Testing Strategies for Planting Design in Urban Squares to Improve Human Comfort throughout the Seasons
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Scenarios
2.3. Thermal Comfort Index (PET)
2.4. Microclimate Modeling
3. Results
3.1. Alpenplatz
3.2. Marstallplatz
3.2.1. Typical Spring Day
3.2.2. Typical Summer Day
3.2.3. Typical Autumn Day
3.2.4. Nighttime
4. Discussion
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Salata, F.; Golasi, I.; de Lieto Vollaro, R.; de Lieto Vollaro, A. Urban microclimate and outdoor thermal comfort. A proper procedure to fit ENVI-met simulation outputs to experimental data. Sustain. Cities Soc. 2016, 26, 318–343. [Google Scholar] [CrossRef]
- Singh, R.; Arrighi, J.; Jjemba, E.; Strachan, K. Heatwave Guide for Cities; Red Cross Red Crescent Climate Centre: The Hague, The Netherlands, 2019. [Google Scholar]
- van Steen, Y.; Ntarladima, A.-M.; Grobbee, R.; Karssenberg, D.; Vaartjes, I. Sex differences in mortality after heat waves: Are elderly women at higher risk? Int. Arch. Occup. Environ. Health 2019, 92, 37–48. [Google Scholar] [CrossRef] [PubMed]
- Matzarakis, A. Communication Aspects about Heat in an Era of Global Warming—The Lessons Learnt by Germany and Beyond. Atmosphere 2022, 13, 226. [Google Scholar] [CrossRef]
- Thompson, R.; Landeg, O.; Kar-Purkayastha, I.; Hajat, S.; Kovats, S.; O’Connell, E. Heatwave Mortality in Summer 2020 in England: An Observational Study. Int. J. Environ. Res. Public Health 2022, 19, 6123. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Zhao, L.; Cheng, L.; Zhang, Y.; Wang, H.; Gu, K.; Bao, J.; Yang, J.; Liu, Z.; Huang, J.; et al. Projections of heatwave-attributable mortality under climate change and future population scenarios in China. Lancet Reg. Health West. Pac. 2022, 28, 100582. [Google Scholar] [CrossRef] [PubMed]
- Schwarz, L.; Castillo, E.M.; Chan, T.C.; Brennan, J.J.; Sbiroli, E.S.; Carrasco-Escobar, G.; Nguyen, A.; Clemesha, R.E.S.; Gershunov, A.; Benmarhnia, T. Heat Waves and Emergency Department Visits Among the Homeless, San Diego, 2012–2019. Am. J. Public Health 2022, 112, 98–106. [Google Scholar] [CrossRef] [PubMed]
- Höppe, P.; Mayer, H. Planungsrelevante Bewertung der Thermischen Komponente des Stadtklimas. Landsch. Stadt 1987, 19, 22–29. [Google Scholar]
- Höppe, P. The physiological equivalent temperature—A universal index for the biometeorological assessment of the thermal environment. Int. J. Biometeorol. 1999, 43, 71–75. [Google Scholar] [CrossRef] [PubMed]
- Erlwein, S.; Meister, J.; Wamsler, C.; Pauleit, S. Governance of densification and climate change adaptation: How can conflicting demands for housing and greening in cities be reconciled? Land Use Policy 2023, 128, 106593. [Google Scholar] [CrossRef]
- Rahman, M.A.; Franceschi, E.; Pattnaik, N.; Moser-Reischl, A.; Hartmann, C.; Paeth, H.; Pretzsch, H.; Rötzer, T.; Pauleit, S. Spatial and temporal changes of outdoor thermal stress: Influence of urban land cover types. Sci. Rep. 2022, 12, 671. [Google Scholar] [CrossRef]
- Karimi, A.; Mohammad, P. Effect of outdoor thermal comfort condition on visit of tourists in historical urban plazas of Sevilla and Madrid. Environ. Sci. Pollut. Res. Int. 2022, 29, 60641–60661. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Khoshbakht, M.; Liu, J.; Gou, Z.; Xiong, J.; Jiang, M. A clustering review of vegetation-indicating parameters in urban thermal environment studies towards various factors. J. Therm. Biol. 2022, 110, 103340. [Google Scholar] [CrossRef]
