Occurrence of Microplastics in the Atmosphere: An Overview on Sources, Analytical Challenges, and Human Health Effects
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. MPs in the Atmosphere
3.1.1. Main Sources of Atmospheric MPs
3.1.2. Fates of Airborne MPs
3.1.3. Fates of Deposited MPs
3.2. Analytical Methodologies
3.2.1. Sampling Methods
3.2.2. Analytical Measurements
Technique | Size Limitation of the Technique | Microplastics Size Range | Ref. |
---|---|---|---|
μ-Raman | >0.45 μm | <100 to >1000 μm | [39] |
μ-Raman | >0.45 μm | <2.5 μm | [6] |
μ-Raman | >0.45 μm | <2.5 to 2.600 μm | [34] |
μ-Raman | >0.45 μm | 1.60 to 16.80 μm | [4] |
μ-ATR–FTIR | >7 μm | 50.01 to 1579.43 μm | [40] |
μ-ATR–FTIR | >7 μm | >50 μm | [60] |
μ-Raman | >0.45 μm | <100 μm | [41] |
μ-FTIR | >20 μm | 140 to 9.96 mm | [19] |
μ-FTIR | >20 μm | <200 to >4200 μm | [33] |
μ-FTIR SEM | >20 μm N/A | <10 μm | [42] |
μ-ATR–FTIR | >7 μm | N/A | [43] |
μ-Raman | >0.45 μm | 5 to 5000 μm | [2] |
μ-ATR–FTIR | >7 μm | <50 to 200 μm | [1] |
μ-Raman | >0.45 μm | 10 to 3094 μm | [44] |
μ-ATR–FTIR | >7 μm | 10 to 4556 μm | [36] |
μ-FTIR | >20 μm | 50 to 2210 μm | [35] |
Stereomicroscope | >100 μm | 100 to 5000 μm | [32] |
μ-ATR–FTIR | >7 μm | 50 to 5000 μm | [45] |
μ-ATR–FTIR | >7 μm | 50 to 4850 μm | [46] |
μ-Raman | >0.45 μm | 158 to 509 μm | [37] |
Py-GC/MS μ-FTIR | 0.01–4 μg >20 μm | N/A | [47] |
μ-ATR–FTIR Py-GC/MS | >7 μm | NA | [26] |
μ-FTIR | >20 μm | 40 to 800 μm | [48] |
μ-ATR–FTIR μ-Raman | >7 μm >0.45 μm | 11 to 1945 μm | [30] |
μ-Raman | >0.45 μm | <63 to 5000 μm | [49] |
μ-FTIR | >20 μm | <200 to >500 μm | [18] |
μ-FTIR | >20 μm | >20 μm | [72] |
μ-FTIR | >20 μm | 16.14 to 2500 μm | [13] |
μ-ATR–FTIR | >7 μm | 20 to 2000 μm | [25] |
LDIR | >20 μm | 37.7 to 95.79 μm | [8] |
μ-FTIR | >20 μm | 50 to 500 μm | [50] |
μ-Raman | >0.45 μm | >2.5 μm | [15] |
μ-FTIR | >20 μm | <35 to >50 μm | [23] |
μ-FTIR | >20 μm | <500 to >4000 μm | [51] |
μ-Raman | >0.45 μm | <5 to >30 μm | [68] |
μ-Raman | >0.45 μm | 183 to 11,877 μm | [52] |
Py-GC/MS | N/A | <250 to 5000 μm | [22] |
μ-FTIR | >20 μm | >20 μm | [43] |
μ-Raman | >0.45 μm | 2 to 100 μm | [54] |
μ-FTIR | >20 μm | >20 to 23,565μm | [20] |
μ-Raman | >0.45 μm | 0.45 to 2800 μm | [64] |
μ-FTIR | >20 μm | 35.38 to 1378.89 μm | [55] |
μ-FTIR | >20 μm | 58.59 to 2251.54 μm | [59] |
μ-FTIR | >20 μm | 25 to 3000 μm | [5] |
μ-Raman | >0.45 μm | 2.40 to 2181.48 μm | [73] |
μ-FTIR | >20 μm | 12.96 to 333.62 μm | [56] |
μ-Raman | >0.45 μm | <500 μm | [57] |
Overall Summary
3.3. Health Implications
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Chen, E.-Y.; Lin, K.-T.; Jung, C.-C.; Chang, C.-L.; Chen, C.-Y. Characteristics and Influencing Factors of Airborne Microplastics in Nail Salons. Sci. Total Environ. 2022, 806, 151472. [Google Scholar] [CrossRef]
- Chandrakanthan, K.; Fraser, M.P.; Herckes, P. Airborne Microplastics in a Suburban Location in the Desert Southwest: Occurrence and Identification Challenges. Atmos. Environ. 2023, 298, 119617. [Google Scholar] [CrossRef]
- Di Fiore, C.; Carriera, F.; Russo, M.V.; Avino, P. Are Microplastics a Macro Issue? A Review on the Sources of Contamination, Analytical Challenges and Impact on Human Health of Microplastics in Food. Foods 2023, 12, 3915. [Google Scholar] [CrossRef]
- Amato-Lourenço, L.F.; Carvalho-Oliveira, R.; Júnior, G.R.; Dos Santos Galvão, L.; Ando, R.A.; Mauad, T. Presence of Airborne Microplastics in Human Lung Tissue. J. Hazard. Mater. 2021, 416, 126124. [Google Scholar] [CrossRef]
- Wright, S.L.; Ulke, J.; Font, A.; Chan, K.L.A.; Kelly, F.J. Atmospheric Microplastic Deposition in an Urban Environment and an Evaluation of Transport. Environ. Int. 2020, 136, 105411. [Google Scholar] [CrossRef]
