Application of the NCAR FastEddy® Microscale Model to a Lake Breeze Front
Abstract
:1. Introduction
2. WRF and FastEddy Model Configuration
3. Results and Discussion
Observations and Simulations of Lake Breeze Frontal Passage
4. Summary
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pinto, J.O.; O’Sullivan, D.; Taylor, S.; Elston, J.; Baker, C.B.; Hotz, D.; Marshall, C.; Jacob, J.; Barfuss, K.; Piguet, B.; et al. The Status and Future of Small Uncrewed Aircraft Systems (UAS) in Operational Meteorology. Bull. Am. Meteorol. Soc. 2021, 102, E2121–E2136. [Google Scholar] [CrossRef]
- Klipp, C.L.; Measure, E. Urban Turbulence and Wind Gusts for Micro Air Vehicle Bio-Inspired Designs; Defense Technical Information Center: Fort Belvoir, VA, USA, 2011. [Google Scholar] [CrossRef]
- Glasheen, K.; Pinto, J.; Steiner, M.; Frew, E.W. Experimental Assessment of Local Weather Forecasts for Small Unmanned Aircraft Flight. In AIAA Scitech 2019 Forum; AIAA SciTech Forum; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2019. [Google Scholar] [CrossRef]
- Dudhia, J. A history of mesoscale model development. Asia-Pac. J. Atmos. Sci. 2014, 50, 121–131. [Google Scholar] [CrossRef]
- Benjamin, S.G.; Weygandt, S.S.; Brown, J.M.; Hu, M.; Alexander, C.R.; Smirnova, T.G.; Olson, J.B.; James, E.P.; Dowell, D.C.; Grell, G.A.; et al. A North American Hourly Assimilation and Model Forecast Cycle: The Rapid Refresh. Mon. Weather Rev. 2016, 144, 1669–1694. [Google Scholar] [CrossRef]
- Dowell, D.C.; Alexander, C.R.; James, E.P.; Weygandt, S.S.; Benjamin, S.G.; Manikin, G.S.; Blake, B.T.; Brown, J.M.; Olson, J.B.; Hu, M.; et al. The High-Resolution Rapid Refresh (HRRR): An Hourly Updating Convection-Allowing Forecast Model. Part I: Motivation and System Description. Weather Forecast. 2022, 37, 1371–1395. [Google Scholar] [CrossRef]
- Rai, R.K.; Berg, L.K.; Kosović, B.; Haupt, S.E.; Mirocha, J.D.; Ennis, B.L.; Draxl, C. Evaluation of the Impact of Horizontal Grid Spacing in Terra Incognita on Coupled Mesoscale–Microscale Simulations Using the WRF Framework. Mon. Weather Rev. 2019, 147, 1007–1027. [Google Scholar] [CrossRef]
- Wyngaard, J.C. Toward Numerical Modeling in the “Terra Incognita”. J. Atmos. Sci. 2004, 61, 1816–1826. [Google Scholar] [CrossRef]
- Chrit, M.; Majdi, M. Improving Wind Speed Forecasting for Urban Air Mobility Using Coupled Simulations. Adv. Meteorol. 2022, 2022, e2629432. [Google Scholar] [CrossRef]
- Honnert, R.; Efstathiou, G.A.; Beare, R.J.; Ito, J.; Lock, A.; Neggers, R.; Plant, R.S.; Shin, H.H.; Tomassini, L.; Zhou, B. The Atmospheric Boundary Layer and the “Gray Zone” of Turbulence: A Critical Review. J. Geophys. Res. Atmos. 2020, 125, e2019JD030317. [Google Scholar] [CrossRef]
- Kealy, J.C. Probing the ‘grey zone’ of NWP—Is higher resolution always better? Weather 2019, 74, 246–249. [Google Scholar] [CrossRef]
- Kochanski, A.K.; Pardyjak, E.R.; Stoll, R.; Gowardhan, A.; Brown, M.J.; Steenburgh, W.J. One-Way Coupling of the WRF–QUIC Urban Dispersion Modeling System. J. Appl. Meteorol. Climatol. 2015, 54, 2119–2139. [Google Scholar] [CrossRef]