- Chang, C.-R.; Li, M.-H. Effects of urban parks on the local urban thermal environment. Urban For. Urban Green. 2014, 13, 672–681. [Google Scholar] [CrossRef]
- Peng, J.; Dan, Y.; Qiao, R.; Liu, Y.; Dong, J.; Wu, J. How to quantify the cooling effect of urban parks? Linking maximum and accumulation perspectives. Remote Sens. Environ. 2021, 252, 112135. [Google Scholar] [CrossRef]
- Yu, C.; Hien, W.N. Thermal benefits of city parks. Energy Build. 2006, 38, 105–120. [Google Scholar] [CrossRef]
- Liu, B.; Lian, Z.; Brown, R.D. Effect of Landscape Microclimates on Thermal Comfort and Physiological Wellbeing. Sustainability 2019, 11, 5387. [Google Scholar] [CrossRef]
- Isabell, M.; Mareike, B.; Julia, H.; Heather, H.; Christoph, S. Investigating public places and impacts of heat stress in the city of Aachen, Germany. Die Erde—J. Geogr. Soc. Berl. 2014, 144, 290–303. [Google Scholar]
- Xiao, J.; Yuizono, T. Climate-adaptive landscape design: Microclimate and thermal comfort regulation of station square in the Hokuriku Region, Japan. Build. Environ. 2022, 212, 108813. [Google Scholar] [CrossRef]
- Chatzidimitriou, A.; Yannas, S. Microclimate design for open spaces: Ranking urban design effects on pedestrian thermal comfort in summer. Sustain. Cities Soc. 2016, 26, 27–47. [Google Scholar] [CrossRef]
- Matzarakis, A.; Rutz, F.; Mayer, H. Modelling radiation fluxes in simple and complex environments--application of the RayMan model. Int. J. Biometeorol. 2007, 51, 323–334. [Google Scholar] [CrossRef]
- Bruse, M.; Fleer, H. Simulating surface–plant–air interactions inside urban environments with a three dimensional numerical model. Environ. Model. Softw. 1998, 13, 373–384. [Google Scholar] [CrossRef]
- Kariminia, S.S.; Ahmad, S. Microclimatic Conditions of an Urban Square: Role of built environment and geometry. Asian J. Behav. Stud. 2018, 3, 115. [Google Scholar] [CrossRef]
- Zölch, T.; Rahman, M.A.; Pfleiderer, E.; Wagner, G.; Pauleit, S. Designing public squares with green infrastructure to optimize human thermal comfort. Build. Environ. 2019, 149, 640–654. [Google Scholar] [CrossRef]
- Klemm, W. Clever and Cool: Generating Design Guidelines for Climate Responsive Urban Green Infrastructure. Ph.D. Thesis, Wageningen University, Wageningen, The Netherlands, 2018. [Google Scholar]
- Lau, K.K.-L.; Choi, C.Y. The influence of perceived aesthetic and acoustic quality on outdoor thermal comfort in urban environment. Build. Environ. 2021, 206, 108333. [Google Scholar] [CrossRef]
- Manavvi, S.; Rajasekar, E. Assessing thermal comfort in urban squares in humid subtropical climate: A structural equation modelling approach. Build. Environ. 2023, 229, 109931. [Google Scholar] [CrossRef]
- Lin, J.; Jiang, S.; Zhang, S.; Yang, S.; Ji, W.; Li, W. Thermal Comfort in Urban Open Green Spaces: A Parametric Optimization Study in China’s Cold Region. Buildings 2023, 13, 2329. [Google Scholar] [CrossRef]
- Huang, K.-T.; Lin, T.-P.; Lien, H.-C. Investigating Thermal Comfort and User Behaviors in Outdoor Spaces: A Seasonal and Spatial Perspective. Adv. Meteorol. 2015, 2015, 423508. [Google Scholar] [CrossRef]
- United Nations. Transforming our World: The 2030 Agenda for Sustainable Development. Sci. Res. 2015, 42809, 1–13.
