Response of Sea Surface Temperature and Chlorophyll-a to Typhoon Lekima (2019)
Abstract
:1. Introduction
2. Materials
2.1. The Overview of Typhoon Lekima No. 9 in 2019 [22,23]
2.2. Wind
2.3. Sea Surface Temperature (SST)
2.4. Chl-a
2.5. Ekman Pumping Velocity (EPV)
3. Results
3.1. Wind Variation during the Movement of Typhoon Lekima
3.2. SST Changes during Typhoon Lekima’s Passage
3.3. EPV Changes during Typhoon Lekima’s Passage
3.4. The Spatial Variation in Chl-a during Lekima’s Passage
4. Discussion
4.1. Response of SST to Typhoon Lekima
4.2. Response of SST to Typhoon Lekima at Zhejiang Coastal Region
4.3. Response of Chl-a to Typhoon Lekima
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hun, K.S.; Ju, M.I.; Shin, C.P. An increase in global trends of tropical cyclone translation speed since 1982 and its physical causes. Environ. Res. Lett. 2020, 15, 094084. [Google Scholar] [CrossRef]
- Guan, S.; Zhao, W.; Sun, L.; Zhou, C.; Liu, Z.; Hong, X.; Zhang, Y.; Tian, J.; Hou, Y. Tropical cyclone-induced sea surface cooling over the Yellow Sea and Bohai Sea in the 2019 Pacific typhoon season. J. Mar. Syst. 2021, 217, 103509. [Google Scholar] [CrossRef]
- Feng, S.; Li, F.; Li, S. An Introduction to Marine Science; Higher Education Press: Beijing, China, 1999. [Google Scholar]
- Price, J.F. Upper ocean response to a hurricane. J. Phys. Oceanogr. 1981, 11, 153–175. [Google Scholar] [CrossRef]
- Ioualalen, M.; Wakata, Y.; Kawahara, Y.; Gouriou, Y.; Varillon, D. Variability of the sea surface salinity (SSS) in the Western Tropical Pacific: On the ability of an OGCM to simulate the SSS, and on the sampling of an operating merchant ship SSS network. J. Oceanogr. 2003, 59, 105–111. [Google Scholar] [CrossRef]
- Scoccimarro, E.; Fogli, P.G.; Reed, K.A.; Gualdi, S.; Masina, S.; Navarra, A. Tropical cyclone interaction with the ocean: The role of high-frequency (sub daily) coupled processes. J. Clim. 2017, 30, 145–162. [Google Scholar] [CrossRef]
- Zedler, S.E.; Dickey, T.D.; Doney, S.C.; Price, J.F.; Yu, X.; Mellor, G.L. Analyses and simulations of the upper ocean’s response to Hurricane Felix at Bermuda Test bed Mooring site: 13–23 August 1995. J. Geophys. Res. 2002, 107, 3232. [Google Scholar] [CrossRef]
- Xiang, J. Marine Biology; Science Press: Beijing, China, 2003. [Google Scholar]
- Xu, D.; Liu, Z.; Xu, X.; Xu, J. The influence of typhoon on the sea surface salinity in the warm pool of the western Pacific. Acta Oceanol. Sin. 2005, 27, 9–15. [Google Scholar]
- Kessler, W.S. The circulation of the eastern tropical Pacific: A review. Prog. Oceanogr. 2006, 69, 181–217. [Google Scholar] [CrossRef]
- Hu, D.; Mao, K.; Chen, X.; Zhao, Y.; Li, Y. Composing analysis on upper ocean response to typhoon in the northwest Pacific. J. Appl. Oceanogr. 2018, 37, 506–513. [Google Scholar]
- Walker, N.; Leben, R.R.; Balasubramanian, S. Hurricane forced upwelling and chlorophyll a enhancement within cold core cyclones in the Gulf of Mexico. Geophys. Res. Lett. 2005, 32, L18610. [Google Scholar] [CrossRef]
- Jiang, X.; Zhong, Z.; Liu, C. The effect of typhoon-induced SST cooling on typhoon intensity: The case of Typhoon Chanchu (2006). Adv. Atmos. Sci. 2008, 25, 1062–1072. [Google Scholar] [CrossRef]
- Chen, D.; He, L.; Liu, F.; Yin, K. Effects of typhoon events on chlorophyll and carbon fixation in different regions of the East China Sea. Estuar. Coast. Shelf Sci. 2017, 194, 229–239. [Google Scholar] [CrossRef]
- Chen, C.; Shi, P.; Mao, Q. Satellite remotely-sensed analysis of distribution characters of chlorophyll concentration in South China Sea. J. Trop. Oceanogr. 2001, 20, 66–70. [Google Scholar]
- Shang, S.; Hong, H.; Zhang, C.; Shang, S.; Hu, J. Chl-a distribution feature of Taiwan Straits region in winter, 1998 as observed by SeaWiFS. Mar. Sci. Bull. 2001, 20, 25–29. [Google Scholar]