- Akhbarizadeh, R.; Dobaradaran, S.; Amouei Torkmahalleh, M.; Saeedi, R.; Aibaghi, R.; Faraji Ghasemi, F. Suspended Fine Particulate Matter (PM2.5), Microplastics (MPs), and Polycyclic Aromatic Hydrocarbons (PAHs) in Air: Their Possible Relationships and Health Implications. Environ. Res. 2021, 192, 110339. [Google Scholar] [CrossRef]
- Peñalver, R.; Costa-Gómez, I.; Arroyo-Manzanares, N.; Moreno, J.M.; López-García, I.; Moreno-Grau, S.; Córdoba, M.H. Assessing the Level of Airborne Polystyrene Microplastics Using Thermogravimetry-Mass Spectrometry: Results for an Agricultural Area. Sci. Total Environ. 2021, 787, 147656. [Google Scholar] [CrossRef]
- Liu, N.; Cheng, S.; Wang, X.; Li, Z.; Zheng, L.; Lyu, Y.; Ao, X.; Wu, H. Characterization of Microplastics in the Septic Tank via Laser Direct Infrared Spectroscopy. Water Res. 2022, 226, 119293. [Google Scholar] [CrossRef]
- Rosso, B.; Corami, F.; Barbante, C.; Gambaro, A. Quantification and Identification of Airborne Small Microplastics (<100 Μm) and Other Microlitter Components in Atmospheric Aerosol via a Novel Elutriation and Oleo-Extraction Method. Environ. Pollut. 2023, 318, 120889. [Google Scholar] [CrossRef]
- Thompson, R.C.; Olsen, Y.; Mitchell, R.P.; Davis, A.; Rowland, S.J.; John, A.W.G.; McGonigle, D.; Russell, A.E. Lost at sea: Where is all the plastic? Science 2004, 304, 838. [Google Scholar] [CrossRef]
- Akoueson, F.; Sheldon, L.M.; Danopoulos, E.; Morris, S.; Hotten, J.; Chapman, E.; Li, J.; Rotchell, J.M. A Preliminary Analysis of Microplastics in Edible versus Non-Edible Tissues from Seafood Samples. Environ. Pollut. 2020, 263, 114452. [Google Scholar] [CrossRef]
- Laptenok, S.P.; Martin, C.; Genchi, L.; Duarte, C.M.; Liberale, C. Stimulated Raman Microspectroscopy as a New Method to Classify Microfibers from Environmental Samples. Environ. Pollut. 2020, 267, 115640. [Google Scholar] [CrossRef]
- Liu, K.; Wu, T.; Wang, X.; Song, Z.; Zong, C.; Wei, N.; Li, D. Consistent Transport of Terrestrial Microplastics to the Ocean through Atmosphere. Environ. Sci. Technol. 2019, 53, 10612–10619. [Google Scholar] [CrossRef]
- Danso, I.K.; Woo, J.-H.; Lee, K. Pulmonary Toxicity of Polystyrene, Polypropylene, and Polyvinyl Chloride Microplastics in Mice. Molecules 2022, 27, 7926. [Google Scholar] [CrossRef]
- Liu, P.; Shao, L.; Li, Y.; Jones, T.; Cao, Y.; Yang, C.-X.; Zhang, M.; Santosh, M.; Feng, X.; BéruBé, K. Microplastic Atmospheric Dustfall Pollution in Urban Environment: Evidence from the Types, Distribution, and Probable Sources in Beijing, China. Sci. Total Environ. 2022, 838, 155989. [Google Scholar] [CrossRef]
- Liu, T.; Hou, B.; Wang, Z.; Yang, Y. Polystyrene Microplastics Induce Mitochondrial Damage in Mouse GC-2 Cells. Ecotoxicol. Environ. Saf. 2022, 237, 113520. [Google Scholar] [CrossRef]
- Levermore, J.M.; Smith, T.E.L.; Kelly, F.J.; Wright, S.L. Detection of Microplastics in Ambient Particulate Matter Using Raman Spectral Imaging and Chemometric Analysis. Anal. Chem. 2020, 92, 8732–8740. [Google Scholar] [CrossRef]
- Knobloch, E.; Ruffell, H.; Aves, A.; Pantos, O.; Gaw, S.; Revell, L.E. Comparison of Deposition Sampling Methods to Collect Airborne Microplastics in Christchurch, New Zealand. Water Air Soil Pollut. 2021, 232, 133. [Google Scholar] [CrossRef]
- Baeza-Martínez, C.; Olmos, S.; González-Pleiter, M.; López-Castellanos, J.; García-Pachón, E.; Masiá-Canuto, M.; Hernández-Blasco, L.; Bayo, J. First Evidence of Microplastics Isolated in European Citizens’ Lower Airway. J. Hazard. Mater. 2022, 438, 129439. [Google Scholar] [CrossRef]
- Torres-Agullo, A.; Karanasiou, A.; Moreno, T.; Lacorte, S. Airborne Microplastic Particle Concentrations and Characterization in Indoor Urban Microenvironments. Environ. Pollut. 2022, 308, 119707. [Google Scholar] [CrossRef]