- Mandić, L.; Đjukić, A.; Marić, J.; Mitrović, B. A Systematic Review of Outdoor Thermal Comfort Studies for the Urban (Re)Design of City Squares. Sustainability 2024, 16, 4920. [Google Scholar] [CrossRef]
- Galal, O.M.; Sailor, D.J.; Mahmoud, H. The impact of urban form on outdoor thermal comfort in hot arid environments during daylight hours, case study: New Aswan. Build. Environ. 2020, 184, 107222. [Google Scholar] [CrossRef]
- He, B.-J.; Ding, L.; Prasad, D. Relationships among local-scale urban morphology, urban ventilation, urban heat island and outdoor thermal comfort under sea breeze influence. Sustain. Cities Soc. 2020, 60, 102289. [Google Scholar] [CrossRef]
- Unal Cilek, M.; Uslu, C. Modeling the relationship between the geometric characteristics of urban green spaces and thermal comfort: The case of Adana city. Sustain. Cities Soc. 2022, 79, 103748. [Google Scholar] [CrossRef]
- Chiang, Y.-C.; Liu, H.-H.; Li, D.; Ho, L.-C. Quantification through deep learning of sky view factor and greenery on urban streets during hot and cool seasons. Landsc. Urban Plan. 2023, 232, 104679. [Google Scholar] [CrossRef]
- Oke, T.R. The energetic basis of the urban heat island. Q. J. R. Meteorol. Soc. 1982, 108, 1–24. Available online: http://www.patarnott.com/pdf/oake1982_uhi.pdf (accessed on 17 July 2024). [CrossRef]
- Watson, I.D.; Johnson, G.T. Graphical estimation of sky view-factors in urban environments. J. Climatol. 1987, 7, 193–197. [Google Scholar] [CrossRef]
- Picot, X. Thermal comfort in urban spaces: Impact of vegetation growth. Energy Build. 2004, 36, 329–334. [Google Scholar] [CrossRef]
- Matzarakis, A.; de Rocco, M.; Najjar, G. Thermal bioclimate in Strasbourg—The 2003 heat wave. Theor. Appl. Clim. 2009, 98, 209–220. [Google Scholar] [CrossRef]
- Morille, B.; Musy, M. Comparison of the Impact of Three Climate Adaptation Strategies on Summer Thermal Comfort—Cases Study in Lyon, France. Procedia Environ. Sci. 2017, 38, 619–626. [Google Scholar] [CrossRef]
- Apostolopoulou, D.; Tsoka, S. Climate change and built environment—The role of urban greenery as a mitigation strategy in Greek urban areas. IOP Conf. Ser. Earth Environ. Sci. 2021, 899, 12018. [Google Scholar] [CrossRef]
- Lenzhölzer, S. Designing Atmospheres: Research and Design for Thermal Comfort in Dutch Urban Squares; Wageningen University: Wageningen, The Netherlands, 2010; ISBN 9789085856603. [Google Scholar]
- Yu, H.; Zhang, T.; Fukuda, H.; Ma, X. The effect of landscape configuration on outdoor thermal environment: A case of urban Plaza in Xi’an, China. Build. Environ. 2023, 231, 110027. [Google Scholar] [CrossRef]
- Wei, D.; Yang, L.; Bao, Z.; Lu, Y.; Yang, H. Variations in outdoor thermal comfort in an urban park in the hot-summer and cold-winter region of China. Sustain. Cities Soc. 2021, 77, 103535. [Google Scholar] [CrossRef]
- Yin, Q.; Cao, Y.; Sun, C. Research on outdoor thermal comfort of high-density urban center in severe cold area. Build. Environ. 2021, 77, 107938. [Google Scholar] [CrossRef]
- Thorsson, S.; Honjo, T.; Lindberg, F.; Eliasson, I.; Lim, E.-M. Thermal Comfort and Outdoor Activity in Japanese Urban Public Places. Environ. Behav. 2007, 39, 660–684. [Google Scholar] [CrossRef]
- Nikolopoulou, M.; Lykoudis, S. Use of outdoor spaces and microclimate in a Mediterranean urban area. Build. Environ. 2007, 42, 3691–3707. [Google Scholar] [CrossRef]
