Rainfall Estimation Model in Seasonal Zone and Non-Seasonal Zone Regions Using Weather Radar Imagery Based on a Gradient Boosting Algorithm
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Data
2.2. Pre-Processing
2.3. Gradient Boosting Algorithm
3. Results and Discussion
3.1. Data and Correlation
3.2. Application of the Gradient Boosting Models
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Belgaman, H.A.; Kimpei, I.; Rusmawan, S.; Masahiro, T.; Edvin, A.; Arika, U.; Sheila, K. Characteristics of seasonal precipitation isotope variability in Indonesia. Hydrol. Res. Lett. 2017, 11, 92–98. [Google Scholar] [CrossRef]
- Faradiba, F. Determination of Climate Factors in Flood and Drought Disaster in Indonesia using Instrumental Variable (IV) Methods. J. Ilmu Fis. Univ. Andalas 2021, 13, 54–61. [Google Scholar] [CrossRef]
- Jun-Ichi, H.; Yamanaka, M.D.; Matsumoto, J.; Winarso, P.A.; Sribimawati, T. Spatial and Temporal Variations of the Rainy Season over Indonesia and their Link to ENSO. J. Meteorol. Soc. Jpn. 2002, 80, 285–310. [Google Scholar]
- Aldrian, E.; Gates, L.D.; Widodo, F.H. Seasonal variability of Indonesian rainfall in ECHAM4 simulations and in the reanalyses: The role of ENSO. Theor. Appl. Climatol. 2007, 87, 41–59. [Google Scholar] [CrossRef]
- Pramuwardani, I.; Sopaheluwakan, A. The Influence of Madden-Julian Oscillation on Local-Scale Phenomena over Indonesia during the Western North Pacific and Australian Monsoon Phases. Forum Geogr. 2018, 31, 156–169. [Google Scholar] [CrossRef]
- Ardhitama, A.; Sholihah, R. Kajian Penentuan Awal Musim di Daerah Non ZOM 14 Riau dengan Menggunakan Data Curah Hujan dan Hari Hujan. J. Sains Teknol. Modif. Cuaca 2014, 15, 65–73. [Google Scholar] [CrossRef]
- Nuryanto, D.E. Keterkaitan Antara Monsun Ind-Australia Dengan Variabilitas Musiman Curah Hujan di Benua Maritim Indonesia Secara Spasial Berbasis Hasil Analisa Data Satelit TRMM. J. Meteorol. Dan Geofis. 2012, 13, 91–102. [Google Scholar] [CrossRef]
- Satiadi, D.; Fathrio, I. Penentuan Onset Monsun di Wilayah Indo-Australia Berdasarkan Lompatan ITCZ. J. Sains Dirgant. 2011, 9, 1–11. [Google Scholar]
- Setiawan, A.M.; Ripaldi, A. Prakiraan Musim Hujan 2021/2022 di Indonesia; Clearing House: New York, NY, USA, 2021. [Google Scholar]
- Aldrian, E. Meteorologi Laut Indonesia; Puslitbang BMKG: Jakarta Pusat, Indonesia, 2008. [Google Scholar]
- Gernowo, R.; Widodo, C.E.; Widodo, A.P. The atmospheric dynamic extreme of tropical as an analysis of climate change in Indonesia. Geogr. Tech. 2020, 15, 138–146. [Google Scholar] [CrossRef]
- Ardiyanto, L.; Hanif, A.M.; Alfaridzi, M.; Ariwibowo, S.; Wardoyo, E.; Nugraheni, I.R. Estimasi Curah Hujan Radar Cuaca dengan Hubungan Z–R Berbeda pada Tipe Awan Hujan Konvektif dan Stratiform di Lampung. Pros. SNFA Semin. Nas. Fis. Dan Apl. 2019, 4, 51–60. [Google Scholar] [CrossRef]
- Hutapea, T.D.F.; Permana, D.S.; Praja, A.S.; Muzayanah, L.F. Modification of Z–R Relationship Constants in Surabaya Radar for Improving the Accuracy of Rainfall Estimates. J. Meteorol. Dan Geofis. 2021, 21, 91–97. [Google Scholar] [CrossRef]
