Characteristics of Aerosol Water Content and Its Implication on Secondary Inorganic Aerosol Formation during Sandy Haze in an Inland City in China
Abstract
:1. Introduction
2. Experiment and Method
2.1. Observation Site
2.2. Measuring Instruments
2.3. Date Analysis
2.3.1. ISORROPIA II Model
2.3.2. Calculating for Aqueous-Phase Sulfate Production Rates
2.3.3. Sensitivity Test of AWC
3. Results and Discussion
3.1. Sandy Haze and Haze Events
3.2. Role of Aerosol Water Content on PM2.5
3.3. Driving Factors of AWC
3.4. Impact of the AWC on Secondary Aerosol Formation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jerrett, M. The death toll from air-pollution sources. Nature 2015, 525, 330–331. [Google Scholar] [CrossRef] [PubMed]
- Su, J.; Zhao, P.S.; Ge, S.S.; Ding, J. Aerosol liquid water content of PM2.5 and its influencing factors in Beijing, China. Sci. Total Environ. 2022, 839, 156342. [Google Scholar] [CrossRef] [PubMed]
- Won, W.S.; Oh, R.; Lee, W.; Kim, K.Y.; Ku, S.; Su, P.C.; Yoon, Y.J. Impact of fine particulate matter on visibility at incheon international airport, South Korea. Aerosol Air Qual. Res. 2020, 20, 1048–1061. [Google Scholar] [CrossRef]
- Tsai, H.-H.; Tantoh, D.M.; Lu, W.Y.; Chen, C.-Y.; Liaw, Y.-P. Cigarette smoking and PM2.5 might jointly exacerbate the risk of metabolic syndrome. Front. Public Health 2024, 11, 1234799. [Google Scholar] [CrossRef] [PubMed]
- Chow, J.C.; Lowenthal, D.H.; Chen, L.W.; Wang, X.L.; Watson, J.G. Mass reconstruction methods for PM2.5: A review. Air Qual. Atmos. Health 2015, 8, 243–263. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.J.; Wang, Y.; Tan, T.E.; Zhu, Y.S.; Li, M.R.; Shang, D.J.; Wang, H.C.; Lu, K.D.; Guo, S.; Zeng, L.M.; et al. Aerosol liquid water driven by anthropogenic inorganic salts: Implying its key role in haze formation over the North China Plain. Environ. Sci. Technol. Lett. 2018, 3, 160–166. [Google Scholar] [CrossRef]
- Boreddy, S.K.R.; Nair, V.S.; Babu, S.S. Assessment of submicron aerosol liquid water content and mass-based growth factors in South Asian outflow over the Indian Ocean. Sci. Total Environ. 2023, 901, 166461. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.K.V.; Petters, M.D.; Suda, S.R.; Guo, H.; Weber, R.J.; Carlton, A.G. Trends in particle-phase liquid water during the southern oxidant and aerosol study. Atmos. Chem. Phys. 2014, 14, 10911–10930. [Google Scholar] [CrossRef]
- Jin, X.A.; Wang, Y.Y.; Li, Z.Q.; Zhang, F.; Xu, W.Q.; Sun, Y.L.; Fan, X.X.; Chen, G.Y.; Wu, H.; Ren, J.Y.; et al. Significant contribution of organics to aerosol liquid water content in winter in Beijing, China. Atmos. Chem. Phys. 2020, 20, 901–914. [Google Scholar] [CrossRef]
- Herrmann, H.; Schaefer, T.; Tilgner, A.; Styler, S.A.; Weller, C.; Teich, M.; Otto, T. Tropospheric aqueous-phase chemistry: Kinetics, mechanisms, and its coupling to a changing gas phase. Chem. Rev. 2015, 115, 4259–4334. [Google Scholar] [CrossRef]