- Zhao, H.; Qi, Y.; Wang, D.; Wang, W. Study on the features of chlorophyll-a derived from SeaWifs in the South China Sea. Acta Oceanol. Sin. 2005, 27, 45–52. [Google Scholar]
- Veeranjaneyulu, C.; Deo, A.A. Study of upper ocean parameters during passage of tropical cyclones over Indian seas. Int. J. Remote Sens. 2019, 40, 4683–4723. [Google Scholar]
- Kwon, Y.O.; Riser, S.C. The Ocean Response to the Hurricane and Tropical Storm in North Atlantic during 1997–1999; School Oceanography, University of Washington: Washington, DC, USA, 2003. [Google Scholar]
- D’Asaro, E.A. The ocean boundary layer below Hurricane Dennis. J. Phys. Oceanogr. 2003, 33, 561–578. [Google Scholar] [CrossRef]
- Lin, I.I.; Liu, W.T.; Wu, C.C.; Chiang, J.C.H.; Sui, C.H. Satellite observations of modulation of surface winds by typhoon induced upper ocean cooling. Geophys. Res. Lett. 2003, 30, 1131. [Google Scholar] [CrossRef]
- Zhou, C.; Chen, P.; Yang, S.; Zheng, F.; Yu, H.; Tang, J.; Lu, Y.; Chen, G.; Lu, X.; Zhang, X.; et al. The impact of Typhoon Lekima (2019) on East China: A post event survey in Wenzhou City and Taizhou City. Front. Earth Sci. 2022, 16, 109–120. [Google Scholar] [CrossRef]
- Tang, J.; Fei, J.; Yu, H. Research of super typhoon Lekima: Forecast, observation, numerical simulation and disaster survey. Front. Earth Sci. 2022, 16, 1–4. [Google Scholar] [CrossRef]
- Saha, K.; Zhao, X.; Zhang, H.; Casey, K.S.; Zhang, D.; Baker-Yeboah, S.; Kilpatrick, K.A.; Evans, R.H.; Ryan, T.; Relph, J.M. AVHRR Pathfinder Version 5.3 Level 3 Collated (L3C) Global 4 km Sea Surface Temperature for 1981-Present, Dataset; NOAA National Centers for Environmental Information: Asheville, NC, USA, 2018.
- Wang, Y.; Liu, D. Reconstruction of satellite chlorophyll-a data using a modified DINEOF method: A case study in the Bohai and Yellow seas, China. Int. J. Remote Sens. 2014, 35, 204–217. [Google Scholar] [CrossRef]
- Campbell, J.W. The lognormal distribution as a model for bio-optical variability in the sea. J. Geophys. Res. 1995, 100, 13237–13254. [Google Scholar] [CrossRef]
- Yentsch, C.M.; Campbell, J.W. Phytoplankton growth: Perspectives gained by flow cytometry. J. Plankton Res. 1991, 13 (Suppl. S1), 83–108. [Google Scholar]
- Liu, X.; Wang, M. Filling the gaps of missing data in the merged VIIRS SNPP/NOAA-20 ocean color product using the DINEOF method. Remote Sens. 2019, 11, 178. [Google Scholar] [CrossRef]
- Geider, R.J.; Macintyre, H.L.; Kana, T.M. Dynamic model of phytoplankton growth and acclimation: Responses of the balanced growth rate and the chlorophyll a: Carbon ratio to light, nutrient-limitation and temperature. Mar. Ecol. Prog. 1997, 148, 187–200. [Google Scholar] [CrossRef]
- Kessler, W.S. Mean three-dimensional circulation in the northeast tropical Pacific. J. Phys. Oceanogr. 2002, 32, 2457–2471. [Google Scholar] [CrossRef]
- Greene, C.A.; Blankenship, D.D.; Gwyther, D.E.; Silvano, A.; van Wijk, E. Wind causes Totten Ice Shelf melt and acceleration. Sci. Adv. 2017, 3, e1701681. [Google Scholar] [CrossRef] [PubMed]
- Greene, C.A.; Thirumalai, K.; Kearney, K.A.; Delgado, J.M.; Schwanghart, W.; Wolfenbarger, N.S.; Thyng, K.M.; Gwyther, D.E.; Gardner, A.S.; Blankenship, D.D. The climate data toolbox for MATLAB. Geochem. Geophys. Geosyst. 2019, 20, 3774–3781. [Google Scholar] [CrossRef]
- Bao, X.; Wan, X.; Gao, G.; Wu, D. The characteristics of the seasonal variability of the sea surface temperature field in the Bohai Sea, the Huanghai Sea and the East China Sea from AVHRR data. Acta Oceanol. Sin. 2002, 24, 125–133. [Google Scholar]
- Kawai, Y.J.; Kawamura, H. Evaluation of diurnal warming of sea surface temperature using satellite-derived marine meteorological data. J. Oceanogr. 2002, 58, 805–814. [Google Scholar] [CrossRef]
- Price, J.F.; Sanford, T.B.; Forristall, G.Z. Forced stage response to a moving hurricane. J. Phys. Oceanogr. 1994, 24, 233–260. [Google Scholar] [CrossRef]