- Chen, C.-Y.; Lu, T.-H.; Wang, W.-M.; Liao, C.-M. Assessing Regional Emissions of Vehicle-Based Tire Wear Particle from Macro-to Micro/Nano-Scales with Pandemic Lockdowns and Electromobility Scenarios Implications. Chemosphere 2023, 311, 137209. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, S.; Okoffo, E.D.; Rauert, C.; O’Brien, J.W.; Ribeiro, F.; Burrows, S.D.; Toapanta, T.; Wang, X.; Thomas, K.V. Quantification of Selected Microplastics in Australian Urban Road Dust. J. Hazard. Mater. 2021, 416, 125811. [Google Scholar] [CrossRef]
- Liu, S.; Bai, F.; Men, Z.; Gu, X.; Wang, F.; Li, Y.; Liu, Q. Spatial Distribution, Source Apportionment and Potential Ecological Risk Assessment of Suspended Atmosphere Microplastics in Different Underlying Surfaces in Harbin. Sci. Total Environ. 2023, 901, 166040. [Google Scholar] [CrossRef]
- Ishimura, T.; Iwai, I.; Matsui, K.; Mattonai, M.; Watanabe, A.; Robberson, W.; Cook, A.-M.; Allen, H.L.; Pipkin, W.; Teramae, N.; et al. Qualitative and Quantitative Analysis of Mixtures of Microplastics in the Presence of Calcium Carbonate by Pyrolysis-GC/MS. J. Anal. Appl. Pyrolysis 2021, 157, 105188. [Google Scholar] [CrossRef]
- Liu, Z.; Huang, Q.; Chen, L.; Li, J.; Jia, H. Is the Impact of Atmospheric Microplastics on Human Health Underestimated? Uncertainty in Risk Assessment: A Case Study of Urban Atmosphere in Xi’an, Northwest China. Sci. Total Environ. 2022, 851, 158167. [Google Scholar] [CrossRef] [PubMed]
- Jarosz, K.; Janus, R.; Wądrzyk, M.; Wilczyńska-Michalik, W.; Natkański, P.; Michalik, M. Airborne Microplastic in the Atmospheric Deposition and How to Identify and Quantify the Threat: Semi-Quantitative Approach Based on Kraków Case Study. Int. J. Environ. Res. Public Health 2022, 19, 12252. [Google Scholar] [CrossRef]
- Li, L.; Hu, J.; Li, J.; Gong, K.; Wang, X.; Ying, Q.; Qin, M.; Liao, H.; Guo, S.; Hu, M.; et al. Modelling air quality during the EXPLORE-YRD campaign—Part II. Regional source apportionment of ozone and PM2.5. Atmos. Environ. 2021, 247, 118063. [Google Scholar] [CrossRef]
- Liu, C.; Hu, H.; Zhou, S.; Chen, X.; Hu, Y.; Hu, J. Change of Composition, Source Contribution, and Oxidative Effects of Environmental PM2.5 in the Respiratory Tract. Environ. Sci. Technol. 2023, 57, 11605–11611. [Google Scholar] [CrossRef]
- Liu, H.; Yu, J.; Zhang, S.; Ding, B. Air-Conditioned Mask Using Nanofibrous Networks for Daytime Radioative Cooling. Nano Lett. 2020, 22, 9485–9492. [Google Scholar] [CrossRef]
- Kernchen, S.; Löder, M.G.J.; Fischer, F.; Fischer, D.; Moses, S.R.; Georgi, C.; Nölscher, A.C.; Held, A.; Laforsch, C. Airborne Microplastic Concentrations and Deposition across the Weser River Catchment. Sci. Total Environ. 2022, 818, 151812. [Google Scholar] [CrossRef]
- Abbasi, S.; Turner, A. Dry and Wet Deposition of Microplastics in a Semi-Arid Region (Shiraz, Iran). Sci. Total Environ. 2021, 786, 147358. [Google Scholar] [CrossRef] [PubMed]
- Dris, R.; Gasperi, J.; Rocher, V.; Saad, M.; Renault, N.; Tassin, B. Microplastic Contamination in an Urban Area: A Case Study in Greater Paris. Environ. Chem. 2015, 12, 592. [Google Scholar] [CrossRef]
- Cai, L.; Wang, J.; Peng, J.; Tan, Z.; Zhan, Z.; Tan, X.; Chen, Q. Characteristic of Microplastics in the Atmospheric Fallout from Dongguan City, China: Preliminary Research and First Evidence. Environ. Sci. Pollut. Res. 2017, 24, 24928–24935. [Google Scholar] [CrossRef]
- Allen, S.; Allen, D.; Phoenix, V.R.; Le Roux, G.; Durántez Jiménez, P.; Simonneau, A.; Binet, S.; Galop, D. Atmospheric Transport and Deposition of Microplastics in a Remote Mountain Catchment. Nat. Geosci. 2019, 12, 339–344. [Google Scholar] [CrossRef]