- Tan, W.; Yu, Y.; Li, C.; Li, J.; Kang, L.; Dong, H.; Zeng, L.; Zhu, T. Profiling Aerosol Liquid Water Content Using a Polarization Lidar. Environ. Sci. Technol. 2020, 54, 3129–3137. [Google Scholar] [CrossRef] [PubMed]
- Pilinis, C.; Seinfeld, J.H.; Grosjean, D. Water content of atmospheric aerosols. Atmos. Environ. 1989, 23, 1601–1606. [Google Scholar] [CrossRef]
- Wang, H.C.; Lu, K.D.; Chen, X.R.; Zhu, Q.D.; Wu, Z.J.; Wu, Y.S.; Sun, K. Fast particulate nitrate formation via N2O5 uptake aloft in winter in Beijing. Atmos. Chem. Phys. 2018, 18, 10483–10495. [Google Scholar] [CrossRef]
- Wu, J.R.; Bei, N.F.; Hu, B.; Liu, S.X.; Zhou, M.; Wang, Q.Y.; Li, X.; Liu, L.; Feng, T.; Liu, Z.R. Is water vapor a key player of the wintertime haze in North China Plain? Atmos. Chem. Phys. 2019, 19, 8721–8739. [Google Scholar] [CrossRef]
- Speer, R.E.; Edney, E.O.; Kleindienst, T.E. Impact of organic compounds on the concentrations of liquid water in ambient PM2.5. J. Aerosol Sci. 2003, 34, 63–77. [Google Scholar] [CrossRef]
- Ansari, A.S.; Pandis, S.N. Water absorption by secondary organic aerosol and its effect on inorganic aerosol behavior. Environ. Sci. Technol. 2000, 34, 71–77. [Google Scholar] [CrossRef]
- Usher, C.R.; Michel, A.E.; Grassian, V.H. Reactions on mineral dust. Chem. Rev. 2003, 103, 4883–4940. [Google Scholar] [CrossRef] [PubMed]
- Vlasenko, A.; Sjogren, S.; Weingartner, E.; Stemmler, K.; Gaggeler, H.W.; Ammann, M. Effect of humidity on nitric acid uptake to mineral dust aerosol particles. Atmos. Chem. Phys. 2006, 6, 2147–2160. [Google Scholar] [CrossRef]
- Cheng, Y.F.; Zheng, G.J.; Wei, C.; Mu, Q.; Zheng, B.; Wang, Z.B.; Gao, M.; Zhang, Q.; He, K.B.; Carmichael, G.; et al. Reactive nitrogen chemistry in aerosol water as a source of sulfate during haze events in China. Sci. Adv. 2016, 2, 1601530. [Google Scholar] [CrossRef] [PubMed]
- Harris, E.; Sinha, B.; van Pinxteren, D.; Tilgner, A.; Fomba, K.W.; Schneider, J.; Roth, A.; Gnauk, T.; Fahlbusch, B.; Mertes, S.; et al. Enhanced role of transition metal ion catalysis during in-cloud oxidation of SO2. Science 2013, 340, 727–730. [Google Scholar] [CrossRef]
- Liu, M.X.; Song, Y.; Zhou, T.; Xu, Z.Y.; Yan, C.Q.; Zheng, M.; Wu, Z.J.; Hu, M.; Wu, Y.S.; Zhu, T. Fine particle pH during severe haze episodes in northern China. Geophys. Res. Lett. 2017, 44, 5213–5221. [Google Scholar] [CrossRef]
- Sullivan, R.C.; Guazzotti, S.A.; Sodeman, D.A.; Prather, K.A. Direct observations of the atmospheric processing of Asian mineral dust. Atmos. Chem. Phys. 2007, 7, 1213–1236. [Google Scholar] [CrossRef]
- Zhao, Y.; Chen, Z.M.; Shen, X.L.; Huang, D. Importance of atmospheric aging in reactivity of mineral dust aerosol: A case study of heterogeneous reaction of gaseous hydrogen peroxide on processed mineral particles. Atmos. Chem. Phys. 2011, 11, 28563–28586. [Google Scholar] [CrossRef]
