The Assessment of Precipitation and Droughts in the Aegean Region Using Stochastic Time Series and Standardized Precipitation Index
Abstract
:1. Introduction
The Study Area and Available Data
2. Methods
2.1. The Standardized Precipitation Index (SPI)
2.2. Time Series Modeling
Linear AR Models
2.3. Test of Goodness of Fit Criterion
2.3.1. Akaike Information Criterion
2.3.2. Corrected Akaike Information Criterion
2.3.3. Final Prediction Error Criterion
2.3.4. Minimum Residual Variance
3. Results
3.1. SPI Analysis Assessment
3.1.1. SPI-1 Analysis
- Afyonkarahisar station: 1973–1979, 1985–1989, 1990–2012, and 2014–2019;
- Aydın station: 1972–1973, 1989–1992, 2001–2004, 2006, 2008, and 2016;
- Denizli station: 1977, 1989–1990, 2001, 1997, 2007–2008, 2001–2005, and 2014–2016;
- İzmir station: 1973–1974, 1977–1979, 1983–1984, 1987–1989, 1991, 1992, 2001–2008, and 2012–2018;
- Kütahya station: 1972–1974, 1982–1984, 1986–1989, 1990–1995, 1997–2001, 2002–2008, and 2013–2016;
- Manisa station: 1976–1984, 1986–1989, 1990–1993, 1995–2000, 2002–2006, 2010–2014, and 2016–2018;
- Muğla station: 1973–1976, 1981–1985, 1989–1992, 1995–2004, 2010–2016, and 2017;
- Uşak station: 1983–1992, 2001–2004, 2008–2011, 2014–2019, and 2020;
- Yatağan station: 1973–1974, 1977, 1984–1989, 1990–1995, 2000–2004, 2014–2020.
3.1.2. SPI-3 Analysis
- Afyonkarahisar station: 1972–1975, 1983–1986, 1989–1994, 2000–2007, 2011–2012, and 2014–2017;
- Aydın station: 1972–1973, 1976–1978, 1986–1990, 1999, 2001, 2004, 2010–2016, and 2020;
- Denizli station: 1972–1977, 1982–1986, 1988–1989, 1994–1996, 2005–2008, and 2016–2018;
- İzmir station: 1972–1974, 1977, 1981–1984, 1987–1989, 1991–1992, 2004–2005, 2007–2010, 2012–2013, and 2017–2018;
- Kütahya station: 1973, 1978–1979, 1982–1986, 1990–1993, 1999–2008, and 2010–2014;
- Manisa station: 1973, 1979–1984, 1988–1994, 1999–2004, 2007–2008, 2012, and 2014;
- Muğla station: 1972–1973, 1977–1978, 1981–1989, 1990–1992, 1999–2004, and 2007–2012;
- Uşak station: 1978, 1986–1989, 1990–1993, 2001–2011, 2014–2019, and 2020;
- Yatağan station: 1973–1974, 1976–1977, 1985–1992, 1998–2004, 2014–2015, 2020.
3.1.3. SPI-6 Analysis
- Afyonkarahisar station: 1973–1975, 1983–1989, 1994, 2005–2007, and 2014–2017;
- Aydın station: 1972–1973, 1987–1992, 1999, 2004, 2007–2008, 2014, and 2016;
- Denizli station: 1974–1975, 1977, 1980–1983, 1986–1989, 1994–1997, 2002, 2005, 2007–2008, and 2014–2018;
- İzmir station: 1972–1977, 1981–1983, 1987–1992, 1999–2005, 2007–2008, and 2017–2018;
- Kütahya station: 1982–1985, 1988–1989, 2000–2006, 2007–2008, and 2012–2014;
- Manisa station: 1972–1973, 1984–1992, 1999–2004, and 2007–2008;
- Muğla station: 1973–1974, 1981, 1989–1992, 2000–2004, 2007–2010, and 2016–2017;
- Uşak station: 1988–1989, 1992–2001, 2004–2007, 2014–2017, and 2020;
- Yatağan station: 1973–1974, 1977, 1984–1992, 1999–2001, 2000–2004, 2020.