- O’Reilly, J.E.; Werdell, P.J. Chlorophyll algorithms for ocean color sensors-OC4, OC5 & OC6. Remote Sens. Environ. 2019, 229, 32–47. [Google Scholar]
- Sasaki, H.; Tanaka, A.; Iwataki, M.; Touke, Y.; Siswanto, E.; Tan, C.K.; Ishizaka, J. Optical properties of the red tide in Isahaya Bay, southwestern Japan: Influence of chlorophyll a concentration. J. Oceanogr. 2008, 64, 511–523. [Google Scholar] [CrossRef]
- Tan, S. Radiative Properties of Euphotic Layer and Their Impacts on Satellite Remote Sensing of Ocean Primary Productivity. Doctoral Dissertation, Chinese Academy of Sciences, Beijing, China, 2007. (In Chinese). [Google Scholar]
- Siegel, D.; Behrenfeld, M.; Maritorena, S.; McClain, C.; Antoine, D.; Bailey, S.; Bontempi, P.; Boss, E.; Dierssen, H.; Doney, S.; et al. Regional to global assessments of phytoplankton dynamics from the seaWiFS mission. Remote Sens. Environ. 2013, 135, 77–91. [Google Scholar] [CrossRef]
- Werdell, P.J.; Franz, B.A.; Bailey, S.W.; Harding, L.W., Jr.; Feldman, G.C. Approach for the long-term spatial and temporal evaluation of ocean color satellite data products in a coastal environment. Coast. Ocean. Remote Sens. 2007, 6680, 66800G. [Google Scholar] [CrossRef]
- Chiang, T.; Wu, C.; Oey, L. Typhoon Kai-Tak: An ocean’s perfect storm. J. Phys. Oceanogr. 2011, 41, 221–233. [Google Scholar] [CrossRef]
- Liu, S.; Zhang, L.; Zhang, X. Characteristics analysis on rapid intensification of typhoon Mujigae (1522) over the offshore area of China. J. Meteorol. Sci. 2017, 37, 487–496. (In Chinese) [Google Scholar]
- Song, P.; Zhong, Z.; Qi, L.; Yuan, S.; Wang, X. A numerical study on the influence of abnormal local sea surface temperature on the track of tropical cyclone. J. Meteorol. Sci. 2017, 37, 737–747. (In Chinese) [Google Scholar]
- Sanford, T.B.; Black, P.G.; Haustein, J.R.; Feeney, J.W.; Forristall, G.Z.; Price, J.F. Ocean response to a hurricane, Part I: Observations. J. Phys. Oceanogr. 1987, 17, 2065–2083. [Google Scholar] [CrossRef]
- Li, L.; Bao, X.; Gao, G. Numerical experiment of SST response to typhoon process in Yellow Sea and Bohai Sea. Period. Ocean. Univ. China 2001, 31, 165–172. [Google Scholar]
- McClain, C.R. A decade of satellite ocean color observations. Annu. Rev. Mar. Sci. 2009, 1, 19–42. [Google Scholar] [CrossRef]
- Sauer, M.J.; Roesler, C.S.; Werdell, P.J.; Barnard, A. Under the hood of satellite empirical chlorophyll a algorithms: Revealing the dependencies of maximum band ratio algorithms on inherent optical properties. Opt. Express 2012, 20, 20920–20933. [Google Scholar] [CrossRef] [PubMed]
- Yoder, J.A.; Kennelly, M.A. Seasonal and ENSO variability in global ocean phytoplankton chlorophyll derived from 4 years of SeaWiFS measurements. Glob. Biogeochem. Cycles 2003, 17, 1112. [Google Scholar] [CrossRef]
- Sathyendranath, S.; Gouveia, A.; Shetye, S.; Ravindran, P.; Platt, T. Biological control of surface temperature in the Arabian Sea. Nature 1999, 349, 54–56. [Google Scholar] [CrossRef]
- Chen, Y.; Tang, D. Remote sensing analysis of impact of typhoon on environment in the sea area South of Hainan Island. Procedia Environ. Sci. 2011, 10 Pt B, 1621–1629. [Google Scholar] [CrossRef]
- Wei, M.; Lien, C.; Lin, I.; Xie, S. Tropical cyclone-induced ocean response: A comparative study of the South China Sea and Tropical Northwest Pacific. J. Clim. 2015, 28, 5952–5968. [Google Scholar] [CrossRef]
- Fu, D.; Pan, D.; Deng, Y.; Zou, J. Quantitative investigation on typhoon impact on chlorophyll a concentration by remote sensing. Acta Oceanol. Sin. 2009, 31, 46–56. [Google Scholar]
- Wang, M.; Liu, X.; Jiang, L.; Son, S. Visible Infrared Imaging Radiometer Suite (VIIRS) Ocean Color Products, Algorithm Theoretical Basis Document (ATBD), Version 1.0, June 2017. Available online: https://www.star.nesdis.noaa.gov/socd/mecb/color/documents/ATBD_VIIRS_OC_v1.0_June2017_f2.pdf (accessed on 22 June 2024).