- Ding, Y.; Zou, X.; Wang, C.; Feng, Z.; Wang, Y.; Fan, Q.; Chen, H. The Abundance and Characteristics of Atmospheric Microplastic Deposition in the Northwestern South China Sea in the Fall. Atmos. Environ. 2021, 253, 118389. [Google Scholar] [CrossRef]
- Ding, J.; Sun, C.; He, C.; Zheng, L.; Dai, D.; Li, F. Atmospheric Microplastics in the Northwestern Pacific Ocean: Distribution, Source, and Deposition. Sci. Total Environ. 2022, 829, 154337. [Google Scholar] [CrossRef] [PubMed]
- Ferrero, L.; Scibetta, L.; Markuszewski, P.; Mazurkiewicz, M.; Drozdowska, V.; Makuch, P.; Jutrzenka-Trzebiatowska, P.; Zaleska-Medynska, A.; Andò, S.; Saliu, F.; et al. Airborne and Marine Microplastics from an Oceanographic Survey at the Baltic Sea: An Emerging Role of Air-Sea Interaction? Sci. Total Environ. 2022, 824, 153709. [Google Scholar] [CrossRef]
- Abbasi, S.; Keshavarzi, B.; Moore, F.; Turner, A.; Kelly, F.J.; Dominguez, A.O.; Jaafarzadeh, N. Distribution and Potential Health Impacts of Microplastics and Microrubbers in Air and Street Dusts from Asaluyeh County, Iran. Environ. Pollut. 2019, 244, 153–164. [Google Scholar] [CrossRef]
- Abbasi, S.; Ahmadi, F.; Khodabakhshloo, N.; Pourmahmood, H.; Esfandiari, A.; Mokhtarzadeh, Z.; Rahnama, S.; Dehbandi, R.; Vazirzadeh, A.; Turner, A. Atmospheric Deposition of Microplastics in Shiraz, Iran. Atmos. Pollut Res. 2024, 15, 101977. [Google Scholar] [CrossRef]
- Amato-Lourenço, L.F.; De Souza Xavier Costa, N.; Dantas, K.C.; Dos Santos Galvão, L.; Moralles, F.N.; Lombardi, S.C.F.S.; Júnior, A.M.; Lindoso, J.A.L.; Ando, R.A.; Lima, F.G.; et al. Airborne Microplastics and SARS-CoV-2 in Total Suspended Particles in the Area Surrounding the Largest Medical Centre in Latin America. Environ. Pollut. 2022, 292, 118299. [Google Scholar] [CrossRef]
- Babaei, P.; Nikravan, A.; Meral, A.; Kibar, B.; Güllü, G. A First Assessment of Microplastic Contamination in the Snow of Ankara, Turkey. Environ. Sci. Pollut. Res. 2023, 30, 103690–103702. [Google Scholar] [CrossRef] [PubMed]
- Caracci, E.; Vega-Herrera, A.; Dachs, J.; Berrojalbiz, N.; Buonanno, G.; Abad, E.; Llorca, M.; Moreno, T.; Farré, M. Micro(Nano)Plastics in the Atmosphere of the Atlantic Ocean. J. Hazard. Mater. 2023, 450, 131036. [Google Scholar] [CrossRef] [PubMed]
- Celik-Saglam, I.; Yurtsever, M.; Civan, M.; Yurdakul, S.; Cetin, B. Evaluation of Levels and Sources of Microplastics and Phthalic Acid Esters and Their Relationships in the Atmosphere of Highly Industrialized and Urbanized Gebze, Türkiye. Sci. Total Environ. 2023, 881, 163508. [Google Scholar] [CrossRef] [PubMed]
- Dehhaghi, S.; Pardakhti, A. Characterization of Microplastics in the Atmosphere of Megacity Tehran (Iran). Environ. Sci. Pollut. Res. 2023, 30, 106026–106037. [Google Scholar] [CrossRef] [PubMed]
- Dris, R.; Gasperi, J.; Saad, M.; Mirande, C.; Tassin, B. Synthetic Fibers in Atmospheric Fallout: A Source of Microplastics in the Environment? Mar. Pollut. Bull. 2016, 104, 290–293. [Google Scholar] [CrossRef] [PubMed]
- Dris, R.; Gasperi, J.; Mirande, C.; Mandin, C.; Guerrouache, M.; Langlois, V.; Tassin, B. A First Overview of Textile Fibers, Including Microplastics, in Indoor and Outdoor Environments. Environ. Pollut. 2017, 221, 453–458. [Google Scholar] [CrossRef] [PubMed]
- Gregoris, E.; Gallo, G.; Rosso, B.; Piazza, R.; Corami, F.; Gambaro, A. Microplastics Analysis: Can We Carry out a Polymeric Characterisation of Atmospheric Aerosol Using Direct Inlet Py-GC/MS? J. Anal. Appl. Pyrolysis 2023, 170, 105903. [Google Scholar] [CrossRef]