- Li, Q.; Yang, J.; Yang, L. Impact of Urban Roughness Representation on Regional Hydrometeorology: An Idealized Study. J. Geophys. Res. Atmos. 2021, 126, e2020JD033812. [Google Scholar] [CrossRef]
- Ronda, R.J.; Steeneveld, G.J.; Heusinkveld, B.G.; Attema, J.J.; Holtslag, A. a. M. Urban Finescale Forecasting Reveals Weather Conditions with Unprecedented Detail. Bull. Am. Meteorol. Soc. 2017, 98, 2675–2688. [Google Scholar] [CrossRef]
- Singh, B.; Hansen, B.S.; Brown, M.J.; Pardyjak, E.R. Evaluation of the QUIC-URB fast response urban wind model for a cubical building array and wide building street canyon. Environ. Fluid Mech. 2008, 8, 281–312. [Google Scholar] [CrossRef]
- Wagenbrenner, N.S.; Forthofer, J.M.; Lamb, B.K.; Shannon, K.S.; Butler, B.W. Downscaling surface wind predictions from numerical weather prediction models in complex terrain with WindNinja. Atmos. Chem. Phys. 2016, 16, 5229–5241. [Google Scholar] [CrossRef]
- Pinto, J.O.; Jensen, A.A.; Jiménez, P.A.; Hertneky, T.; Muñoz-Esparza, D.; Dumont, A.; Steiner, M. Real-time WRF large-eddy simulations to support uncrewed aircraft system (UAS) flight planning and operations during 2018 LAPSE-RATE. Earth Syst. Sci. Data 2021, 13, 697–711. [Google Scholar] [CrossRef]
- Mi, L.; Han, Y.; Shen, L.; Cai, C.; Wu, T. Multi-Scale Numerical Assessments of Urban Wind Resource Using Coupled WRF-BEP and RANS Simulation: A Case Study. Atmosphere 2022, 13, 1753. [Google Scholar] [CrossRef]
- Roseman, C.A. Targeted Weather Forecasts for Small Unmanned Aircraft Systems; AMS: Perth, Australia, 2019. [Google Scholar]
- Wiersema, D.J.; Lundquist, K.A.; Mirocha, J.D.; Chow, F.K. Evaluation of Turbulence and Dispersion in Multiscale Atmospheric Simulations over Complex Urban Terrain during the Joint Urban 2003 Field Campaign. Mon. Weather Rev. 2022, 150, 3195–3209. [Google Scholar] [CrossRef]
- Sauer, J.A.; Muñoz-Esparza, D. The FastEddy® Resident-GPU Accelerated Large-Eddy Simulation Framework: Model Formulation, Dynamical-Core Validation and Performance Benchmarks. J. Adv. Model. Earth Syst. 2020, 12, e2020MS002100. [Google Scholar] [CrossRef]
- Muñoz-Esparza, D.; Sauer, J.A.; Jensen, A.A.; Xue, L.; Grabowski, W.W. The FastEddy® Resident-GPU Accelerated Large-Eddy Simulation Framework: Moist Dynamics Extension, Validation and Sensitivities of Modeling Non-Precipitating Shallow Cumulus Clouds. J. Adv. Model. Earth Syst. 2022, 14, e2021MS002904. [Google Scholar] [CrossRef]
- Muñoz-Esparza, D.; Sauer, J.A.; Shin, H.H.; Sharman, R.; Kosović, B.; Meech, S.; García-Sánchez, C.; Steiner, M.; Knievel, J.; Pinto, J.; et al. Inclusion of Building-Resolving Capabilities into the FastEddy® GPU-LES Model Using an Immersed Body Force Method. J. Adv. Model. Earth Syst. 2020, 12, e2020MS002141. [Google Scholar] [CrossRef]
- Muñoz-Esparza, D.; Shin, H.H.; Sauer, J.A.; Steiner, M.; Hawbecker, P.; Boehnert, J.; Pinto, J.O.; Kosović, B.; Sharman, R.D. Efficient Graphics Processing Unit Modeling of Street-Scale Weather Effects in Support of Aerial Operations in the Urban Environment. AGU Adv. 2021, 2, e2021AV000432. [Google Scholar] [CrossRef]
- Sagaut, P.; Lee, Y.-T. Large Eddy Simulation for Incompressible Flows: An Introduction. Scientific Computation Series. Appl. Mech. Rev. 2002, 55, 115. [Google Scholar] [CrossRef]