- Juma’a, M.W.; Limantara, L.M.; Wahyuni, S. Estimasi Tinggi Curah Hujan dari Data Klimatologi Menggunakan Model Artificial Neural Network (Ann) di Kabupaten Badung Bali Selatan. J. Teknol. Dan Rekayasa Sumber Data Air 2021, 1, 126–135. [Google Scholar] [CrossRef]
- Swarinoto, Y.S.; Husain. Daily Rainfall Estimation Using Auto Estimator Method (Jayapura and its surrounding case). J. Meteorol. Dan Geofis. 2012, 13, 53–61. [Google Scholar]
- Marzuki; Hashiguchi, H.; Vonnisa, M.; Harmadi; Muzirwan; Nugroho, S.; Yoseva, M. Z–R Relationships for Weather Radar in Indonesia from the Particle Size and Velocity (Parsivel) Optical Disdrometer. In Proceedings of the 2018 Progress in Electromagnetics Research Symposium (PIERS-Toyama), Toyama, Japan, 1–4 August 2018; pp. 37–41. [Google Scholar] [CrossRef]
- Rui, X.P.; Qu, X.K.; Yu, X.T.; Lei, Q.L.; Fan, Y.L. Quantitative rainfall estimation using weather radar based on the improved kalman filter method. Appl. Ecol. Environ. Res. 2019, 17, 369–381. [Google Scholar] [CrossRef]
- Ayasha, N. A Comparison of Rainfall Estimation Using Himawari-8 Satellite Data in Different Indonesian Topographies. Int. J. Remote Sens. Earth Sci. 2021, 17, 189–200. [Google Scholar] [CrossRef]
- Tian, W.; Yi, L.; Liu, W.; Huang, W.; Ma, G.; Zhang, Y. Ground radar precipitation estimation with deep learning approaches in meteorological private cloud. J. Cloud Comput. 2020, 9, 22. [Google Scholar] [CrossRef]
- Inlaung, K.; Nakapan, S. Study of radar rainfall estimation using geographic information systems over Chiang Mai province. J. Phys. Conf. Ser. 2018, 1144, 012089. [Google Scholar] [CrossRef]
- Sobli, N.H.M.; Ismail, A.F.; Isa, F.N.M.; Mansor, H. Assessment of Radar Reflectivity-Rainfall Rate, Z–R Relationships for a Convective Event in Malaysia. Int. J. Electr. Energy 2013, 1, 239–243. [Google Scholar] [CrossRef]
- Efendi, U.; Nadiansyah, R.; Afriza, P.R.; Nugraheni, I.R.; Ali, A. Uji Akurasi Estimasi Curah Hujan Produk Radar Cuaca C-BAND di Wilayah Pontianak. In Proceedings of the Seminar Nasional Geografi III, Yogyakarta, Indonesia, 2 November 2019; pp. 776–785. [Google Scholar]
- Bove, R.; Pelino, V.; de Leonibus, L. Complexity in rainfall phenomena. Commun. Nonlinear Sci. Numer. Simul. 2006, 11, 678–684. [Google Scholar] [CrossRef]
- Peters, O.; Hertlein, C.; Christensen, K.; Hertlein, C. A Complexity View of Rainfall. Phys. Rev. Lett. 2002, 88, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Silva, A.S.A.d.; Barreto, I.D.d.C.; Cunha-Filho, M.; Menezes, R.S.C.; Stosic, B.; Stosic, T. Spatial and Temporal Variability of Precipitation Complexity in Northeast Brazil. Sustainability 2022, 14, 13467. [Google Scholar] [CrossRef]
- Hidayat, R.; Ando, K. Variabilitas Curah Hujan Indonesia dan Hubungannya Dengan ENSO/IOD: Estimasi Menggunakan Data JRA-25/JCDAS. Agromet 2014, 28, 1–8. [Google Scholar] [CrossRef]
- Shin, K.; Song, J.J.; Bang, W.; Lee, G.W. Quantitative Precipitation Estimates Using Machine Learning Approaches with Operational Dual-Polarization Radar Data. Remote Sens. 2021, 13, 694. [Google Scholar] [CrossRef]