- Kaushik, A.; Gupta, P.; Kumar, A.; Saha, M.; Varghese, E.; Shukla, G.; Suresh, K.; Gunthe, S.S. Identification and Physico-Chemical Characterization of Microplastics in Marine Aerosols over the Northeast Arabian Sea. Sci. Total Environ. 2024, 912, 168705. [Google Scholar] [CrossRef]
- Klein, M.; Fischer, E.K. Microplastic Abundance in Atmospheric Deposition within the Metropolitan Area of Hamburg, Germany. Sci. Total Environ. 2019, 685, 96–103. [Google Scholar] [CrossRef]
- Liu, Z.; Bai, Y.; Ma, T.; Liu, X.; Wei, H.; Meng, H.; Fu, Y.; Ma, Z.; Zhang, L.; Zhao, J. Distribution and Possible Sources of Atmospheric Microplastic Deposition in a Valley Basin City (Lanzhou, China). Ecotoxicol. Environ. Saf. 2022, 233, 113353. [Google Scholar] [CrossRef]
- Lu, L.; Zhang, R.; Wang, K.; Tian, J.; Wu, Q.; Xu, L. Occurrence, Influencing Factors and Sources of Atmospheric Microplastics in Peri-Urban Farmland Ecosystems of Beijing, China. Sci. Total Environ. 2024, 912, 168834. [Google Scholar] [CrossRef] [PubMed]
- Martynova, A.; Genchi, L.; Laptenok, S.P.; Cusack, M.; Stenchikov, G.L.; Liberale, C.; Duarte, C.M. Atmospheric Microfibrous Deposition over the Eastern Red Sea Coast. Sci. Total Environ. 2024, 907, 167902. [Google Scholar] [CrossRef] [PubMed]
- Rao, W.; Fan, Y.; Li, H.; Qian, X.; Liu, T. New Insights into the Long-Term Dynamics and Deposition-Suspension Distribution of Atmospheric Microplastics in an Urban Area. J. Hazard. Mater. 2024, 463, 132860. [Google Scholar] [CrossRef] [PubMed]
- Ryan, A.C.; Allen, D.; Allen, S.; Maselli, V.; LeBlanc, A.; Kelleher, L.; Krause, S.; Walker, T.R.; Cohen, M. Transport and Deposition of Ocean-Sourced Microplastic Particles by a North Atlantic Hurricane. Commun. Earth Environ. 2023, 4, 442. [Google Scholar] [CrossRef]
- Wang, X.; Wei, N.; Liu, K.; Zhu, L.; Li, C.; Zong, C.; Li, D. Exponential Decrease of Airborne Microplastics: From Megacity to Open Ocean. Sci. Total Environ. 2022, 849, 157702. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Z.; Pei, C.; Li, H.; Lin, L.; Liu, S.; Hou, R.; Liao, R.; Xu, X. Atmospheric Microplastics at a Southern China Metropolis: Occurrence, Deposition Flux, Exposure Risk and Washout Effect of Rainfall. Sci. Total Environ. 2023, 869, 161839. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Xu, A.; Shi, M.; Su, Y.; Liu, W.; Zhang, Y.; She, Z.; Xing, X.; Qi, S. Atmospheric Deposition Is an Important Pathway for Inputting Microplastics: Insight into the Spatiotemporal Distribution and Deposition Flux in a Mega City. Environ. Pollut. 2024, 341, 123012. [Google Scholar] [CrossRef] [PubMed]
- Perera, K.; Ziajahromi, S.; Nash, S.B.; Leusch, F.D.L. Microplastics in Australian Indoor Air: Abundance, Characteristics, and Implications for Human Exposure. Sci. Total Environ. 2023, 889, 164292. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Li, C.; Liu, K.; Zhu, L.; Song, Z.; Li, D. Atmospheric Microplastic over the South China Sea and East Indian Ocean: Abundance, Distribution and Source. J. Hazard. Mater. 2020, 389, 121846. [Google Scholar] [CrossRef]
- Amato-Lourenço, L.F.; Dos Santos Galvão, L.; Wiebeck, H.; Carvalho-Oliveira, R.; Mauad, T. Atmospheric Microplastic Fallout in Outdoor and Indoor Environments in São Paulo Megacity. Sci. Total Environ. 2022, 821, 153450. [Google Scholar] [CrossRef]
- Trainic, M.; Flores, J.M.; Pinkas, I.; Pedrotti, M.L.; Lombard, F.; Bourdin, G.; Gorsky, G.; Boss, E.; Rudich, Y.; Vardi, A.; et al. Airborne Microplastic Particles Detected in the Remote Marine Atmosphere. Commun. Earth Environ. 2020, 1, 64. [Google Scholar] [CrossRef]
- Rusinque-Quintero, L.L.; Montoya-Rojas, G.A.; Moyano-Molano, A.L. Environmental Risks Due to the Presence of Microplastics in Coastal and Marine Environments of the Colombian Caribbean. Mar. Pollut. Bull. 2022, 185, 114357. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Wang, L.; Kannan, K. Microplastics in House Dust from 12 Countries and Associated Human Exposure. Environ. Int. 2020, 134, 105314. [Google Scholar] [CrossRef] [PubMed]
