Climate Classification for Major Cities in China Using Cluster Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Data
2.2. Methods
2.2.1. Köppen–Geiger Climate Classification
2.2.2. Hourly Sequence and Daily Sequence
2.2.3. Clustering Method
2.2.4. Clustering Evaluations
3. Results and Discussions
3.1. Köppen–Geiger Climate Classification
3.2. Non-Hierarchical Clustering Results Based on the Hourly Sequence
3.3. Hierarchical Clustering Results Based on the Original Sequence
3.4. North and South Climate Classifications Based on Hourly Meteorological Observations
3.5. Climate Classification Based on the Daily Sequences
3.6. Clustering Evaluation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yang, L.; Gao, X.; Li, Z.; Jia, D. Intra-Day Solar Irradiation Forecast Using Machine Learning with Satellite Data. Sustain. Energy Grids Netw. 2023, 36, 101212. [Google Scholar] [CrossRef]
- Peel, M.C.; Finlayson, B.L.; McMahon, T.A. Updated World Map of the Köppen-Geiger Climate Classification. Hydrol. Earth Syst. Sci. 2007, 11, 1633–1644. [Google Scholar] [CrossRef]
- Chen, D.; Chen, H.W. Using the Köppen Classification to Quantify Climate Variation and Change: An Example for 1901–2010. Environ. Dev. 2013, 6, 69–79. [Google Scholar] [CrossRef]
- Shi, J.; Yang, L. A Climate Classification of China through K-Nearest-Neighbor and Sparse Subspace Representation. J. Clim. 2020, 33, 243–262. [Google Scholar] [CrossRef]
- Stern, H.; de Hoedt, G.; Ernst, J. Objective Classification of Australian Climates. Aust. Meteorol. Mag. 2000, 49, 87–96. [Google Scholar]
- Kumar, J.; Mills, R.T.; Hoffman, F.M.; Hargrove, W.W. Parallel K-Means Clustering for Quantitative Ecoregion Delineation Using Large Data Sets. Procedia Comput. Sci. 2011, 4, 1602–1611. [Google Scholar] [CrossRef]
- Petrić, M.; Lalić, B.; Pajović, I.; Micev, S.; Đurđević, V.; Petrić, D. Expected Changes of Montenegrin Climate, Impact on the Establishment and Spread of the Asian Tiger Mosquito (Aedes albopictus), and Validation of the Model and Model-Based Field Sampling. Atmosphere 2018, 9, 453. [Google Scholar] [CrossRef]
- He, H.; Luo, G.; Cai, P.; Hamdi, R.; Termonia, P.; De Maeyer, P.; Kurban, A.; Li, J. Assessment of Climate Change in Central Asia from 1980 to 2100 Using the Köppen-Geiger Climate Classification. Atmosphere 2021, 12, 123. [Google Scholar] [CrossRef]
- Köppen, W. Versuch Einer Klassifikation Der Klimate, Vorzugsweise Nach Ihren Beziehungen Zur Pflanzenwelt. Geogr. Z. 1900, 6, 593–611. [Google Scholar]
- Beck, H.E.; Zimmermann, N.E.; McVicar, T.R.; Vergopolan, N.; Berg, A.; Wood, E.F. Present and Future Köppen-Geiger Climate Classification Maps at 1-Km Resolution. Sci. Data 2018, 5, 180214. [Google Scholar] [CrossRef]
- Thornthwaite, C.W. Problems in the Classification of Climates. Geogr. Rev. 1943, 33, 233–255. [Google Scholar] [CrossRef]
- IPCC Summary For Policymakers. Climate Change 2021: The Physical Science Basis; Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2021; pp. 3–32. ISBN 978-1-00-915789-6. [Google Scholar]