- Kaličanin, K.; Čolović, M.; Njeguš, A.; Mitić, V. Benefits of Artificial Intelligence and Machine Learning in Marketing. In Proceedings of the International Scientific Conference on Information Technology and Related Research, Belgrade, Serbia, 20 May 2019; pp. 472–477. [Google Scholar] [CrossRef]
- Attaran, M.; Deb, P. Machine Learning: The New ‘Big Thing’ for Competitive Advantage. Int. J. Knowl. Eng. Data Min. 2018, 5, 277–305. [Google Scholar] [CrossRef]
- al Bataineh, A. A comparative analysis of nonlinear machine learning algorithms for breast cancer detection. Int. J. Mach. Learn. Comput. 2019, 9, 248–254. [Google Scholar] [CrossRef]
- Ryo, M.; Rillig, M.C. Statistically reinforced machine learning for nonlinear patterns and variable interactions. Ecosphere 2017, 8, 1–16. [Google Scholar] [CrossRef]
- Waskita, T.P.; Saputro, A.H.; Sopaheluwakan, A.; Ryan, M. Machine Learning System for Rainfall Estimates from Single Polarization Radar. In Proceedings of the International Conferences on Information System and Technology (CONRIST 2019), Yogyakarta, Indonesia, 5–6 December 2019; SciTePress: Setúbal, Portugal, 2020; pp. 41–48. [Google Scholar] [CrossRef]
- Çolakoğlu, N.; Akkaya, B. Comparison of Multi-Class Classification Algorithms on Early Diagnosis of Heart Diseases. In Proceedings of the ISBIS Young Business and Industrial Statisticians Workshop on Recent Advances in Data Science and Business Analytics, Istanbul, Turkey, 25–28 September 2019; pp. 162–172. [Google Scholar]
- Popescu, M.-C.; Balas, V.E.; Popescu, L.P.; Mastorakis, N.E. Multilayer Perceptron and Neural Networks. Wseas Trans. Circuits Syst. 2009, 8, 579–588. [Google Scholar]
- Prajwala, T.R. A Comparative Study on Decision Tree and Random Forest Using R Tool. Int. J. Adv. Res. Comput. Commun. Eng. 2015, 4, 196–199. [Google Scholar] [CrossRef]
- Little, M.P.; Rosenberg, P.S.; Arsham, A. Alternative stopping rules to limit tree expansion for random forest models. Sci. Rep. 2022, 12, 15113. [Google Scholar] [CrossRef]
- Rokach, L.; Maimon, O. Decision Trees. In Data Mining and Knowledge Discovery Handbook; Springer: Berlin/Heidelberg, Germany, 2006; pp. 165–192. [Google Scholar] [CrossRef]
- Chandrasekar, V.; Tan, H.; Chen, H. A Machine Learning System for Rainfall Estimation from Spaceborne and Ground Radars. In Proceedings of the 2017 32nd General Assembly and Scientific Symposium of the International Union of Radio Science, URSI GASS 2017, Montreal, QC, Canada, 19–26 August 2017; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2017; pp. 1–2. [Google Scholar] [CrossRef]
- Guarascio, M.; Folino, G.; Chiaravalloti, F.; Gabriele, S.; Procopio, A.; Sabatino, P. A Machine Learning Approach for Rainfall Estimation Integrating Heterogeneous Data Sources. IEEE Trans. Geosci. Remote Sens. 2020, 60, 4200111. [Google Scholar] [CrossRef]
- Sarker, I.H.; Kayes, A.S.M.; Watters, P. Effectiveness analysis of machine learning classification models for predicting personalized context-aware smartphone usage. J. Big Data 2019, 6, 57. [Google Scholar] [CrossRef]
- Sarker, I.H. Machine Learning: Algorithms, Real-World Applications and Research Directions. SN Comput. Sci. 2021, 2, 160. [Google Scholar] [CrossRef] [PubMed]