- Uddin, S.; Fowler, S.W.; Habibi, N.; Sajid, S.; Dupont, S.; Behbehani, M. A Preliminary Assessment of Size-Fractionated Microplastics in Indoor Aerosol—Kuwait’s Baseline. Toxics 2022, 10, 71. [Google Scholar] [CrossRef] [PubMed]
- Sommer, F.; Dietze, V.; Baum, A.; Sauer, J.; Gilge, S.; Maschowski, C.; Gieré, R. Tire Abrasion as a Major Source of Microplastics in the Environment. Aerosol. Air Qual. Res. 2018, 18, 2014–2028. [Google Scholar] [CrossRef]
- Gaston, E.; Woo, M.; Steele, C.; Sukumaran, S.; Anderson, S. Microplastics Differ Between Indoor and Outdoor Air Masses: Insights from Multiple Microscopy Methodologies. Appl. Spectrosc. 2020, 74, 1079–1098. [Google Scholar] [CrossRef] [PubMed]
- Shiu, R.-F.; Chen, L.-Y.; Lee, H.-J.; Gong, G.-C.; Lee, C. New Insights into the Role of Marine Plastic-Gels in Microplastic Transfer from Water to the Atmosphere via Bubble Bursting. Water Res. 2022, 222, 118856. [Google Scholar] [CrossRef] [PubMed]
- Marina-Montes, C.; Pérez-Arribas, L.V.; Anzano, J.; De Vallejuelo, S.F.-O.; Aramendia, J.; Gómez-Nubla, L.; De Diego, A.; Manuel Madariaga, J.; Cáceres, J.O. Characterization of Atmospheric Aerosols in the Antarctic Region Using Raman Spectroscopy and Scanning Electron Microscopy. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2022, 266, 120452. [Google Scholar] [CrossRef]
- Xu, J.-L.; Thomas, K.V.; Luo, Z.; Gowen, A.A. FTIR and Raman Imaging for Microplastics Analysis: State of the Art, Challenges and Prospects. TrAC Trends Anal. Chem. 2019, 119, 115629. [Google Scholar] [CrossRef]
- Di Fiore, C.; Ishikawa, Y.; Wright, S.L. A Review on Methods for Extracting and Quantifying Microplastic in Biological Tissues. J. Hazard. Mater. 2024, 464, 132991. [Google Scholar] [CrossRef]
- Elert, A.M.; Becker, R.; Duemichen, E.; Eisentraut, P.; Falkenhagen, J.; Sturm, H.; Braun, U. Comparison of Different Methods for MP Detection: What Can We Learn from Them, and Why Asking the Right Question before Measurements Matters? Environ. Pollut. 2017, 231, 1256–1264. [Google Scholar] [CrossRef] [PubMed]
- Leonard, J.; Borthakur, A.; Koutnik, V.S.; Brar, J.; Glasman, J.; Cowger, W.; Dittrich, T.M.; Mohanty, S.K. Challenges of Using Leaves as a Biomonitoring System to Assess Airborne Microplastic Deposition on Urban Tree Canopies. Atmos. Pollut. Res. 2023, 14, 101651. [Google Scholar] [CrossRef]
- Xie, Y.; Li, Y.; Feng, Y.; Cheng, W.; Wang, Y. Inhalable Microplastics Prevails in Air: Exploring the Size Detection Limit. Environ. Int. 2022, 162, 107151. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; You, X. Recent Progress of Microplastic Toxicity on Human Exposure Base on in Vitro and in Vivo Studies. Sci. Total Environ. 2023, 903, 166766. [Google Scholar] [CrossRef] [PubMed]
- Zha, H.; Xia, J.; Li, S.; Lv, J.; Zhuge, A.; Tang, R.; Wang, S.; Wang, K.; Chang, K.; Li, L. Airborne Polystyrene Microplastics and Nanoplastics Induce Nasal and Lung Microbial Dysbiosis in Mice. Chemosphere 2023, 310, 136764. [Google Scholar] [CrossRef] [PubMed]
- Carriera, F.; Di Fiore, C.; Avino, P. Trojan Horse Effects of Microplastics: A Mini-Review about Their Role as a Vector of Organic and Inorganic Compounds in Several Matrices. AIMSES 2023, 10, 732–742. [Google Scholar] [CrossRef]