- Lilly, D.K. On the numerical simulation of buoyant convection. Tellus 1962, 14, 148–172. [Google Scholar] [CrossRef]
- Lilly, D.K. On the application of the eddy viscosity concept in the inertial sub-range of turbulence. NCAR Manuscript 1966, 123, 2–15. [Google Scholar]
- Ranquist, E. Exploring the Range of Weather Impacts on UAS Operations; AMS: Ann Arbor, MI, USA, 2017. [Google Scholar]
- Wang, B.H.; Wang, D.B.; Ali, Z.A.; Ting Ting, B.; Wang, H. An overview of various kinds of wind effects on unmanned aerial vehicle. Meas. Control. 2019, 52, 731–739. [Google Scholar] [CrossRef]
- Zumpfe, D.E.; Horel, J.D. Lake-Breeze Fronts in the Salt Lake Valley. J. Appl. Meteorol. Climatol. 2007, 46, 196–211. [Google Scholar] [CrossRef]
- Crosman, E.T.; Horel, J.D. Idealized Large-Eddy Simulations of Sea and Lake Breezes: Sensitivity to Lake Diameter, Heat Flux and Stability. Bound. -Layer Meteorol. 2012, 144, 309–328. [Google Scholar] [CrossRef]
- Crosman, E.T.; Horel, J.D. Large-eddy simulations of a Salt Lake Valley cold-air pool. Atmos. Res. 2017, 193, 10–25. [Google Scholar] [CrossRef]
- Blaylock, B.K.; Horel, J.D.; Crosman, E.T. Impact of Lake Breezes on Summer Ozone Concentrations in the Salt Lake Valley. J. Appl. Meteorol. Climatol. 2017, 56, 353–370. [Google Scholar] [CrossRef]
- Skamarock, C.; Klemp, B.; Dudhia, J.; Gill, O.; Liu, Z.; Berner, J.; Wang, W.; Powers, J.G.; Duda, M.G.; Barker, D.; et al. A Description of the Advanced Research WRF Model Version 4.1. Technical Note NCAR/TN-556+STR; The National Center for Atmospheric Research: Boulder, CO, USA, 2019. [Google Scholar] [CrossRef]
- Kusaka, H.; Kondo, H.; Kikegawa, Y.; Kimura, F. A Simple Single-Layer Urban Canopy Model for Atmospheric Models: Comparison with Multi-Layer and Slab Models. Bound. -Layer Meteorol. 2001, 101, 329–358. [Google Scholar] [CrossRef]
- Martilli, A.; Clappier, A.; Rotach, M.W. An Urban Surface Exchange Parameterisation for Mesoscale Models. Bound. -Layer Meteorol. 2002, 104, 261–304. [Google Scholar] [CrossRef]
- Chen, F.; Kusaka, H.; Bornstein, R.; Ching, J.; Grimmond, C.S.B.; Grossman-Clarke, S.; Loridan, T.; Manning, K.W.; Martilli, A.; Miao, S.; et al. The integrated WRF/urban modelling system: Development, evaluation, and applications to urban environmental problems. Int. J. Climatol. 2011, 31, 273–288. [Google Scholar] [CrossRef]
- Mughal, M.O.; Li, X.-X.; Norford, L.K. Urban heat island mitigation in Singapore: Evaluation using WRF/multilayer urban canopy model and local climate zones. Urban Clim. 2020, 34, 100714. [Google Scholar] [CrossRef]
- Salamanca, F.; Martilli, A.; Tewari, M.; Chen, F. A Study of the Urban Boundary Layer Using Different Urban Parameterizations and High-Resolution Urban Canopy Parameters with WRF. J. Appl. Meteorol. Climatol. 2011, 50, 1107–1128. [Google Scholar] [CrossRef]
- Sharma, A.; Fernando, H.; Hellmann, J.; Chen, F. Sensitivity of WRF Model to Urban Parameterizations, with Applications to Chicago Metropolitan Urban Heat Island; American Society of Mechanical Engineers, Fluids Engineering Division (Publication) FEDSM: Anaheim, CA, USA, 2014; Volume 1D. [Google Scholar] [CrossRef]