- Juarez-Orozco, L.E.; Martinez-Manzanera, O.; Nesterov, S.V.; Kajander, S.; Knuuti, J. The machine learning horizon in cardiac hybrid imaging. Eur. J. Hybrid Imaging 2018, 2, 15. [Google Scholar] [CrossRef]
- Ma, L.; Zhang, G.; Lu, E. Using the gradient boosting decision tree to improve the delineation of hourly rain areas during the summer from advanced Himawari imager data. J. Hydrometeorol. 2018, 19, 761–776. [Google Scholar] [CrossRef]
- Hosen, S.; Amin, R. Significant of Gradient Boosting Algorithm in Data Management System. Eng. Int. 2021, 9, 85–100. [Google Scholar] [CrossRef]
- Aziz, N.; Akhir, E.A.P.; Aziz, I.A.; Jaafar, J.; Hasan, M.H.; Abas, A.N.C. A Study on Gradient Boosting Algorithms for Development of AI Monitoring and Prediction Systems. In Proceedings of the 2020 International Conference on Computational Intelligence (ICCI), Bandar Seri Iskandar, Malaysia, 8–9 October 2020; pp. 11–16. [Google Scholar]
- Hassan, D.; Isaac, G.A.; Taylor, P.A.; Michelson, D. Optimizing Radar-Based Rainfall Estimation Using Machine Learning Models. Remote Sens. 2022, 14, 5188. [Google Scholar] [CrossRef]
- Putra, M.; Rosid, M.S.; Handoko, D. Rainfall Estimation Using Machine Learning Approaches with Raingauge, Radar, and Satellite Data. In Proceedings of the 2022 International Conferernce on Electrical Engineering and Informatics (ICELTICs), Banda Aceh, Indonesia, 27–28 September 2022. [Google Scholar]
- Wardoyo, E. Analisis Interferensi Frekuensi Radar Cuaca C-Band di Indonesia. InComTech J. Telekomun. Dan Komput. 2014, 5, 163–184. [Google Scholar] [CrossRef]
- All Weather Inc. Tipping Bucket Rain Gauge Models 6011-A 6011-B User’s Manual; All Weather Inc.: Sacramento, CA, USA, 2008. [Google Scholar]
- Matrosov, S.Y.; Kingsmill, D.E.; Martner, B.E.; Ralph, F.M. The utility of X-band polarimetric radar for quantitative estimates of rainfall parameters. J. Hydrometeorol. 2005, 6, 248–262. [Google Scholar] [CrossRef]
- Gu, J.Y.; Ryzhkov, A.; Zhang, P.; Neilley, P.; Knight, M.; Wolf, B.; Lee, D.-I. Polarimetric attenuation correction in heavy rain at C band. J. Appl. Meteorol. Climatol. 2011, 50, 39–58. [Google Scholar] [CrossRef]
- Baedi, R.; Boers, R.; Russchenberg, H. Detection of Boundary Layer Water Clouds by Spaceborne Cloud Radar. J. Atmos. Ocean. Technol. 2002, 19, 1915–1927. [Google Scholar] [CrossRef]
- Kogan, Z.N.; Mechem, D.B.; Kogan, Y.L. Assessment of variability in continental low stratiform clouds based on observations of radar reflectivity. J. Geophys. Res. D Atmos. 2005, 35, 1–15. [Google Scholar] [CrossRef]
- Prasetyo, B.; Pusparini, N.; Fitria, W. Weather Radar Application for Identification of Extreme Weather Conditions Fluctuation (Case Study: Flood in Medan City on October 5th 2018). J. Sains Teknol. Modif. Cuaca 2019, 20, 13–21. [Google Scholar] [CrossRef]
- Tondang, Y.M.; Situmorang, M.; Ikhsan, T.; Darmawan, Y. Accuracy of Weather Radar Products for Rainfall Estimation in North Sumatra Region. Prism. Sains J. Pengkaj. Ilmu Dan Pembelajaran Mat. Dan IPA IKIP Mataram 2023, 11, 351–357. [Google Scholar] [CrossRef]