- Zhang, X. Newly Compiled Geoliterature; Wenming Publishing House: Shanghai, China, 1908. (In Chinese) [Google Scholar]
- Zhang, Q.; Han, L.; Lin, J.; Cheng, Q. North–South Differences in Chinese Agricultural Losses Due to Climate-Change-Influenced Droughts. Theor. Appl. Clim. 2018, 131, 719–732. [Google Scholar] [CrossRef]
- Qin, Z.; Zhao, J.; Cheng, W.; Wang, J.; Su, H.; He, Y. Change of subtropical northern boundary in Qinling−Huaihe region in the context of climate change. Adv. Clim. Chang. Res. 2023, 19, 38–48. [Google Scholar] [CrossRef]
- He, S.; Hao, C. Analysis on Spatial-Temporal Variation Characteristics of Climate in Qinling-Huaihe Demarcation Zone since 1961. Ecol. Indic. 2024, 158, 111345. [Google Scholar] [CrossRef]
- Zscheischler, J.; Mahecha, M.D.; Harmeling, S. Climate Classifications: The Value of Unsupervised Clustering. Procedia Comput. Sci. 2012, 9, 897–906. [Google Scholar] [CrossRef]
- Iyigun, C.; Türkeş, M.; Batmaz, İ.; Yozgatligil, C.; Purutçuoğlu, V.; Koç, E.K.; Öztürk, M.Z. Clustering Current Climate Regions of Turkey by Using a Multivariate Statistical Method. Theor. Appl. Clim. 2013, 114, 95–106. [Google Scholar] [CrossRef]
- Yao, C.S. A New Method of Cluster Analysis for Numerical Classification of Climate. Theor. Appl. Clim. 1997, 57, 111–118. [Google Scholar] [CrossRef]
- Gerstengarbe, F.-W.; Werner, P.C.; Fraedrich, K. Applying Non-Hierarchical Cluster Analysis Algorithms to Climate Classification: Some Problems and Their Solution. Theor. Appl. Clim. 1999, 64, 143–150. [Google Scholar] [CrossRef]
- Fovell, R.G.; Fovell, M.-Y.C. Climate Zones of the Conterminous United States Defined Using Cluster Analysis. J. Clim. 1993, 6, 2103–2135. [Google Scholar] [CrossRef]
- Sa’adi, Z.; Shahid, S.; Shiru, M.S. Defining Climate Zone of Borneo Based on Cluster Analysis. Theor. Appl. Clim. 2021, 145, 1467–1484. [Google Scholar] [CrossRef]
- Mimmack, G.M.; Mason, S.J.; Galpin, J.S. Choice of Distance Matrices in Cluster Analysis: Defining Regions. J. Clim. 2001, 14, 2790–2797. [Google Scholar] [CrossRef]
- Zhang, X.; Yan, X. Temporal Change of Climate Zones in China in the Context of Climate Warming. Theor. Appl. Clim. 2014, 115, 167–175. [Google Scholar] [CrossRef]
- Kalkstein, L.S.; Tan, G.; Skindlov, J.A. An Evaluation of Three Clustering Procedures for Use in Synoptic Climatological Classification. J. Appl. Meteorol. Climatol. 1987, 26, 717–730. [Google Scholar] [CrossRef]
- Netzel, P.; Stepinski, T. On Using a Clustering Approach for Global Climate Classification. J. Clim. 2016, 29, 3387–3401. [Google Scholar] [CrossRef]
- Unal, Y.; Kindap, T.; Karaca, M. Redefining the Climate Zones of Turkey Using Cluster Analysis. Int. J. Climatol. 2003, 23, 1045–1055. [Google Scholar] [CrossRef]