- Sharma, A.; Fernando, H.J.S.; Hamlet, A.F.; Hellmann, J.J.; Barlage, M.; Chen, F. Urban meteorological modeling using WRF: A sensitivity study. Int. J. Climatol. 2017, 37, 1885–1900. [Google Scholar] [CrossRef]
- Sauer, J.; Muñoz-Esparza, D.; Prestopnik, J. FastEddy-Model Software Release; NSF National Center for Atmospheric Research: Boulder, CO, USA, 2024. [Google Scholar] [CrossRef]
- Computational and Information Systems Laboratory. Derecho: HPE Cray EX System (University Community Computing); National Center for Atmospheric Research: Boulder, CO, USA, 2023. [Google Scholar] [CrossRef]
- Muñoz-Esparza, D.; Kosović, B.; Mirocha, J.; van Beeck, J. Bridging the Transition from Mesoscale to Microscale Turbulence in Numerical Weather Prediction Models. Bound. -Layer Meteorol. 2014, 153, 409–440. [Google Scholar] [CrossRef]
- Muñoz-Esparza, D.; Kosović, B.; van Beeck, J.; Mirocha, J. A stochastic perturbation method to generate inflow turbulence in large-eddy simulation models: Application to neutrally stratified atmospheric boundary layers. Phys. Fluids 2015, 27, 035102. [Google Scholar] [CrossRef]
- Muñoz-Esparza, D.; Lundquist, J.K.; Sauer, J.A.; Kosović, B.; Linn, R.R. Coupled Mesoscale-LES Modeling of a Diurnal Cycle during the CWEX-13 Field Campaign: From Weather to Boundary-Layer Eddies. J. Adv. Model. Earth Syst. 2017, 9, 1572–1594. [Google Scholar] [CrossRef]
- Mirocha, J.; Kirkil, G.; Bou-Zeid, E.; Chow, F.K.; Kosović, B. Transition and Equilibration of Neutral Atmospheric Boundary Layer Flow in One-Way Nested Large-Eddy Simulations Using the Weather Research and Forecasting Model. Mon. Weather Rev. 2013, 141, 918–940. [Google Scholar] [CrossRef]
- USGS 3DEP—USGS LPC UT Wasatch L4 2013 LAS 2016. Available online: https://portal.opentopography.org/usgsDataset?dsid=USGS_LPC_UT_Wasatch_L4_2013_LAS_2016 (accessed on 17 October 2023).
- UGRC—Utah Building Footprints. Available online: https://gis.utah.gov/products/sgid/location/building-footprints/ (accessed on 24 April 2024).
- Chan, S.T.; Leach, M.J. A Validation of FEM3MP with Joint Urban 2003 Data. J. Appl. Meteorol. Climatol. 2007, 46, 2127–2146. [Google Scholar] [CrossRef]
- Shin, H.H.; Muñoz-Esparza, D.; Sauer, J.A.; Steiner, M. Large-Eddy Simulations of Stability-Varying Atmospheric Boundary Layer Flow over Isolated Buildings. J. Atmos. Sci. 2021, 78, 1487–1501. [Google Scholar] [CrossRef]
- Mahrt, L. The bulk aerodynamic formulation over heterogeneous surfaces. Bound. -Layer Meteorol. 1996, 78, 87–119. [Google Scholar] [CrossRef]
- Chen, Y.; Yang, K.; Zhou, D.; Qin, J.; Guo, X. Improving the Noah Land Surface Model in Arid Regions with an Appropriate Parameterization of the Thermal Roughness Length. J. Hydrometeorol. 2010, 11, 995–1006. [Google Scholar] [CrossRef]
- Zheng, D.; Velde, R.; van der Su, Z.; Booij, M.J.; Hoekstra, A.Y.; Wen, J. Assessment of Roughness Length Schemes Implemented within the Noah Land Surface Model for High-Altitude Regions. J. Hydrometeorol. 2014, 15, 921–937. [Google Scholar] [CrossRef]
- Weston, M.; Chaouch, N.; Valappil, V.; Temimi, M.; Ek, M.; Zheng, W. Assessment of the Sensitivity to the Thermal Roughness Length in Noah and Noah-MP Land Surface Model Using WRF in an Arid Region. Pure Appl. Geophys. 2019, 176, 2121–2137. [Google Scholar] [CrossRef]