3.1.4. SPI-9 Analysis
- Afyonkarahisar station: 1973–1975, 1983, 1989–1994, 2005, and 2017;
- Aydın station: 1973, 1976, 1988–1992, 1999, and 2016;
- Denizli station: 1974–1977, 1983–1989, 1991–1993, 2002–2005, 2008–2010, 2013–2014, and 2016–2019;
- İzmir station: 1972–1974, 1977, 1982–1984, 1987, 1990–1993, 2000, and 2005–2008;
- Kütahya station: 1982–1986, 1989–1992, 2001, 2005–2008, and 2013–2014;
- Manisa station: 1972–1973, 1986–1992, 2001–2008, and 2020;
- Muğla station: 1973–1974, 1989–1992, 2000–2008, 2010, and 2017;
- Uşak station: 1988–1989, 1992–2001, 2004–2005, 2014–2017, and 2020;
- Yatağan station: 1973–1974, 1988–1992, 1999–2000, 2020.
3.1.5. SPI-12 Analysis
- Afyonkarahisar station: 1973–1975, 1989, 1994, 2005, and 2017;
- Aydın station: 1973, 1990–1992, 2005, and 2007;
- Denizli station: 1973–1975, 1982–1997, 2002–2003, 2007–2008, 2010–2017, and 2018–2019;
- İzmir station: 1973–1974, 1978, 1983–1984, 1989–1993, 2000–2001, 2004–2007, and 2008–2009;
- Kütahya station: 1982–1989, 1990–1993, 2001–2008, and 2013–2014;
- Manisa station: 1985–1992, 2001–2007, 2008, and 2018;
- Muğla station: 1973–1974, 1989–1992, 2000–2001, 2007–2008, and 2017;
- Uşak station: 1988–1989, 2001–2005, 2019, and 2020;
- Yatağan station: 1973–1974, 1990–1992, and 2020.
3.2. Time Series Analysis Assessment
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fontaine, M.M.; Steinemann, A.C. Assessing Vulnerability to Natural Hazards: Impact-Based Method and Application to Drought in Washington State. Nat. Hazards Rev. 2009, 10, 11–18. [Google Scholar] [CrossRef]
- Sirdas, S.; Sen, Z. Meteorolojik kuraklık modellemesi ve Türkiye uygulaması. itüdergisi 2003, 2, 95–103. [Google Scholar]
- Chen, S.T.; Kuo, C.C.; Yu, P.S. Historical trends and variability of meteorological droughts in Taiwan. Hydrol. Sci. J. 2009, 54, 430–441. [Google Scholar] [CrossRef]
- Azarakhshi, M.; Mahdavi, M.; Arzani, H.; Ahmadi, H. Assessment of the Palmer drought severity index in arid and semi arid rangeland: (Case study: Qom province, Iran). Desert 2011, 16, 77–85. [Google Scholar]
- Dastorani, M.T.T.; Afkhami, H. Application of artificial neural networks on drought prediction in Yazd (Central Iran). Desert 2011, 16, 39–48. [Google Scholar]
- Nohegar, A.; Heydarzadeh, M.; Malekian, A. Assessment of Severity of Droughts Using Geostatistics Method(Case Study: Southern Iran). Desert 2013, 18, 79–87. [Google Scholar]
- Kallis, G. Droughts. Annu. Rev. Environ. Resour. 2008, 33, 85–118. [Google Scholar] [CrossRef]
- Politi, N.; Vlachogiannis, D.; Sfetsos, A.; Nastos, P.T.; Dalezios, N.R. High Resolution Future Projections of Drought Characteristics in Greece Based on SPI and SPEI Indices. Atmosphere 2022, 13, 1468. [Google Scholar] [CrossRef]
- Kostopoulou, E.; Giannakopoulos, C. Projected Changes in Extreme Wet and Dry Conditions in Greece. Climate 2023, 11, 49. [Google Scholar] [CrossRef]
- Stathi, E.; Kastridis, A.; Myronidis, D. Analysis of Hydrometeorological Trends and Drought Severity in Water-Demanding Mediterranean Islands under Climate Change Conditions. Climate 2023, 11, 106. [Google Scholar] [CrossRef]