- Baibin, S.M.; Carton, J.A.; Dickey, T.D.; Wiggert, J.D. Satellite evidence of hurricane-induced phytoplankton blooms in an oceanic desert. J. Geophys. Res. 2004, 109, C03043. [Google Scholar] [CrossRef]
- Jaimes, B.; Shay, L.K. Near-inertial wave wake of Hurricanes Katrina and Rita over mesoscale oceanic eddies. J. Phys. Oceanogr. 2009, 40, 1320–1337. [Google Scholar] [CrossRef]
- Rao, A.D.; Babu, S.V.; Dube, S.K. Impact of a tropical cyclone on coastal upwelling process. Nat. Hazards 2004, 31, 415–435. [Google Scholar] [CrossRef]
- Wada, A. Numerical simulation of sea surface cooling by a mixed layer model during the passage of Typhoon Rex. J. Oceanogr. 2005, 61, 41–57. [Google Scholar] [CrossRef]
Time | Maximum (m/s) | Minimum (m/s) | Mean (m/s) |
---|---|---|---|
3 August 2019 18:00 | 1.4463 × 10−4 | −1.4769 × 10−4 | 6.1895 × 10−7 |
4 August 2019 06:00 | 1.9781 × 10−4 | −1.1461 × 10−4 | 9.9883 × 10−7 |
5 August 2019 06:00 | 1.9332 × 10−5 | −1.8586 × 10−5 | 1.0662 × 10−7 |
6 August 2019 12:00 | 5.9190 × 10−5 | −4.6737 × 10−5 | 3.3041 × 10−7 |
7 August 2019 06:00 | 1.1307 × 10−4 | −1.2251 × 10−4 | 2.0743 × 10−7 |
8 August 2019 12:00 | 7.7927 × 10−4 | −5.3071 × 10−4 | −3.4666 × 10−6 |
9 August 2019 12:00 | 2.3698 × 10−4 | −1.3785 × 10−4 | −1.5624 × 10−6 |
10 August 2019 12:00 | 1.5550 × 10−4 | −1.5578 × 10−4 | −6.4482 × 10−8 |
11 August 2019 18:00 | 2.2333 × 10−4 | −6.3961 × 10−5 | 1.3612 × 10−6 |
12 August 2019 18:00 | 3.4288 × 10−4 | −1.5077 × 10−4 | 4.3975 × 10−7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, Y.; Guo, B.; Niu, Y.; Mantravadi, V.S.; Wang, J.; Ji, Z.; Che, Y.; Ye, M. Response of Sea Surface Temperature and Chlorophyll-a to Typhoon Lekima (2019). Atmosphere 2024, 15, 919. https://doi.org/10.3390/atmos15080919
Shi Y, Guo B, Niu Y, Mantravadi VS, Wang J, Ji Z, Che Y, Ye M. Response of Sea Surface Temperature and Chlorophyll-a to Typhoon Lekima (2019). Atmosphere. 2024; 15(8):919. https://doi.org/10.3390/atmos15080919
Chicago/Turabian StyleShi, Yaowei, Biyun Guo, Yuqian Niu, Venkata Subrahmanyam Mantravadi, Jushang Wang, Zhaokang Ji, Yingliang Che, and Menglu Ye. 2024. "Response of Sea Surface Temperature and Chlorophyll-a to Typhoon Lekima (2019)" Atmosphere 15, no. 8: 919. https://doi.org/10.3390/atmos15080919
APA StyleShi, Y., Guo, B., Niu, Y., Mantravadi, V. S., Wang, J., Ji, Z., Che, Y., & Ye, M. (2024). Response of Sea Surface Temperature and Chlorophyll-a to Typhoon Lekima (2019). Atmosphere, 15(8), 919. https://doi.org/10.3390/atmos15080919