 7, 54. [Google Scholar] [CrossRef]
- Shan, Y.; Guan, D.; Zheng, H.; Ou, J.; Li, Y.; Meng, J.; Mi, Z.; Liu, Z.; Zhang, Q. China CO2 emission accounts 1997–2015. Sci. Data 2018, 5, 170201. [Google Scholar] [CrossRef]
- Shan, Y.; Liu, J.; Liu, Z.; Xu, X.; Shao, S.; Wang, P.; Guan, D. New provincial CO2 emission inventories in China based on apparent energy consumption data and updated emission factors. Appl. Energy 2016, 184, 742–750. [Google Scholar] [CrossRef]
- Sun, W.; Ye, M.Q.; Xu, Y.F. Study of carbon dioxide emissions forecasting in Hebei province, China using a BPNN based on GA. J. Renew. Sustain. Energy 2016, 8, 043101. [Google Scholar] [CrossRef]
- Wen, L.; Yuan, X. Forecasting CO2 emissions in Chinas commercial department, through BP neural network based on random forest and PSO. Sci. Total Environ. 2020, 718, 137194. [Google Scholar] [CrossRef]
- Li, W.X.; Li, Y.; Liu, H.; Yi, M.; Han, Y. Forecasting of carbon emission reduction status of online ride-hailing based on machine learning. Transp. Syst. Eng. Inf. 2023, 23, 254–264. [Google Scholar]
- Li, M.; Ahmad, M.; Fareed, Z.; Hassan, T.; Kirikkaleli, D. Role of trade openness, export diversification, and renewable electricity output in realizing carbon neutrality dream of China. J. Environ. Manag. 2021, 297, 113419. [Google Scholar] [CrossRef]
- Pan, X.; Pan, X.; Li, C.; Song, J.; Zhang, J. Effects of China’s environmental policy on carbon emission efficiency. Int. J. Clim. Change Strateg. Manag. 2019, 11, 326–340. [Google Scholar] [CrossRef]
- Liu, H.T.; Hu, D.W. Construction and analysis of transportation carbon emission prediction model based on machine learning. Environ. Sci. 2024, 45, 3421–3432. [Google Scholar]
- Yahsi, M.; Canakoglu, E.; Agrali, S. Carbon price forecasting models based on big data analytics. Carbon Manag. 2019, 10, 175–187. [Google Scholar] [CrossRef]
- Tavares, R.L.M.; Oliveira, S.R.M.; Barros, F.M.M.; Farhate, C.V.V.; de Souza, Z.M.; La Scala, N., Jr. Prediction of soil CO2 flux in sugarcane management systems using the Random Forest approach. Sci. Agric. 2018, 75, 281–287. [Google Scholar] [CrossRef]
- Fang, Y.; Lu, X.; Li, H. A random forest-based model for the prediction of construction-stage carbon emissions at the early design stage. J. Clean. Prod. 2021, 328, 129657. [Google Scholar] [CrossRef]
- Zhang, H.; Peng, J.; Wang, R.; Zhang, M.; Gao, C.; Yu, Y. Use of random forest based on the effects of urban governance elements to forecast CO2 emissions in Chinese cities. Heliyon 2023, 9, e16693. [Google Scholar] [CrossRef]
- Wang, Q.Q.; Lou, Y.Y.; Zhang, P.Y.; Wang, C.; Zhu, H.; Zhang, J.; Liu, Z. Calculation of carbon emission and prediction of carbon peak in Henan province under the background of energy consumption. J. Henan Univ. Nat. Sci. Ed. 2023, 53, 47–59. [Google Scholar]
- Cai, K.; Wu, L. Using grey Gompertz model to explore the carbon emission and its peak in 16 provinces of China. Energy Build. 2022, 277, 112545. [Google Scholar] [CrossRef]
- Zhu, Y.E.; Li, L.F.; He, S.S.; Li, H.; Wang, Y. Annual prediction of carbon emission peak in Shanxi Province based on IPAT model and scenario analysis method. Resour. Sci. 2016, 38, 2316–2325. [Google Scholar]
- Wang, Y.L.; Li, Y.W.; Wang, H.; Dong, P.; Teng, Y.; Lin, Y.; Liu, L. Prediction of carbon emission in Hebei province based on improved BP neural network. Ecol. Econ. 2024, 40, 30–37. [Google Scholar]
- Jiang, J.; Ye, B.; Liu, J. Peak of CO2 emissions in various sectors and provinces of China: Recent progress and avenues for further research. Renew. Sustain. Energy Rev. 2019, 112, 813–833. [Google Scholar] [CrossRef]
- Guo, X.J.; Li, J.Q. Spatio-temporal evolution and influencing factors of carbon emissions in coal resource-based areas: A case study of Shanxi Province. J. Xi’an Univ. Technol. 2024, 1–12. Available online: http://kns.cnki.net/kcms/detail/61.1294.N.20231103.1001.004.html (accessed on 1 March 2024).