- Darabi, H.; Danandeh Mehr, A.; Kum, G.; Sönmez, M.E.; Dumitrache, C.A.; Diani, K.; Celebi, A.; Torabi Haghighi, A. Hydroclimatic Trends and Drought Risk Assessment in the Ceyhan River Basin: Insights from SPI and STI Indices. Hydrology 2023, 10, 157. [Google Scholar] [CrossRef]
- Stefanidis, S.; Rossiou, D.; Proutsos, N. Drought Severity and Trends in a Mediterranean Oak Forest. Hydrology 2023, 10, 167. [Google Scholar] [CrossRef]
- Mersin, D.; Safari, M.J.S.; Vaheddoost, B.; Tayfur, G. Drought Assessment in Büyük Menderes Basin of Turkey. In Proceedings of the 5th International Congress of Developing Agriculture, Natural Resources, Environment and Tourism of Iran, Tabriz, Iran, 5–7 January 2021. [Google Scholar]
- Mersin, D.; Tayfur, G.; Vaheddoost, B.; Safari, M.J.S. Historical Trends Associated with Annual Temperature and Precipitation in Aegean Turkey, Where Are We Heading? Sustainability 2022, 14, 13380. [Google Scholar] [CrossRef]
- Gul, E.; Staiou, E.; Safari, M.J.S.; Vaheddoost, B. Enhancing Meteorological Drought Modeling Accuracy Using Hybrid Boost Regression Models: A Case Study from the Aegean Region, Türkiye. Sustainability 2023, 15, 11568. [Google Scholar] [CrossRef]
- Kourtis, I.M.; Vangelis, H.; Tigkas, D.; Mamara, A.; Nalbantis, I.; Tsakiris, G.; Tsihrintzis, V.A. Drought Assessment in Greece Using SPI and ERA5 Climate Reanalysis Data. Sustainability 2023, 15, 15999. [Google Scholar] [CrossRef]
- Sakellariou, S.; Spiliotopoulos, M.; Alpanakis, N.; Faraslis, I.; Sidiropoulos, P.; Tziatzios, G.A.; Karoutsos, G.; Dalezios, N.R.; Dercas, N. Spatiotemporal Drought Assessment Based on Gridded Standardized Precipitation Index (SPI) in Vulnerable Agroecosystems. Sustainability 2024, 16, 1240. [Google Scholar] [CrossRef]
- Ilinca, C.; Anghel, C.G. Flood-Frequency Analysis for Dams in Romania. Water 2022, 14, 2884. [Google Scholar] [CrossRef]
- Anghel, C.G.; Stanca, S.C.; Ilinca, C. Two-Parameter Probability Distributions: Methods, Techniques and Comparative Analysis. Water 2023, 15, 3435. [Google Scholar] [CrossRef]
- Ilinca, C.; Stanca, S.C.; Anghel, C.G. Assessing Flood Risk: LH-Moments Method and Univariate Probability Distributions in Flood Frequency Analysis. Water 2023, 15, 3510. [Google Scholar] [CrossRef]
- Ilinca, C.; Anghel, C.G. Flood Frequency Analysis Using the Gamma Family Probability Distributions. Water 2023, 15, 1389. [Google Scholar] [CrossRef]
- Anghel, C.G.; Ilinca, C. Evaluation of Various Generalized Pareto Probability Distributions for Flood Frequency Analysis. Water 2023, 15, 1557. [Google Scholar] [CrossRef]
- Anghel, C.G.; Ilinca, C. Predicting Flood Frequency with the LH-Moments Method: A Case Study of Prigor River, Romania. Water 2023, 15, 2077. [Google Scholar] [CrossRef]
- Baran, T.; Guner Bacanli, U.; Dikbas, F. Drought analysis with SPI index and entropy. Eur. Water 2017, 60, 263–270. [Google Scholar]
- Mishra, A.K.; Singh, V.P. A review of drought concepts. J. Hydrol. 2010, 391, 202–216. [Google Scholar] [CrossRef]