- Oliveri Conti, G.; Ferrante, M.; Banni, M.; Favara, C.; Nicolosi, I.; Cristaldi, A.; Fiore, M.; Zuccarello, P. Micro- and Nano-Plastics in Edible Fruit and Vegetables. The First Diet Risks Assessment for the General Population. Environ. Res. 2020, 187, 109677. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.; Wang, X.; Song, Z.; Wei, N.; Li, D. Terrestrial Plants as a Potential Temporary Sink of Atmospheric Microplastics during Transport. Sci. Total Environ. 2020, 742, 140523. [Google Scholar] [CrossRef] [PubMed]
- Di Fiore, C.; Sammartino, M.P.; Giannattasio, C.; Avino, P.; Visco, G. Microplastic Contamination in Commercial Salt: An Issue for Their Sampling and Quantification. Food Chem. 2023, 404, 134682. [Google Scholar] [CrossRef]
- Wright, S.L.; Kelly, F.J. Plastic and Human Health: A Micro Issue? Environ. Sci. Technol. 2017, 51, 6634–6647. [Google Scholar] [CrossRef]
- Shruti, V.C.; Kutralam-Muniasamy, G. Blanks and Bias in Microplastic Research: Implications for Future Quality Assurance. Trends Environ. Anal. Chem. 2023, 38, e00203. [Google Scholar] [CrossRef]
Concept 1 | Concept 2 | Concept 3 |
---|---|---|
Atmospheric microplastic * | Analytical determination * | Human health |
Atmospheric plastic particle * | Sample treatment * | Adverse effect * |
Atmospheric microplastic particle * | Analytical method * | Inhalation |
OR | OR | OR |
AND | AND (Mesh) |
Location | Area | Sampling Periods | Average Concentration | Shape | Polymer Type | Ref. |
---|---|---|---|---|---|---|
Asaluyeh, Iran | City country | August 2017 | 1 MP m−3 | Fiber | N/A | [38] |
Shiran, Iran Mount Derak | Urban area Remote area | 1 October 2019 to 30 September 2020 | 1909 ± 1038 MPs m−2 366 ± 142 MPs m−2 | Fiber | PP, PS, PE | [31] |
Shiraz, Iran | Urban area | 28 December 2021 to 5 January 2022 | 20 MP m−2 h−1 | Fiber Fragment | PET, PVC, PTFE, PS, PP, PE, NY | [39] |
Bushehr port, Iran | Urban area | December 2016 and September 2017 | 2.1 items m−3 (normal days) 10.3 items m−3 (dusty days) | Fiber, Fragment, Film | PET, PE, NY, PS | [6] |
French Pyrenees | Remote area | November to March | 365 ± 69 m−2 day−1 | Fragment, Fiber, Film | PS, PE, PP | [34] |
Sao Paulo, Brazil | Urban area | 24 September to 1 November 2020 | 123.20 ± 47.09 MPs m−2 day−1 | Fragment, Film, Granule, Foam | PL, PE, PET | [40] |
Ankara, Turkey | Urban areas | January to March 2022 | 59.66 items L−1 | Fiber, Fragment, Film, Sphere | PE, PS, PP, PET, PVC, NY | [41] |
Dongguan, China | Urban area | 1 October to 31 December 2016 | 36 ± 7 MPs m−2 day−1 | Fiber, Foam, Fragment, Film | PE, PP, PS, cellulose | [33] |
Atlantic Ocean | Remote area | 15 December 2020 to 14 January 2021 | 7.85 to 51.74 ng m− 3 | Fiber | PE, PP, PI, PS | [42] |
Gebze | Urban area | Each season * | 4035 to 58,270 MP m−3 | Fiber, Film, Fragment | PA, PE, PET, PP, PVC | [43] |
Tempe, Arizona | Suburban area | 28 October 2020 to 1 November 2021 | 0.2 MPs m−3 | Fiber, Fragment | PVC, PL, PS, PE | [2] |
Tainan and Kaohsiung, Taiwan | Suburban area | February to April 2021 | 28 ± 24 MPs m−3 | Fragment, Fiber | acrylic, Rubber, PUR | [1] |
Tehran, Iran | Urban area | 5 July to 4 August 2019 and 8 November to 15 December 2019 | 0.8 N m−3 | Fiber, Bead, Fragment | PP, PET, PS, RY, PVC, PE, PA | [44] |
Northwestern Pacific Ocean | Remote area | 26 September to 9 October 2017 | 0.027 ± 0.018 MPs m−3 | N/A | RY, PET | [36] |
Northwestern South China Sea | Remote area | 24 October to 24 November 2019 | 0.035 ± 0.015 MPS m−3 | Fiber, Fragment, Granule | PES, RY, PP, PE, PS, PA, PR | [35] |
Paris, France | Urban area | Once in April and once in October 2018 | 118 particles m−2 day−1 | Fiber | N/A | [31] |
Paris, France | Urban area | 19 February 2014 to 12 March 2015 | 110 ± 96 particles m−2 day−1 | Fiber | RY, PET | [45] |
Suburban area | 3 October 2014 to 12 March 2015 | 53 ± 38 particle m−2 day−1 | ||||
Paris, France | Urban area | February, May, July, and October 2015 | 0.9 particles m−3. | Fiber | N/A | [46] |