- Eliasson, I.; Knez, I.; Westerberg, U.; Thorsson, S.; Lindberg, F. Climate and behaviour in a Nordic city. Landsc. Urban Plan. 2007, 82, 72–84. [Google Scholar] [CrossRef]
- Lin, T.-P. Thermal perception, adaptation and attendance in a public square in hot and humid regions. Build. Environ. 2009, 44, 2017–2026. [Google Scholar] [CrossRef]
- Shashua-Bar, L.; Pearlmutter, D.; Erell, E. The influence of trees and grass on outdoor thermal comfort in a hot-arid environment. Int. J. Climatol. 2011, 31, 1498–1506. [Google Scholar] [CrossRef]
- Fung, C.K.; Jim, C.Y. Microclimatic resilience of subtropical woodlands and urban-forest benefits. Urban For. Urban Green. 2019, 42, 100–112. [Google Scholar] [CrossRef]
- Lin, B.-S.; Lin, Y.-J. Cooling Effect of Shade Trees with Different Characteristics in a Subtropical Urban Park. HortScience 2010, 45, 83–86. [Google Scholar] [CrossRef]
- Thomas, A.D.; Elliott, D.R.; Dougill, A.J.; Stringer, L.C.; Hoon, S.R.; Sen, R. The influence of trees, shrubs, and grasses on microclimate, soil carbon, nitrogen, and CO 2 efflux: Potential implications of shrub encroachment for Kalahari rangelands. Land Degrad Dev. 2018, 29, 1306–1316. [Google Scholar] [CrossRef]
- Lu, F.; Gao, Y.; Jiang, L.; Chen, Y.; Hao, Z. The Effect of Greening Layout on Microclimate in Urban Residential Areas in Hot Summer–Cold Winter Zones. Atmosphere 2023, 14, 1824. [Google Scholar] [CrossRef]
- Rahman, M.A.; Dervishi, V.; Moser-Reischl, A.; Ludwig, F.; Pretzsch, H.; Rötzer, T.; Pauleit, S. Comparative analysis of shade and underlying surfaces on cooling effect. Urban For. Urban Green. 2021, 63, 127223. [Google Scholar] [CrossRef]
- Zentrum Stadtnatur Und Klimaanpassung. 100Places:M. Available online: https://www.zsk.tum.de/en/zsk/the-zsk-subprojects/completed-projects/100placesm/ (accessed on 6 May 2024).
- Stark da Silva, P.W.; Duarte, D.; Pauleit, S. The Role of the Design of Public Squares and Vegetation Composition on Human Thermal Comfort in Different Seasons a Quantitative Assessment. Land 2023, 12, 427. [Google Scholar] [CrossRef]
- München, L. Bevölkerung. Available online: https://stadt.muenchen.de/infos/statistik-bevoelkerung.html (accessed on 6 May 2024).
- Rötzer, T.; Rahman, M.A.; Moser-Reischl, A.; Pauleit, S.; Pretzsch, H. Process based simulation of tree growth and ecosystem services of urban trees under present and future climate conditions. Sci. Total Environ. 2019, 676, 651–664. [Google Scholar] [CrossRef]
- Matzarakis, A.; Mayer, H. Another Kind of Environmental Stress: Thermal stress. Newsletter Institute for Water, Soil and Air Hygiene—Federal Environmental Agency 7–10. Available online: https://www.academia.edu/22149629/Another_kind_of_environmental_stress_thermal_stress (accessed on 17 July 2024).
- Morakinyo, T.E.; Ouyang, W.; Lau, K.K.-L.; Ren, C.; Ng, E. Right tree, right place (urban canyon): Tree species selection approach for optimum urban heat mitigation—Development and evaluation. Sci. Total Environ. 2020, 719, 137461. [Google Scholar] [CrossRef]
- Ouyang, W.; Ren, G.; Tan, Z.; Li, Y.; Ren, C. Natural shading vs. artificial shading: A comparative analysis of their cooling efficacy in extreme hot weather. Urban Clim. 2024, 55, 101870. [Google Scholar] [CrossRef]
- Muenchen.de. Das Sind Die Sehenswerten Plätze in München. Available online: https://www.muenchen.de/sehenswuerdigkeiten/sehenswerte-plaetze (accessed on 23 May 2024).