- Dong, Z.; Su, F.; Zhang, Z.; Wang, S. Observation of chemical components of PM2.5 and secondary inorganic aerosol formation during haze and sandy haze days in Zhengzhou, China. J. Environ. Sci. 2020, 88, 316–325. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.Y.; Kuang, Y.; Liang, L.L.; He, Y.; Cheng, H.B.; Bian, Y.X.; Tao, J.C.; Zhang, G.; Zhao, P.S.; Ma, N. Dust-Dominated coarse particles as a medium for rapid secondary organic and inorganic aerosol formation in highly polluted air. Environ. Sci. Technol. 2020, 54, 15710–15721. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.B.; Yin, S.S.; Zhang, R.Q.; Yang, L.M.; Zhao, Q.Y.; Zhang, L.S.; Yan, Q.S.; Jiang, N.; Tang, X.Y. Insight into the formation of secondary inorganic aerosol based on high-time-resolution data during haze episodes and snowfall periods in Zhengzhou, China. Sci. Total Environ. 2018, 660, 47–56. [Google Scholar] [CrossRef] [PubMed]
- Fountoukis, C.; Nenes, A. ISORROPIA II: A computationally efficient thermodynamic equilibrium model for K+–Ca2+–Mg2+–Na+–Cl−–H2O aerosols. Atmos. Chem. Phys. 2007, 7, 4639–4659. [Google Scholar] [CrossRef]
- Guo, H.; Xu, L.; Bougiatioti, A.; Cerully, K.M.; Capps, S.L.; Hite, J.R.; Carlton, A.G.; Lee, S.H.; Bergin, M.H.; Ng, N.L.; et al. Fine-particle water and pH in the southeastern United States. Atmos. Chem. Phys. 2015, 15, 5211–5228. [Google Scholar] [CrossRef]
- Song, S.J.; Gao, M.; Xu, W.Q.; Shao, J.Y.; Shi, G.L.; Wang, S.X.; Wang, Y.X.; Sun, Y.L.; Michael, B.M. Fine-particle pH for Beijing winter haze as inferred from different thermodynamic equilibrium models. Atmos. Chem. Phys. 2018, 18, 7423–7438. [Google Scholar] [CrossRef]
- Fang, X.Z.; Liu, Y.Y.; Li, K.J.; Wang, T.; Deng, Y.; Feng, Y.Q.; Yang, Y.; Cheng, H.Y.; Chen, J.M.; Zhang, L.W. Atmospheric nitrate formation through oxidation by carbonate radical. ACS Earth Space Chem. 2021, 5, 1801–1811. [Google Scholar] [CrossRef]
- Chen, C.R.; Zhang, H.X.; Yan, W.J.; Wu, N.A.; Zhang, Q.; He, K.B. Aerosol water content enhancement leads to changes in the major formation mechanisms of nitrate and secondary organic aerosols in winter over the North China Plain. Environ. Pollut. 2021, 287, 117625. [Google Scholar] [CrossRef]
- Cheng, Y.; Cao, X.B.; Yu, Q.Q.; Liu, J.M.; Ma, W.L.; Qi, H.; Zhang, Q.; He, K.B. Synergy of multiple drivers leading to severe winter haze pollution in a megacity in Northeast China. Atmos. Res. 2022, 270, 106075. [Google Scholar] [CrossRef]
- Feng, Z.M.; Liu, Y.C.; Zheng, F.X.; Yan, C.; Fu, P.; Zhang, Y.S.; Lian, C.F.; Wang, W.G.; Cai, J.; Du, W.; et al. Highly oxidized organic aerosols in Beijing: Possible contribution of aqueous-phase chemistry. Atmos. Environ. 2022, 273, 118971. [Google Scholar] [CrossRef]
- Bian, Y.X.; Zhao, C.S.; Ma, N.; Chen, J.; Xu, W.Y. A study of aerosol liquid water content based on hygroscopicity measurements at high relative humidity in the North China Plain. Atmos. Chem. Phys. 2014, 14, 6417–6426. [Google Scholar] [CrossRef]