- Carvalho, M.J.; Melo-Gonçalves, P.; Teixeira, J.C.; Rocha, A. Regionalization of Europe Based on a K-Means Cluster Analysis of the Climate Change of Temperatures and Precipitation. Phys. Chem. Earth Parts A/B/C 2016, 94, 22–28. [Google Scholar] [CrossRef]
- Mahlstein, I.; Knutti, R. Regional Climate Change Patterns Identified by Cluster Analysis. Clim. Dyn. 2010, 35, 587–600. [Google Scholar] [CrossRef]
- Bai, L.; Song, B.; Yang, L. Developing the New Thermal Climate Zones of China for Building Energy Efficiency Using the Cluster Approach. Atmosphere 2022, 13, 1498. [Google Scholar] [CrossRef]
- José-García, A.; Gómez-Flores, W. A Survey of Cluster Validity Indices for Automatic Data Clustering Using Differential Evolution. In Proceedings of the Genetic and Evolutionary Computation Conference; Association for Computing Machinery: New York, NY, USA, 2021; pp. 314–322. [Google Scholar]
- Qi, W.; Liu, S.; Zhao, M.; Liu, Z. China’s Different Spatial Patterns of Population Growth Based on the “Hu Line”. J. Geogr. Sci. 2016, 26, 1611–1625. [Google Scholar] [CrossRef]
- Shrikant, K.; Gupta, V.; Khandare, A.; Furia, P. A Comparative Study of Clustering Algorithm. In Proceedings of the Intelligent Computing and Networking; Balas, V.E., Semwal, V.B., Khandare, A., Eds.; Springer Nature: Singapore, 2022; pp. 219–235. [Google Scholar]
- Ahmed, M.; Seraj, R.; Islam, S.M.S. The K-Means Algorithm: A Comprehensive Survey and Performance Evaluation. Electronics 2020, 9, 1295. [Google Scholar] [CrossRef]
- Xu, R.; Wunsch, D. Survey of Clustering Algorithms. IEEE Trans. Neural Netw. 2005, 16, 645–678. [Google Scholar] [CrossRef]
- Velmurugan, T.; Santhanam, T. A Survey of Partition Based Clustering Algorithms in Data Mining: An Experimental Approach. Inf. Technol. J. 2011, 10, 478–484. [Google Scholar] [CrossRef]
- Arthur, D.; Vassilvitskii, S. K-Means++: The Advantages of Careful Seeding. In Proceedings of the SODA, New Orleans, LA, USA, 7–9 January 2007; Volume 7, pp. 1027–1035. [Google Scholar]
- Kaufman, L.; Rousseeuw, P.J. Finding Groups in Data: An Introduction to Cluster Analysis; John Wiley & Sons: Hoboken, NJ, USA, 2009; ISBN 978-0-470-31748-8. [Google Scholar]
- Massaro, J.M. Clustering, Single Linkage. In Wiley StatsRef: Statistics Reference Online; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2014; ISBN 978-1-118-44511-2. [Google Scholar]
- Ward, J.H., Jr. Hierarchical Grouping to Optimize an Objective Function. J. Am. Stat. Assoc. 1963, 58, 236–244. [Google Scholar] [CrossRef]
- Lance, G.N.; Williams, W.T. A General Theory of Classificatory Sorting Strategies: 1. Hierarchical Systems. Comput. J. 1967, 9, 373–380. [Google Scholar] [CrossRef]
- Aghabozorgi, S.; Seyed Shirkhorshidi, A.; Ying Wah, T. Time-Series Clustering—A Decade Review. Inf. Syst. 2015, 53, 16–38. [Google Scholar] [CrossRef]
- Zhou, K.; Yang, S.; Ding, S.; Luo, H. On cluster validation. Syst. Eng.-Theory Pract. 2014, 34, 2417–2431. [Google Scholar]