Baltic sea | Remote area | 16 to 31 October 2019 | 171 ± 47 m−3 | Fiber, fragment | PVC, PE, PET, PA | [37] |
Scientific campus, Venice, Italy | Urban area | July 2021 | N/A | N/A | PE, PS, PP | [47] |
Krakow, Poland | Urban area | June 2019 to February 2020 | N/A | Fiber, Fragment | PE, PP, PUR, PS, PET | [26] |
Northeast Arabian Sea, India | Remote area | November 2020 | 1.46 ± 0.12 n m−3 | Fiber, Fragment, Film | PVC, PMMA, PES, POM, PUR, AN | [48] |
Weser River Catchment, Germany. | Remote area | April and October 2018 | N/A | Spherical | PE | [30] |
Hamburg, Germany | Urban area | December 2017 to February 2018 | 136.5–512 MP m−2 day−1 | Fragment | PE | [49] |
Christchurch, New Zealand | Suburban area | 25 to 30 January 2020, 6 to 11 February 2020, 10 to 15 June 2020, 17 to 22 June 2020 | 80–330 particle m−2 day−1 | Fiber, Films, Fragment | PL, PE | [18] |
Beijing, China | Urban area | 30 December 2020 | 123.6 items g−1 | Fragment, Pellet, Fiber | PP, PA, PS, PE, PET, PVC | [8] |
Lanzhou, China | Urban area | 1 February to 31 August 2020 | 353.83 n m−2 d−1 | Fragment, Fiber | PET | [50] |
Harbin, China | Urban area | 9 to 15 June 2021 | 1,76 n m−3 | Fiber, Fragment, Granular | PP, PET, PE, PS, PVC | [15] |
Beijing, China | Peri-urban farmland | 1 September 2021 to 28 February 2022 | 167.08 ± 92.03 items m−2 d−1 | Fiber, Fragment, Film, Foam | PET, RY, PP, PE, PA, PS | [51] |
Red Sea, Saudi Arabia | Residential area | September 2015 to December 2017 | 0.9 ± 0.8 × 10−2 MFs m−3 | Fiber | PET, PP, PE, NY | [52] |
Brisbane, Australia | Rural location | 27 April to 8 June 2020 | 0.53 ± 0.16 mg g−1 | N/A | PP, PS, PET, PVC, PE | [22] |
Rural Residential | 0.80 ± 0.49 mg g−1 | |||||
Residential | 0.68 ± 0.20 mg g−1 | |||||
Industrial | 2.4 ± 0.55 mg g−1 | |||||
Traffic | 1.2 ± 0.70 mg g−1 | |||||
City | 5.9 ± 3.1 mg g−1 | |||||
Nanjing, China | Urban area | Monthly for 25–31 days | 302.32 ± 107.40 items m−2 d−1 | Fragment, Fiber | PA, PE, PES, EP, PP | [53] |
Newfoundland, Canada | Remote area | 9–11 September 2021 | 1.13 × 105 particles m−2 day−1 | Fragment, Fiber | PMMA, PET, PVA, PES, PA | [54] |
Pacific Ocean | Remote area | 10 October 2019–5 January 2020 | 0.841 ± 0.698 items 100 m−3 | Fiber, Fragment | PET, PA, PR, PP | [55] |
London; United Kingdom | Urban area | 19 January to 16 February 2018 | 575 to 1008 MP m−2 d−1 | Fiber | PAN, PET, PA | [5] |
Guangzhou, China | Urban area | January to December 2021 | 0.01 to 0.44 items m−3 | Fragment, Fiber, Film, Pellet | PP, PET, PE, PA | [56] |
Wuhan, China | Urban area | December 2020 to December 2021 | 82.85 ± 57.66 n m−2 d−1 | Fiber, Fragment, Film, Pellet | PET, PP, PE, PA, PVC, PVA, PAN | [57] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carriera, F.; Di Fiore, C.; Avino, P. Occurrence of Microplastics in the Atmosphere: An Overview on Sources, Analytical Challenges, and Human Health Effects. Atmosphere 2024, 15, 863. https://doi.org/10.3390/atmos15070863
Carriera F, Di Fiore C, Avino P. Occurrence of Microplastics in the Atmosphere: An Overview on Sources, Analytical Challenges, and Human Health Effects. Atmosphere. 2024; 15(7):863. https://doi.org/10.3390/atmos15070863
Chicago/Turabian StyleCarriera, Fabiana, Cristina Di Fiore, and Pasquale Avino. 2024. "Occurrence of Microplastics in the Atmosphere: An Overview on Sources, Analytical Challenges, and Human Health Effects" Atmosphere 15, no. 7: 863. https://doi.org/10.3390/atmos15070863
APA StyleCarriera, F., Di Fiore, C., & Avino, P. (2024). Occurrence of Microplastics in the Atmosphere: An Overview on Sources, Analytical Challenges, and Human Health Effects. Atmosphere, 15(7), 863. https://doi.org/10.3390/atmos15070863