- Liu, Q.; Zhang, G.; Ali, S.; Wang, X.; Wang, G.; Pan, Z.; Zhang, J. SPI-based drought simulation and prediction using ARMA-GARCH model. Appl. Math. Comput. 2019, 355, 96–107. [Google Scholar] [CrossRef]
- Rezaiy, R.; Shabri, A. Drought forecasting using W-ARIMA model with standardized precipitation index. J. Water Clim. Chang. 2023, 14, 3345–3367. [Google Scholar] [CrossRef]
- Singh, U.; Sharma, P.K. Drought forecasting using the stochastic model in the Betwa river basin, India. Model. Earth Syst. Environ. 2022, 8, 1771–1786. [Google Scholar] [CrossRef]
- Mishra, A.K.; Desai, V.R. Spatial and temporal drought analysis in the kansabati river basin, india. Int. J. River Basin Manag. 2005, 3, 43–52. [Google Scholar] [CrossRef]
- Nirmala, M.; Sundaram, S.M. A Seasonal Arima Model for Forecasting Monthly Rainfall in Tamilnadu. Natl. J. Adv. Build. Sci. Mech. 2010, 1, 43–47. [Google Scholar]
- Durdu, Ö.F. Application of linear stochastic models for drought forecasting in the Büyük Menderes river basin, western Turkey. Stoch. Environ. Res. Risk Assess. 2010, 24, 1145–1162. [Google Scholar] [CrossRef]
- Moreira, E.E.; Martins, D.S.; Pereira, L.S. Assessing drought cycles in SPI time series using a Fourier analysis. Nat. Hazards Earth Syst. Sci. 2015, 15, 571–585. [Google Scholar] [CrossRef]
- Salahi, B.; Nohegar, A.; Behrouzi, M. The modeling of precipitation and future droughts of mashhad plain using stochastic time series and standardized precipitation index (SPI). Int. J. Environ. Res. 2016, 10, 625–636. [Google Scholar]
- Habibi, B.; Meddi, M.; Torfs, P.J.J.F.; Remaoun, M.; Van Lanen, H.A.J. Characterisation and prediction of meteorological drought using stochastic models in the semi-arid Chéliff–Zahrez basin (Algeria). J. Hydrol. Reg. Stud. 2018, 16, 15–31. [Google Scholar] [CrossRef]
- Guner Bacanli, U. Dryness characterization: A climatic water deficit approach in Turkey. Fresenius Environ. Bull. 2011, 20, 665–677. [Google Scholar]
- McKee, T.B.; Doesken, N.J.; Kleist, J. THE RELATIONSHIP OF DROUGHT FREQUENCY AND DURATION TO TIME SCALES. In Proceedings of the Eighth Conference on Applied Climatology, Anaheim, CA, USA, 17–22 January 1993. [Google Scholar]
- Ganguli, P.; Janga Reddy, M. Ensemble prediction of regional droughts using climate inputs and the SVM-copula approach. Hydrol. Process. 2014, 28, 4989–5009. [Google Scholar] [CrossRef]
- Zhang, Y.; Cai, W.; Chen, Q.; Yao, Y.; Liu, K. Analysis of changes in precipitation and drought in Aksu River Basin, Northwest China. Adv. Meteorol. 2015, 2015, 215840. [Google Scholar] [CrossRef]
- Guttman, N.B. Accepting the Standardized Precipitation Index: A Calculation Algorithm. J. Am. Water Resour. Assoc. 1999, 35, 311–322. [Google Scholar] [CrossRef]
- Salas, J.D.; Delleur, J.W.; Yevjevich, V.; Lane, W.L. Applied Modeling of Hydrologic Time Series; Water Resources Publications (First Printing 1980): Littleton, CO, USA, 1985. [Google Scholar]
- Salas, J.D.; Smith, R.A. Physical basis of stochastic models of annual flows. Water Resour. Res. 1981, 17, 428–430. [Google Scholar] [CrossRef]
- Box, G.E.P.; Jenkins, G.M. Time Series Analysis, Forecasting and Control; Holden Day: San Francisco, CA, USA, 1976. [Google Scholar]