- Shen, X.J.; Sun, J.Y.; Zhang, X.Y.; Zhang, Y.M.; Zhong, J.T.; Wang, X.; Wang, Y.Q.; Xia, C. Variations in submicron aerosol liquid water content and the contribution of chemical components during heavy aerosol pollution episodes in winter in Beijing. Sci. Total Environ. 2019, 693, 133521. [Google Scholar] [CrossRef] [PubMed]
- Schroeder, J.R.; Beyer, K.D. Deliquescence Relative Humidities of Organic and Inorganic Salts Important in the Atmosphere. J. Phys. Chem. A 2016, 120, 9948–9957. [Google Scholar] [CrossRef]
- Sun, S.E.; Chang, S.Y.; Lee, C.T. The development and evaluation of a sequential aerosol-water measurement system. Atmos. Environ. 2021, 264, 118671. [Google Scholar] [CrossRef]
- Su, J.; Zhao, P.S.; Ding, J.; Du, X.; Dou, Y.J. Insights into measurements of water soluble ions in PM2.5 and their gaseous precursors in Beijing. J. Environ. Sci. 2021, 102, 123–127. [Google Scholar] [CrossRef]
- Ding, J.; Zhao, P.; Su, J.; Dong, Q.; Du, X.; Zhang, Y. Aerosol pH and its driving factors in Beijing. Atmos. Chem. Phys. 2019, 19, 7939–7954. [Google Scholar] [CrossRef]
- Nenes, A.; Pandis, S.N.; Pilinis, C. ISORROPIA: A New Thermodynamic Equilibrium Model for Multiphase Multicomponent Inorganic Aerosols. Aquat. Geochem. 1998, 4, 123–152. [Google Scholar] [CrossRef]
- Wang, Z.C. Relationship Among the Raoult Law, Zdanovskii-Stokes-Robinson rule, and two extended zdanovskii-stokes-robinson rules of wang. J. Chem. Eng. Data 2009, 54, 187–192. [Google Scholar] [CrossRef]
- Gopinath, A.K.; Raj, S.S.; Kommula, S.M.; Jose, C.; Panda, U.; Bishambu, Y.; Ojha, N.; Ravikrishna, R.; Liu, P.F.; Gunthe, S.S. Complex interplay between organic and secondary inorganic aerosols with ambient relative humidity implicates the aerosol liquid water content over india during wintertime. J. Geophys. Res. 2022, 127, e2021JD036430. [Google Scholar] [CrossRef]
- Liu, H.B.; Talifu, D.; Ding, X.; Wang, X.M.; Abulizi, A.; Tursun, Y.; An, J.Q.; Wang, W.; Zhang, X.X.; Zhang, Y.Y. Particles liquid water and acidity determine formation of secondary inorganic ions in Urumqi, NW China. Atmos. Res. 2021, 260, 105622. [Google Scholar] [CrossRef]
- Zhong, J.T.; Zhang, X.Y.; Dong, Y.S.; Wang, Y.Q.; Liu, C.; Wang, J.Z.; Zhang, Y.M.; Che, H.C. Feedback effects of boundary-layer meteorological factors on cumulative explosive growth of PM2.5 during winter heavy pollution episodes in Beijing from 2013 to 2016. Atmos. Chem. Phys. 2018, 18, 247–258. [Google Scholar] [CrossRef]
- Guo, H.Y.; Nenes, A.; Weber, R.J. The underappreciated role of nonvolatile cations in aerosol ammonium-sulfate molar ratios. Atmos. Chem. Phys. 2018, 18, 17307–17323. [Google Scholar] [CrossRef]
- Wang, X.F.; Wang, W.X.; Yang, L.X.; Gao, X.M.; Nie, W.; Yu, Y.C.; Xu, P.J.; Zhou, Y.; Wang, Z. The secondary formation of inorganic aerosols in the droplet mode through heterogeneous aqueous reactions under haze conditions. Atmos. Environ. 2012, 63, 68–76. [Google Scholar] [CrossRef]
- Guo, H.Y.; Weber, R.J.; Nenes, A. High levels of ammonia do not raise fine particle pH sufficiently to yield nitrogen oxide-dominated sulfate production. Sci. Rep. 2017, 7, 12109. [Google Scholar] [CrossRef] [PubMed]