- Daliakopoulos, I.N.; Tsanis, I.K. A Weather Radar Data Processing Module for Storm Analysis. J. Hydroinform. 2012, 14, 332–344. [Google Scholar] [CrossRef]
- Yang, W.; Liu, J.; Li, M.; Guo, Z. Isophote-Constrained Autoregressive Model with Adaptive Window Extension for Image Interpolation. IEEE Trans. Circuits Syst. Video Technol. 2018, 28, 1071–1086. [Google Scholar] [CrossRef]
- Elizabeth, T. Analisis Hasil Resolusi Citra Dengan Metode Interpolasi Nearest Neighbor, Interpolasi Bilinear, dan Interpolasi Bicubic. J. Sist. Teknol. Inf. Komun. 2019, 2, 1–5. [Google Scholar]
- Guillen, M.D.; Aparicio, J.; Esteve, M. Gradient tree boosting and the estimation of production frontiers. Expert Syst. Appl. 2023, 214, 119134. [Google Scholar] [CrossRef]
- Callens, A.; Morichon, D.; Abadie, S.; Delpey, M. Using Random forest and Gradient boosting trees to 1 improve wave forecast at a specific location. Appl. Ocean. Res. 2020, 104, 102339. [Google Scholar] [CrossRef]
- Bartz, E.; Bartz-Beielstein, T.; Zaefferer, M.; Mersmann, O. Hyperparameter Tuning for Machine and Deep Learning with R A Practical Guide; Springer: Berlin/Heidelberg, Germany, 2022. [Google Scholar]
- Fan, M.; Xiao, K.; Sun, L.; Zhang, S.; Xu, Y. Automated Hyperparameter Optimization of Gradient Boosting Decision Tree Approach for Gold Mineral Prospectivity Mapping in the Xiong’ershan Area. Minerals 2022, 12, 1621. [Google Scholar] [CrossRef]
- Handayani, A.; Jamal, A.; Septiandri, A.A. Evaluasi Tiga Jenis Algoritme Berbasis Pembelajaran Mesin untuk Klasifikasi Jenis Tumor Payudara. J. Nas. Tek. Elektro Dan Teknol. Inf. 2017, 6, 394–403. [Google Scholar] [CrossRef]
- Sahrul; Hadinisa, S.; Koyimatu, M.; Irawan, A.; Nogroho, H. Analisis Learning Rate pada Metode Transfer Learning untuk Sistem Pendeteksi Api. In Proceedings of the Seminar Nasional Microwave, Antena dan Propagasi (SMAP), Jawa Barat, Indonesia, 10 December 2018; pp. 1–4. [Google Scholar]
- Nielsen, D. Tree Boosting with XGBoost Why Does XGBoost Win ‘Every’ Machine Learning Competition? Master’s Thesis, Norwegian University of Science and Technology, Trondheim, Norway, 2017. [Google Scholar]
- Mohammed, R.; Rawashdeh, J.; Abdullah, M. Machine Learning with Oversampling and Undersampling Techniques: Overview Study and Experimental Results. In Proceedings of the 2020 11th International Conference on Information and Communication Systems, ICICS 2020, Irbid, Jordan, 7–9 April 2020; pp. 243–248. [Google Scholar] [CrossRef]
- Sebastianelli, S.; Russo, F.; Napolitano, F.; Baldini, L. Comparison between radar and rain gauges data at different distances Comparison between radar and rain gauges data at different distances from radar and correlation existing between the rainfall values in the adjacent pixels Comparison between radar and rain gauges data at different distances. Hydrol. Earth Syst. Sci. Discuss 2010, 7, 5171–5212. [Google Scholar] [CrossRef]
- Birhan, M.W.; Raju, U.J.P.; Kenea, S.T. Error Modeling Radar Rainfall Estimation through Incorporating Rain Gauge Data over Upper Blue Nile Basin, Ethiopia. Int. J. Comput. Sci. Appl. Math. 2019, 5, 48. [Google Scholar] [CrossRef]