- Li, G.; Ren, Z.; Zhan, C. Sky View Factor-based correlation of landscape morphology and the thermal environment of street canyons: A case study of Harbin, China. Build. Environ. 2020, 169, 106587. [Google Scholar] [CrossRef]
- Yangki, D.P. Impact of Urban Greening and Verticalization on the Outdoor Thermal Comfort: A Case Study of Thimphu City, Bhutan. Master’s Thesis, Glasgow Caledonian University, Glasgow, UK, 2023. [Google Scholar]
- Zhang, J.; Gou, Z.; Lu, Y.; Lin, P. The impact of sky view factor on thermal environments in urban parks in a subtropical coastal city of Australia. Urban For. Urban Green. 2019, 44, 126422. [Google Scholar] [CrossRef]
- Chen, S.; Wong, N.H.; Zhang, W.; Ignatius, M. The impact of urban morphology on the spatiotemporal dimension of estate-level air temperature: A case study in the tropics. Build. Environ. 2023, 228, 109843. [Google Scholar] [CrossRef]
- Deng, X.; Nie, W.; Li, X.; Wu, J.; Yin, Z.; Han, J.; Pan, H.; Lam, C.K.C. Influence of built environment on outdoor thermal comfort: A comparative study of new and old urban blocks in Guangzhou. Build. Environ. 2023, 234, 110133. [Google Scholar] [CrossRef]
- Yilmaz, S.; Mutlu, E.; Yilmaz, H. Alternative scenarios for ecological urbanizations using ENVI-met model. Environ. Sci. Pollut. Res. Int. 2018, 25, 26307–26321. [Google Scholar] [CrossRef] [PubMed]
- Azimi, Z.; Kashfi, S.S.; Semiari, A.; Shafaat, A. Outdoor thermal comfort in open transitional spaces with limited greenery in hot summer/cold winter climates. Discov. Env. 2024, 2, 31. [Google Scholar] [CrossRef]
- Rachid, A.; Bartlett, D.; Qureshi, A.M. Quantifying the cooling effect of urban heat stress interventions. Int. J. Glob. Warm. 2023, 30, 60. [Google Scholar] [CrossRef]
- Zheng, X.; Zhang, N.; Wang, X. Development of a modified thermal humidity index and its application to human thermal comfort of urban vegetation patches. Ecosyst. Health Sustain. 2022, 8, 2130095. [Google Scholar] [CrossRef]
- Yu, H.; Fukuda, H.; Zhou, M.; Ma, X. Improvement Strategies for Microclimate and Thermal Comfort for Urban Squares: A Case of a Cold Climate Area in China. Buildings 2022, 12, 944. [Google Scholar] [CrossRef]
- Wong, N.H.; Kwang Tan, A.Y.; Chen, Y.; Sekar, K.; Tan, P.Y.; Chan, D.; Chiang, K.; Wong, N.C. Thermal evaluation of vertical greenery systems for building walls. Build. Environ. 2010, 45, 663–672. [Google Scholar] [CrossRef]
- da Silva, S.; Priscila, W. O impacto das Fachadas Verdes Nos Microclimas Urbanos. Master’s Thesis, Universidade de Sao Paulo (USP), Sao Paulo, Brazil, 2018. [Google Scholar]
- Li, J.; Zheng, B.; Ouyang, X.; Chen, X.; Bedra, K.B. Does shrub benefit the thermal comfort at pedestrian height in Singapore? Sustain. Cities Soc. 2021, 75, 103333. [Google Scholar] [CrossRef]
- Hendel, M.; Parison, S.; Grados, A.; Royon, L. Which pavement structures are best suited to limiting the UHI effect? A laboratory-scale study of Parisian pavement structures. Build. Environ. 2018, 144, 216–229. [Google Scholar] [CrossRef]
- Spronken-Smith, R.A.; Oke, T.R. Scale Modelling of Nocturnal Cooling in Urban Parks. Meteorol 1999, 93, 287–312. [Google Scholar] [CrossRef]