Influencing Indicators | Literature Quantity | Utilization Rate |
---|---|---|
Population | 12 | 50.00% |
Fossil energy consumption | 12 | 50.00% |
Industrial structure proportion of primary, secondary, and tertiary industries | 7 | 29.17% |
GDP | 17 | 70.83% |
Economic factors (e.g., RMB exchange rate) | 1 | 4.17% |
Urbanization rate | 6 | 25.00% |
Car ownership | 2 | 8.33% |
Influencing Indicators | Source | Units | Symbol |
---|---|---|---|
Population 1999–2021 | China Statistical Yearbook Statistical Yearbook of Henan Province Statistical Yearbook of Hebei Province Statistical Yearbook of Shandong Province Statistical Yearbook of Shanxi Province | Hundred million | X1 |
Raw coal consumption 1999–2021 | Yuan (per capita) | X2 | |
Crude oil consumption 1999–2021 | Ten thousand tons | X3 | |
Natural gas consumption 1999–2021 | Ten thousand tons | X4 | |
Electricity consumption 1999–2021 | Ten thousand tons | X5 | |
Urbanization rate from 1999 to 2021 | % | X6 | |
GDP per capita 1999–2021 | Ten thousand tons | X7 | |
Proportion of primary industry | % | X8 | |
Proportion of secondary industry | % | X9 | |
Proportion of tertiary industry | % | X10 | |
Apparent CO2 emissions in each province from 1999 to 2021 | China Carbon Accounting Database (CEADs) | Million tons | Y |
BP Neural Network | Support Vector Machine | Random Forest | ||||
---|---|---|---|---|---|---|
Number of neurons | Hidden layer 1 | 214 | Kernel function | Radial basis kernel function | Number of decision trees | 350 |
Hidden layer 2 | 59 | penalty parameter | 2000 | |||
Learning Rate | 0.01 | Epsilon | 0.01 | Random seed | 42 | |
Iterations | 1000 | Gamma | 0.01 | |||
Training set/verification set = 7/3 |
Model | RMSE | R2 | MAE |
---|---|---|---|
BP neural network | 114.38 | 0.814 | 82.14 |
Support vector machine | 92.09 | 0.879 | 87.21 |
Random forest | 81.86 | 0.905 | 64.69 |
Province | Peak Time of Apparent CO2 Emissions | Whether There Is a Significant Decrease after Reaching the Peak | Significant Drop Time |
---|---|---|---|
Henan Province | 2011 | Yes | 2018 |
Hebei Province | 2013 | Yes | 2018 |
Shandong Province | 2020 | Yes | 2023 |
Shanxi Province | 2029 | Yes | 2032 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, X.; Liu, Z.; Wu, L.; Wang, Y. Study on CO2 Emission Forecast of “Four Provinces of Mountains and Rivers” Based on Time-SeriesMachine Learning. Atmosphere 2024, 15, 949. https://doi.org/10.3390/atmos15080949
Zhou X, Liu Z, Wu L, Wang Y. Study on CO2 Emission Forecast of “Four Provinces of Mountains and Rivers” Based on Time-SeriesMachine Learning. Atmosphere. 2024; 15(8):949. https://doi.org/10.3390/atmos15080949
Chicago/Turabian StyleZhou, Xiaoting, Zhiqiang Liu, Lang Wu, and Yangqing Wang. 2024. "Study on CO2 Emission Forecast of “Four Provinces of Mountains and Rivers” Based on Time-SeriesMachine Learning" Atmosphere 15, no. 8: 949. https://doi.org/10.3390/atmos15080949
APA StyleZhou, X., Liu, Z., Wu, L., & Wang, Y. (2024). Study on CO2 Emission Forecast of “Four Provinces of Mountains and Rivers” Based on Time-SeriesMachine Learning. Atmosphere, 15(8), 949. https://doi.org/10.3390/atmos15080949