- Salas, J.D. Analysis and modeling of hydrologic time series. In Handbook of Hydrology; Maidment, D.R., Ed.; McGraw-Hill: New York, NY, USA, 1993; pp. 19.1–19.72. [Google Scholar]
- Bayazıt, M. Statistical Methods in Hydrology; İTÜ: Istanbul, Turkey, 1981. [Google Scholar]
- Akaike, H. A New Look at the Statistical Model Identification. IEEE Trans. Automat. Contr. 1974, 19, 716–723. [Google Scholar] [CrossRef]
- Hurvich, C.M.; Tsai, C.L. Regression and time series model selection in small samples. Biometrika 1989, 76, 297–307. [Google Scholar] [CrossRef]
- Akaike, H. Fitting autoregressive model for prediction. Ann. Inst. Stat. Math. 1969, 21, 243–247. [Google Scholar] [CrossRef]
- Hayes, M.; Svoboda, M.; Wall, N.; Widhalm, M. The lincoln declaration on drought indices: Universal meteorological drought index recommended. Bull. Am. Meteorol. Soc. 2011, 92, 485–488. [Google Scholar] [CrossRef]
- Keyantash, J.; Dracup, J.A. The Quantification of Drought: An Evaluation of Drought Indices. Am. Meteorol. Soc. 2002, 83, 1167–1180. [Google Scholar] [CrossRef]
- Morid, S.; Smakhtin, V.; Moghaddasi, M. Comparison of seven meteorological indices for drought monitoring in Iran. Int. J. Climatol. 2006, 26, 971–985. [Google Scholar] [CrossRef]
- Livada, I.; Assimakopoulos, V.D. Spatial and temporal analysis of drought in Greece using the Standardized Precipitation Index (SPI). Theor. Appl. Climatol. 2007, 89, 143–153. [Google Scholar] [CrossRef]
- Laimighofer, J.; Laaha, G. How standard are standardized drought indices? Uncertainty components for the SPI & SPEI case. J. Hydrol. 2022, 613, 128385. [Google Scholar] [CrossRef]
- Carbone, G.J.; Lu, J.; Brunetti, M. Estimating uncertainty associated with the standardized precipitation index. Int. J. Climatol. 2018, 38, e607–e616. [Google Scholar] [CrossRef]
- Aghakouchak, A.; Pan, B.; Mazdiyasni, O.; Sadegh, M.; Jiwa, S.; Zhang, W.; Love, C.A.; Madadgar, S.; Papalexiou, S.M.; Davis, S.J.; et al. Status and prospects for drought forecasting: Opportunities in artificial intelligence and hybrid physical-statistical forecasting. Philos. Trans. R. Soc. A 2022, 380, 20210288. [Google Scholar] [CrossRef]
Station | Latitude | Height (m) | Annual Mean Precipitation (mm) | Annual Mean Temperature |
---|---|---|---|---|
Afyonkarahisar | 38.5 | 1007.0 | 418.3 | 11.1 |
Aydın | 37.5 | 65.0 | 657.9 | 19.6 |
Denizli | 41.0 | 420.0 | 555.4 | 16.0 |
İzmir | 38.3 | 0.0 | 680.0 | 17.8 |
Kütahya | 39.3 | 970.0 | 560.0 | 10.7 |
Manisa | 38.4 | 50.0 | 726.5 | 16.9 |
Muğla | 37.1 | 660.0 | 1170.5 | 15.0 |
Uşak | 37.1 | 907.0 | 536.7 | 12.4 |
Yatağan | 37.2 | 367.0 | 642.9 | 19.0 |
Station | Mean | S. Deviation | Skewness | Kurtosis | Maximum | Minimum |
---|---|---|---|---|---|---|
Afyonkarahisar | 35.6 | 26.9 | 1.0 | 1.5 | 170.5 | 0.0 |
Aydın | 52.8 | 55.8 | 1.5 | 2.4 | 344.1 | 0.0 |
Denizli | 46.7 | 43.6 | 1.4 | 2.7 | 288.8 | 0.0 |
İzmir | 58.7 | 67.8 | 1.6 | 3.0 | 411.6 | 0.0 |
Kütahya | 45.9 | 35.8 | 1.3 | 2.8 | 255.8 | 0.0 |
Manisa | 59.9 | 64.4 | 1.7 | 3.9 | 401.9 | 0.0 |
Muğla | 96.2 | 106.7 | 1.6 | 2.7 | 645.3 | 0.0 |