- Erpul, G.; Norton, L.D.; Gabriels, D. The effect of wind on raindrop impact and rainsplash detachment. Trans. Am. Soc. Agric. Eng. 2003, 46, 51–62. [Google Scholar] [CrossRef]
- Nikahd, A.; Hashim, M.; Nazemosadat, M.J. A Review of Uncertainty Sources on Weather Ground-Based Radar for Rainfall Estimation. Appl. Mech. Mater. 2016, 818, 254–271. [Google Scholar] [CrossRef]
- Nanding, N.; Rico-Ramirez, M.A. Precipitation Measurement with Weather Radars. In Handbook of Environmental Chemistry; Springer Science and Business Media Deutschland GmbH: Berlin/Heidelberg, Germany, 2021; Volume 102, pp. 235–258. [Google Scholar] [CrossRef]
- Gires, A.; Tchiguirinskaia, I.; Schertzer, D.; Schellart, A.; Berne, A.; Lovejoy, S. Influence of Small Scale Rainfall Variability on Standard Comparison Tools between Radar and Rain Gauge Data. Atmos. Res. 2014, 138, 125–138. [Google Scholar] [CrossRef]
- Jensen, N.E.; Pedersen, L. Spatial Variability of Rainfall: Variations within a Single Radar Pixel. Atmos. Res. 2005, 77, 269–277. [Google Scholar] [CrossRef]
- Brandes, E.A.; Vivekanandan, J.; Wilson, J.W. NOTES AND CORRESPONDENCE A Comparison of Radar Reflectivity Estimates of Rainfall from Collocated Radars. J. Atmos. Ocean Technol. 1998, 16, 1264–1272. [Google Scholar] [CrossRef]
- Sevruk, B. Adjustment of tipping-bucket precipitation gauge measurements. Atmos. Res. 1996, 42, 237–246. [Google Scholar] [CrossRef]
- Piccolo, F.; Chirico, G.B. Sampling Errors in Rainfall Measurements by Weather Radar. Adv. Geosci. 2005, 2, 151–155. [Google Scholar] [CrossRef]
- Tukidi. Karakter Curah Hujan di Indonesia. J. Geogr. 2010, 7, 136–145. [Google Scholar] [CrossRef]
- Renggono, F. Analisis Kemunculan Awan Hujan Berdasarkan Jenisnya untuk Mendukung Kegiatan Modifikasi Cuaca. J. Sains Dan Teknol. Modif. Cuaca 2015, 16, 83–89. [Google Scholar] [CrossRef]
- Syafira, S.A.; Syaifullah, M.D.; Renggono, F. High Daily Rainfall-Clouds and Rain Characteristics Based on Micro Rain Radar Data (Case Study: Dramaga Area, Bogor). J. Sains Teknol. Modif. Cuaca 2016, 17, 27. [Google Scholar] [CrossRef]
- Badron, K.; Ismail, F.; Asnawi, A.L.; Malik, N.F.A.; Abidin, S.Z.; Dzulkifly, S. Classification of Precipitation Types Detected in Malaysia. Int. J. Inf. Commun. Eng. 2014, 8, 1388–1392. [Google Scholar]
- Alfahmi, F.; Boer, R.; Hidayat, R.; Perdinan; Sopaheluwakan, A. The Impact of Concave Coastline on Rainfall Offshore Distribution over Indonesian Maritime Continent. Sci. World J. 2019, 2019, 6839012. [Google Scholar] [CrossRef] [PubMed]
- Hunter, S.M. WSR-88D Radar Rainfall Estimation: Capabilities, Limitations and Potential Improvements. Natl. Weather Dig. 1996, 20, 26–38. [Google Scholar]
- Einfalt, T.; Jessen, M.; Mehlig, B. Comparison of radar and raingauge measurements during heavy rainfall. Water Sci. Technol. 2005, 51, 195–201. [Google Scholar] [CrossRef] [PubMed]
- Sideris, I.V.; Gabella, M.; Erdin, R.; Germann, U. Real-time radar-rain-gauge merging using spatio-temporal co-kriging with external drift in the alpine terrain of Switzerland. Q. J. R. Meteorol. Soc. 2014, 140, 1097–1111. [Google Scholar] [CrossRef]