- He, H.; Wang, Y.S.; Ma, Q.X.; Ma, J.Z.; Chu, B.W.; Ji, D.S.; Tang, G.Q.; Liu, C.; Zhang, H.X.; Hao, J.M. Mineral dust and NOx promote the conversion of SO2 to sulfate in heavy pollution days. Sci. Rep. 2014, 4, 4172. [Google Scholar] [CrossRef] [PubMed]
- Ma, Q.X.; Wang, T.; Liu, C.; He, H.; Wang, Z.; Wang, W.H.; Liang, Y.T. SO2 Initiates the efficient conversion of NO2 to HONO on MgO surface. Environ. Sci. Technol. 2017, 51, 3767–3775. [Google Scholar] [CrossRef]
- Wang, J.; Pan, Y.P.; Tian, S.L.; Chen, X.; Wang, L.; Wang, Y.S. Size distributions and health risks of particulate trace elements in rural areas in northeastern China. Atmos. Res. 2016, 168, 191–204. [Google Scholar] [CrossRef]
- Clegg, S.L.; Brimblecombe, P.; Wexler, A.S. Thermodynamic model of the system H+-NH4+-SO42−-NO3−-H2O at tropospheric temperatures. J. Phys. Chem. A 1998, 102, 2137–2154. [Google Scholar] [CrossRef]
- Wang, S.; Wang, L.; Li, Y.; Wang, C.; Wang, W.; Yin, S.; Zhang, R. Effect of ammonia on fine-particle pH in agricultural regions of China: Comparison between urban and rural sites. Atmos. Chem. Phys. 2020, 20, 2719–2734. [Google Scholar] [CrossRef]
- Pye, H.O.T.; Nenes, A.; Alexander, B.; Ault, A.P.; Barth, M.C.; Clegg, S.L.; Collett, J.L.; Fahey, K.M.; Hennigan, C.J.; Herrmann, H. The acidity of atmospheric particles and clouds. Atmos. Chem. Phys. 2020, 20, 4809–4888. [Google Scholar] [CrossRef]
- Seinfeld, J.H.; Pandis, S.N. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, 2nd ed.; Welly: Hoboken, NJ, USA, 2006. [Google Scholar]
- Xing, L.; Fu, T.; Cao, J.; Lee, S.C.; Wang, G.; Ho, K.; Cheng, M.C.; You, C.; Wang, T. Seasonal and spatial variability of the OM/OC mass ratios and high regional correlation between oxalic acid and zinc in Chinese urban organic aerosols. Atmos. Chem. Phys. 2013, 13, 4307–4318. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhai, S.; Kang, P.; Wang, S.; Zhang, R. Characteristics of Aerosol Water Content and Its Implication on Secondary Inorganic Aerosol Formation during Sandy Haze in an Inland City in China. Atmosphere 2024, 15, 850. https://doi.org/10.3390/atmos15070850
Zhai S, Kang P, Wang S, Zhang R. Characteristics of Aerosol Water Content and Its Implication on Secondary Inorganic Aerosol Formation during Sandy Haze in an Inland City in China. Atmosphere. 2024; 15(7):850. https://doi.org/10.3390/atmos15070850
Chicago/Turabian StyleZhai, Shiting, Panru Kang, Shenbo Wang, and Ruiqin Zhang. 2024. "Characteristics of Aerosol Water Content and Its Implication on Secondary Inorganic Aerosol Formation during Sandy Haze in an Inland City in China" Atmosphere 15, no. 7: 850. https://doi.org/10.3390/atmos15070850
APA StyleZhai, S., Kang, P., Wang, S., & Zhang, R. (2024). Characteristics of Aerosol Water Content and Its Implication on Secondary Inorganic Aerosol Formation during Sandy Haze in an Inland City in China. Atmosphere, 15(7), 850. https://doi.org/10.3390/atmos15070850