- Irmak, M.A.; Yilmaz, S.; Dursun, D. Effect of different pavements on human thermal comfort conditions. Atmósfera 2017, 30, 355–366. [Google Scholar] [CrossRef]
Day Classification | Typical Spring Day | Typical Summer Day | Typical Autumn Day |
---|---|---|---|
Start of simulation | 26 March 2020 | 30 July 2020 | 18 September 2020 |
Duration of simulations | 48 h | 48 h | 48 h |
Modell grid size/resolution | Alpenplatz 300 × 300 × 25 (x, y, z) Vertical equidistant grid | ||
Marstallplatz 350 × 350 × 25 (x, y, z) Vertical equidistant grid | |||
Building material | Default wall—moderate insulation | ||
Soil material | Sandy Clay Loam, Granite, Asphalt with Gravel | ||
Grass (Grass, Shrubs, Trees and Mix scenarios) | Simple plant: Grass 25 cm aver. dense | ||
Shrubs (Shrubs and Mix scenarios) | Simple plant: Hedge dense, 2 m | ||
Trees (Trees and Mix scenarios) | 3D plant: Tilia Cordata | ||
Min/Max Ta | −2.00/16.50 °C | 17.60/33.7 °C | 7.10/22.40 °C |
Min/Max RH | 35/80% | 33/91% | 49/91% |
The daily sum of solar incoming radiation | 1770 J/cm2 | 2676 J/cm2 | 1786 J/m2 |
Relative soil humidity | Upper layer: 70%, Middle and Deep layer: 75% | ||
Lateral boundary conditions | Full forcing |
Average PET between 10 a.m. and 4 p.m. PET Range Interpretation, According to Matzarakis and Mayer (1996) | ||
---|---|---|
Typical Day | Current Scenario | No-Green |
Typical spring day | 13.98 °C (Slight cold stress) | 18.04 °C (Slight cold stress) |
Typical summer day | 33.97 °C (Moderate heat stress) | 40.96 °C (Strong heat stress) |
Typical autumn day | 19.46 °C (No thermal stress) | 20.48 °C (No thermal stress) |
Average PET 2 a.m. | |||||
---|---|---|---|---|---|
Typical Day | No-Green | Grass | Shrubs | Trees | Mix |
Typical spring day | 3.22 °C | 3.13 °C | 3.08 °C | 2.41 °C | 2.63 °C |
Typical summer day | 13.57 °C | 14.02 °C | 14.39 °C | 15.28 °C | 15.17 °C |
Typical autumn day | 7.55 °C | 7.80 °C | 7.95 °C | 8.49 °C | 8.32 °C |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stark da Silva, P.W.; Duarte, D.H.S.; Rahman, M.A.; Rötzer, T.; Pauleit, S. Testing Strategies for Planting Design in Urban Squares to Improve Human Comfort throughout the Seasons. Atmosphere 2024, 15, 870. https://doi.org/10.3390/atmos15080870
Stark da Silva PW, Duarte DHS, Rahman MA, Rötzer T, Pauleit S. Testing Strategies for Planting Design in Urban Squares to Improve Human Comfort throughout the Seasons. Atmosphere. 2024; 15(8):870. https://doi.org/10.3390/atmos15080870
Chicago/Turabian StyleStark da Silva, Priscila Weruska, Denise Helena Silva Duarte, Mohammad Asrafur Rahman, Thomas Rötzer, and Stephan Pauleit. 2024. "Testing Strategies for Planting Design in Urban Squares to Improve Human Comfort throughout the Seasons" Atmosphere 15, no. 8: 870. https://doi.org/10.3390/atmos15080870
APA StyleStark da Silva, P. W., Duarte, D. H. S., Rahman, M. A., Rötzer, T., & Pauleit, S. (2024). Testing Strategies for Planting Design in Urban Squares to Improve Human Comfort throughout the Seasons. Atmosphere, 15(8), 870. https://doi.org/10.3390/atmos15080870