- Thorndahl, S.; Nielsen, J.E.; Rasmussen, M.R. Bias adjustment and advection interpolation of long-term high resolution radar rainfall series. J. Hydrol. 2014, 508, 214–226. [Google Scholar] [CrossRef]
- MacNell, N.; Feinstein, L.; Wilkerson, J.; Salo, M.; Molsberry, S.A.; Fessler, M.B.; Thorne, P.S.; Motsinger-Reif, A.A.; Zeldin, D.C. Implementing machine learning methods with complex survey data: Lessons learned on the impacts of accounting sampling weights in gradient boosting. PLoS ONE 2023, 18, e0280387. [Google Scholar] [CrossRef]
Regions | Model | RMSE (mm/h) | R2 |
---|---|---|---|
Lampung | Global model | 0.456 | 0.92 |
Local model | 0.307 | 0.97 | |
Marshall-Palmer (Z = 200R1.6) | 1.207 | 0.55 | |
Rosenfeld (Z = 250R1.2) | 1.213 | 0.60 | |
New Z–R (Z = 97.6R11.9) | 1.189 | 0.55 | |
Banjarmasin | Global model | 0.778 | 0.96 |
Local model | 0.496 | 0.99 | |
Marshall-Palmer (Z = 200R1.6) | 1.712 | 0.69 | |
Rosenfeld (Z = 250R1.2) | 2.173 | 0.62 | |
New Z–R (Z = 18.8R1.3) | 1.571 | 0.70 | |
Biak | Global model | 1.339 | 0.79 |
Local model | 1.097 | 0.88 | |
Marshall-Palmer (Z = 200R1.6) | 1.478 | 0.65 | |
Rosenfeld (Z = 250R1.2) | 1.418 | 0.57 | |
New Z–R (Z = 6.9R2.0) | 1.438 | 0.66 | |
Gorontalo | Global model | 0.833 | 0.82 |
Local model | 0.686 | 0.88 | |
Marshall-Palmer (Z = 200R1.6) | 0.905 | 0.61 | |
Rosenfeld (Z = 250R1.2) | 0.861 | 0.66 | |
New Z–R (Z = 3.4R3.0) | 0.859 | 0.67 | |
Pontianak | Global model | 1.520 | 0.89 |
Local model | 0.920 | 0.96 | |
Marshall-Palmer (Z = 200R1.6) | 1.647 | 0.67 | |
Rosenfeld (Z = 250R1.2) | 1.649 | 0.66 | |
New Z–R (Z = 1.94R2.1) | 1.618 | 0.67 | |
Deli Serdang | Global model | 0.552 | 0.90 |
Local model | 0.474 | 0.96 | |
Marshall-Palmer (Z = 200R1.6) | 1.530 | 0.75 | |
Rosenfeld (Z = 250R1.2) | 1.820 | 0.68 | |
New Z–R (Z = 6.7R1.9) | 1.848 | 0.76 |
Training Data Used | Global Model Estimation Results | |
---|---|---|
RMSE (mm/h) | R2 | |
All training data | 0.944 | 0.95 |
Excluding local rain pattern data | 1.089 | 0.91 |
Excluding equatorial rain pattern data | 1.125 | 0.89 |
Excluding monsoon rain pattern data | 1.163 | 0.88 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Putra, M.; Rosid, M.S.; Handoko, D. Rainfall Estimation Model in Seasonal Zone and Non-Seasonal Zone Regions Using Weather Radar Imagery Based on a Gradient Boosting Algorithm. Atmosphere 2024, 15, 726. https://doi.org/10.3390/atmos15060726
Putra M, Rosid MS, Handoko D. Rainfall Estimation Model in Seasonal Zone and Non-Seasonal Zone Regions Using Weather Radar Imagery Based on a Gradient Boosting Algorithm. Atmosphere. 2024; 15(6):726. https://doi.org/10.3390/atmos15060726
Chicago/Turabian StylePutra, Maulana, Mohammad Syamsu Rosid, and Djati Handoko. 2024. "Rainfall Estimation Model in Seasonal Zone and Non-Seasonal Zone Regions Using Weather Radar Imagery Based on a Gradient Boosting Algorithm" Atmosphere 15, no. 6: 726. https://doi.org/10.3390/atmos15060726
APA StylePutra, M., Rosid, M. S., & Handoko, D. (2024). Rainfall Estimation Model in Seasonal Zone and Non-Seasonal Zone Regions Using Weather Radar Imagery Based on a Gradient Boosting Algorithm. Atmosphere, 15(6), 726. https://doi.org/10.3390/atmos15060726