Uşak | 44.2 | 36.9 | 1.1 | 1.0 | 211.7 | 0.0 |
Yatağan | 53.6 | 56.6 | 1.5 | 2.5 | 340.8 | 0.0 |
SPI | Drought Category |
---|---|
2 or more | Extremely wet |
1.5 to 1.99 | Very wet |
1 to 1.49 | Moderately wet |
0.99 to 0 | Normal |
0 to −0.99 | Near normal |
−1 to −1.49 | Moderately dry |
−1.5 to −1.99 | Severely dry |
−2 and less | Extremely dry |
Denizli | Months | ||||
---|---|---|---|---|---|
1 | 3 | 6 | 9 | 12 | |
Extremely wet | 0.01 | 0.02 | 0.01 | 0.02 | 0.02 |
Very wet | 0.04 | 0.05 | 0.05 | 0.03 | 0.04 |
Moderately wet | 0.11 | 0.10 | 0.10 | 0.12 | 0.12 |
Normal | 0.37 | 0.35 | 0.36 | 0.33 | 0.32 |
Near normal | 0.37 | 0.31 | 0.32 | 0.31 | 0.32 |
Moderately dry | 0.07 | 0.11 | 0.10 | 0.10 | 0.09 |
Severely dry | 0.03 | 0.04 | 0.05 | 0.06 | 0.07 |
Extremely dry | 0.02 | 0.02 | 0.02 | 0.02 | 0.01 |
İzmir | Months | ||||
---|---|---|---|---|---|
1 | 3 | 6 | 9 | 12 | |
Extremely wet | 0.03 | 0.02 | 0.01 | 0.01 | 0.01 |
Very wet | 0.03 | 0.05 | 0.05 | 0.03 | 0.03 |
Moderately wet | 0.08 | 0.08 | 0.12 | 0.16 | 0.17 |
Normal | 0.47 | 0.36 | 0.33 | 0.29 | 0.30 |
Near normal | 0.28 | 0.32 | 0.33 | 0.33 | 0.31 |
Moderately dry | 0.06 | 0.10 | 0.10 | 0.12 | 0.14 |
Severely dry | 0.03 | 0.04 | 0.03 | 0.03 | 0.03 |
Extremely dry | 0.02 | 0.02 | 0.03 | 0.03 | 0.02 |
Denizli | VAR(e) | AIC | AICC | FPE |
---|---|---|---|---|
AR(1) | 0.89 | −136.04 | −138.03 | 0.79 |
AR(2) | 0.86 | −172.85 | −176.84 | 0.74 |
AR(3) | 0.84 | −191.57 | −197.56 | 0.72 |
İzmir | VAR(e) | AIC | AICC | FPE |
---|---|---|---|---|
AR(1) | 0.88 | −139.68 | −141.67 | 0.79 |
AR(2) | 0.83 | −213.34 | −217.33 | 0.69 |
AR(3) | 0.85 | −178.34 | −184.33 | 0.73 |
Station | VAR(e) | AIC | AICC | FPE |
---|---|---|---|---|
Afyonkarahisar | AR(2) | AR(2) | AR(2) | AR(2) |
Aydın | AR(2) | AR(2) | AR(2) | AR(2) |
Denizli | AR(3) | AR(3) | AR(3) | AR(3) |
İzmir | AR(2) | AR(2) | AR(2) | AR(2) |
Kütahya | AR(2) | AR(2) | AR(2) | AR(2) |
Manisa | AR(2) | AR(2) | AR(2) | AR(2) |
Muğla | AR(2) | AR(2) | AR(2) | AR(2) |
Uşak | AR(2) | AR(2) | AR(2) | AR(2) |
Yatağan | AR(2) | AR(2) | AR(2) | AR(2) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tanrıkulu, A.; Guner, U.; Bahar, E. The Assessment of Precipitation and Droughts in the Aegean Region Using Stochastic Time Series and Standardized Precipitation Index. Atmosphere 2024, 15, 1001. https://doi.org/10.3390/atmos15081001
Tanrıkulu A, Guner U, Bahar E. The Assessment of Precipitation and Droughts in the Aegean Region Using Stochastic Time Series and Standardized Precipitation Index. Atmosphere. 2024; 15(8):1001. https://doi.org/10.3390/atmos15081001
Chicago/Turabian StyleTanrıkulu, Ahmet, Ulker Guner, and Ersin Bahar. 2024. "The Assessment of Precipitation and Droughts in the Aegean Region Using Stochastic Time Series and Standardized Precipitation Index" Atmosphere 15, no. 8: 1001. https://doi.org/10.3390/atmos15081001
APA StyleTanrıkulu, A., Guner, U., & Bahar, E. (2024). The Assessment of Precipitation and Droughts in the Aegean Region Using Stochastic Time Series and Standardized Precipitation Index. Atmosphere, 15(8), 1001. https://doi.org/10.3390/atmos15081001