- Massey, J.D.; Steenburgh, W.J.; Hoch, S.W.; Jensen, D.D. Simulated and Observed Surface Energy Fluxes and Resulting Playa Breezes during the MATERHORN Field Campaigns. J. Appl. Meteorol. Climatol. 2017, 56, 915–935. [Google Scholar] [CrossRef]
- Rios, G.; Ramamurthy, P. A novel model to estimate sensible heat fluxes in urban areas using satellite-derived data. Remote Sens. Environ. 2022, 270, 112880. [Google Scholar] [CrossRef]
- Crosman, E.T.; Horel, J.D. MODIS-derived surface temperature of the Great Salt Lake. Remote Sens. Environ. 2009, 113, 73–81. [Google Scholar] [CrossRef]
- Boppana, V.B.L.; Xie, Z.-T.; Castro, I.P. Large-Eddy Simulation of Heat Transfer from a Single Cube Mounted on a Very Rough Wall. Bound. -Layer Meteorol. 2013, 147, 347–368. [Google Scholar] [CrossRef]
- Allwine, K.J.; Shinn, J.H.; Streit, G.E.; Clawson, K.L.; Brown, M. OVERVIEW OF URBAN 2000: A Multiscale Field Study of Dispersion through an Urban Environment. Bull. Am. Meteorol. Soc. 2002, 83, 521–536. [Google Scholar] [CrossRef]
- Horel, J.; Crosman, E.; Jacques, A.; Blaylock, B.; Arens, S.; Long, A.; Sohl, J.; Martin, R. Summer ozone concentrations in the vicinity of the Great Salt Lake. Atmos. Sci. Lett. 2016, 17, 480–486. [Google Scholar] [CrossRef]
- Caswell, T.A.; Droettboom, M.; Lee, A.; Sales De Andrade, E.; Hunter, J.; Hoffmann, T.; Firing, E.; Klymak, J.; Stansby, D.; Varoquaux, N.; et al. Matplotlib/Matplotlib: REL, Zenodo, v3.4.0. 2021; [Software]. [CrossRef]
- Hunter, J.D. Matplotlib: A 2D Graphics Environment. Comput. Sci. Eng. 2007, 9, 90–95. [Google Scholar] [CrossRef]
Characteristics | WRF | FastEddy |
---|---|---|
Time Step | 2 s | 0.01 s |
Grid Spacing | 1 km | 5 m |
E–W size | 400 km | 9 km |
N–S size | 400 km | 9 km |
Vertical Levels | 45 | 122 |
Microphysics | Thompson scheme | none |
Longwave Rad | RRTMG | none |
Shortwave Rad | RRTMG | none |
Urban Physics | none | none |
Surface Layer | MM5 | MOST |
LS Model | Noah LSM | 1 km WRF |
Land Use | MODIS30s | NLCD |
PBL Physics | MYNN | none |
CU Physics | none | none |
Initialization Data | 3 km HRRR | 1 km WRF |
Mean | Maximum | |
---|---|---|
Height [m] | 4.8 | 37.3 |
Surface [m2] | 534.0 | 116,718.6 |
Volume [m3] | 4815.9 | 1,939,747 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Welch, B.M.; Horel, J.D.; Sauer, J.A. Application of the NCAR FastEddy® Microscale Model to a Lake Breeze Front. Atmosphere 2024, 15, 809. https://doi.org/10.3390/atmos15070809
Welch BM, Horel JD, Sauer JA. Application of the NCAR FastEddy® Microscale Model to a Lake Breeze Front. Atmosphere. 2024; 15(7):809. https://doi.org/10.3390/atmos15070809
Chicago/Turabian StyleWelch, Brittany M., John D. Horel, and Jeremy A. Sauer. 2024. "Application of the NCAR FastEddy® Microscale Model to a Lake Breeze Front" Atmosphere 15, no. 7: 809. https://doi.org/10.3390/atmos15070809
APA StyleWelch, B. M., Horel, J. D., & Sauer, J. A. (2024). Application of the NCAR FastEddy® Microscale Model to a Lake Breeze Front. Atmosphere, 15(7), 809. https://doi.org/10.3390/atmos15070809