- Tavakoli, N. Seq2Image: Sequence Analysis Using Visualization and Deep Convolutional Neural Network. In Proceedings of the 2020 IEEE 44th Annual Computers, Software, and Applications Conference (COMPSAC), Madrid, Spain, 13–17 July 2020; pp. 1332–1337. [Google Scholar]
City | Abbreviation | Province | Longitude (°E) | Latitude (°N) | Altitude (m) |
---|---|---|---|---|---|
Harbin | HRB | Heilongjiang | 126.8 | 45.8 | 117.7 |
Changchun | CC | Jilin | 125.2 | 43.9 | 237.5 |
Urumqi | UMQ | Xinjiang | 87.7 | 43.8 | 925 |
Shenyang | SY | Liaoning | 123.5 | 41.7 | 49.5 |
Hohhot | HHT | Inner Mongolia | 111.7 | 40.8 | 1154.4 |
Beijing | BJ | Beijing | 116.5 | 39.8 | 32.5 |
Tianjin | TJ | Tianjin | 117.1 | 39.2 | 4.6 |
Dalian | DL | Liaoning | 121.6 | 38.9 | 92.5 |
Yinchuan | YC | Ningxia | 106.2 | 38.5 | 1111.6 |
Shijiazhuang | SJZ | Hebei | 114.4 | 38.0 | 81 |
Taiyuan | TY | Shanxi | 112.6 | 37.8 | 777.3 |
Xining | XN | Qinghai | 101.8 | 36.7 | 2296 |
Jinan | JN | Shandong | 117.0 | 36.6 | 171.2 |
Qingdao | QD | Shandong | 120.3 | 36.1 | 75.3 |
Lanzhou | LZ | Gansu | 103.9 | 36.1 | 1517.2 |
Zhengzhou | ZZ | Henan | 113.7 | 34.7 | 111.6 |
Xian | XA | Shaanxi | 108.9 | 34.1 | 425.5 |
Nanjing | NJ | Jiangsu | 118.9 | 31.9 | 36.4 |
Hefei | HF | Anhui | 117.3 | 31.8 | 28.2 |
Shanghai | SH | Shanghai | 121.5 | 31.4 | 6.7 |
Wuhan | WH | Hubei | 114.1 | 30.6 | 24.4 |
Chengdu | CD | Sichuan | 103.9 | 30.6 | 495.8 |
Hangzhou | HZ | Zhejiang | 120.2 | 30.2 | 42.6 |
Lhasa | LS | Xizang | 91.1 | 29.7 | 3648.9 |
Chongqing | CQ | Chongqing | 106.5 | 29.6 | 259.6 |
Ningbo | NB | Zhejiang | 121.4 | 29.3 | 40.4 |
Nanchang | NC | Jiangxi | 116.0 | 28.6 | 32.9 |
Changsha | CS | Hunan | 112.9 | 28.2 | 69.2 |
Guiyang | GY | Guizhou | 106.7 | 26.6 | 1224.9 |
Fuzhou | FZ | Fujian | 119.3 | 26.1 | 84.8 |
Kunming | KM | Yunnan | 102.7 | 25.0 | 1889.1 |
Xiamen | XM | Fujian | 118.1 | 24.5 | 140.6 |
Guangzhou | GZ | Guangdong | 113.5 | 23.2 | 71.5 |
Nanning | NN | Guangxi | 108.2 | 22.6 | 122.6 |
Shenzhen | SZ | Guangdong | 114.0 | 22.5 | 63.9 |
Haikou | HK | Hainan | 110.3 | 20.0 | 64.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duan, H.; Li, Q.; He, L.; Zhang, J.; An, H.; Ali, R.; Vazifedoust, M. Climate Classification for Major Cities in China Using Cluster Analysis. Atmosphere 2024, 15, 741. https://doi.org/10.3390/atmos15070741
Duan H, Li Q, He L, Zhang J, An H, Ali R, Vazifedoust M. Climate Classification for Major Cities in China Using Cluster Analysis. Atmosphere. 2024; 15(7):741. https://doi.org/10.3390/atmos15070741
Chicago/Turabian StyleDuan, Huashuai, Qinglan Li, Lunkai He, Jiali Zhang, Hongyu An, Riaz Ali, and Majid Vazifedoust. 2024. "Climate Classification for Major Cities in China Using Cluster Analysis" Atmosphere 15, no. 7: 741. https://doi.org/10.3390/atmos15070741
APA StyleDuan, H., Li, Q., He, L., Zhang, J., An, H., Ali, R., & Vazifedoust, M. (2024). Climate Classification for Major Cities in China Using Cluster Analysis. Atmosphere, 15(7), 741. https://doi.org/10.3390/atmos15070741