Analysis of Ionospheric VTEC Retrieved from Multi-Instrument Observations
Abstract
:1. Introduction
2. Data Sources
2.1. GIM VTEC
2.2. COSMIC and FY3C Radio Occultation Data
2.3. SWARM Data
2.4. JASON 3 Data
3. Space Weather Conditions and Indices
4. Analysis of Daily Results
4.1. GIM VTEC versus COSMIC RO VTEC
4.2. GIM VTEC versus FY3C RO VTEC
4.3. GIM VTEC versus SWARM VTEC
4.4. GIM VTEC versus JASON VTEC
5. Analysis of Long-Term Results
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- López-Urias, C.; Vazquez-Becerra, G.E.; Nayak, K.; López-Montes, R. Analysis of ionospheric disturbances during x-class solar flares (2021–2022) using GNSS data and wavelet analysis. Remote Sens. 2023, 15, 4626. [Google Scholar] [CrossRef]
- Zhang, S.-R.; Nishimura, Y.; Erickson, P.J.; Aa, E.; Kil, H.; Deng, Y.; Thomas, E.G.; Rideout, W.; Coster, A.J.; Kerr, R.; et al. Traveling ionospheric disturbances in the vicinity of storm-enhanced density at midlatitudes. J. Geophys. Res. Space Phys. 2022, 127, e2022JA030429. [Google Scholar] [CrossRef] [PubMed]
- Essien, P.; Figueiredo, C.A.O.B.; Takahashi, H.; Wrasse, C.M.; Barros, D.; Klutse, N.A.B.; Lomotey, S.O.; Ayorinde, T.T.; Gobbi, D.; Bilibio, A.V. Long-Term study on medium-scale traveling ionospheric disturbances observed over the South American Equatorial Region. Atmosphere 2021, 12, 1409. [Google Scholar] [CrossRef]
- Atabati, A.; Alizadeh, M.; Schuh, H.; Tsai, L.-C. Ionospheric scintillation prediction on S4 and ROTI parameters using artificial neural network and genetic algorithm. Remote Sens. 2021, 13, 2092. [Google Scholar] [CrossRef]
- Feng, J.; Yuan, Y.; Zhang, T.; Zhang, Z.; Meng, D. Analysis of ionospheric anomalies before the Tonga volcanic eruption on 15 January 2022. Remote Sens. 2023, 15, 4879. [Google Scholar] [CrossRef]
- Nayak, K.; López-Urías, C.; Romero-Andrade, R.; Sharma, G.; Guzmán-Acevedo, G.M.; Trejo-Soto, M.E. Ionospheric Total Electron Content (TEC) anomalies as earthquake precursors: Unveiling the geophysical connection leading to the 2023 Moroccan 6.8 Mw Earthquake. Geosciences 2023, 13, 319. [Google Scholar] [CrossRef]
- Bilitza, D. International Reference Ionosphere 2000. Radio Sci. 2001, 36, 261–275. [Google Scholar] [CrossRef]
- Daniell, R.E., Jr.; Brown, L.D.; Anderson, D.N.; Fox, M.W.; Doherty, P.H.; Decker, D.T.; Sojka, J.J.; Schunk, R.W. Parameterized ionospheric model: A global ionospheric parameterization based on first principles models. Radio Sci. 1995, 30, 1499–1510. [Google Scholar] [CrossRef]
- Bent, R.B.; Llewellyn, S.K. Documentation and Description of the Bent Ionospheric Model; Space and Missile Organisation: Los Angeles, CA, USA, 1973. [Google Scholar]
- Hochegger, G.; Nava, B.; Radicella, S.M.; Leitinger, R. A family of ionospheric models for different uses. Phys. Chem. Earth Part C Sol. Terr. Planet. Sci. 2000, 25, 307–310. [Google Scholar] [CrossRef]
- Radicella, S.M.; Leitinger, R. The evolution of the DGR approach to model electron density profiles. Adv. Space Res. 2001, 27, 35–40. [Google Scholar] [CrossRef]
- Anderson, D.N.; Mendillo, M.; Herniter, B. A semi-empirical low latitude ionospheric model. Radio Sci. 1987, 22, 292–306. [Google Scholar] [CrossRef]
- Gulyaeva, T.L.; Huang, X.; Reinisch, B.W. Plasmaspheric extension of topside electron density profiles. Adv. Space Res. 2002, 29, 825–831. [Google Scholar] [CrossRef]
- Alcay, S. Analysis of the TEC prediction performance of IRI-2016 model in the mid-latitude region. Geomagn. Aeron. 2021, 61, 600–618. [Google Scholar] [CrossRef]
- Bilitza, D.; Pezzopane, M.; Truhlik, V.; Altadill, D.; Reinisch, B.W.; Pignalberi, A. The International Reference Ionosphere model: A review and description of an ionospheric benchmark. Rev. Geophys. 2022, 60, e2022RG000792. [Google Scholar] [CrossRef]
- Jakowski, N.; Heise, S.; Stankov, S.M.; Tsybulya, K. Remote sensing of the ionosphere by space-based GNSS observations. Adv. Space Res. 2006, 38, 2337–2343. [Google Scholar] [CrossRef]
- Shah, M.; Shahzad, R.; Jamjareegulgarn, P.; Ghaffar, B.; Oliveira-Júnior, J.F.d.; Hassan, A.M.; Ghamry, N.A. Machine-Learning -Based Lithosphere-Atmosphere- Ionosphere Coupling Associated with Mw > 6 Earthquakes in America. Atmosphere 2023, 14, 1236. [Google Scholar] [CrossRef]
- Nayak, K.; Romero-Andrade, R.; Sharma, G.; Zavala, J.L.C.; Urias, C.L.; Trejo Soto, M.E.; Aggarwal, S.P. A combined approach using b-value and ionospheric GPS-TEC for large earthquake precursor detection: A case study for the Colima earthquake of 7.7 Mw, Mexico. Acta Geod. Geophys. 2023, 58, 515–538. [Google Scholar] [CrossRef]
- Sharma, G.; Nayak, K.; Romero-Andrade, R.; Aslam, M.M.; Sarma, K.K.; Aggarwal, S.P. low ionosphere density above the earthquake epicentre region of Mw 7.2, El Mayor–Cucapah earthquake evident from dense CORS data. J. Indian Soc. Remote Sens. 2024, 52, 543–555. [Google Scholar] [CrossRef]
- Milanowska, B.; Wielgosz, P.; Krypiak-Gregorczyk, A.; Jarmołowski, W. Accuracy of Global Ionosphere Maps in relation to their time interval. Remote Sens. 2021, 13, 3552. [Google Scholar] [CrossRef]
- Senturk, E.; Çepni, M.S. Performance of different weighting and surface fitting techniques on station-wise TEC calculation and modified sine weighting supported by the sun effect. J. Spat. Sci. 2019, 64, 209–220. [Google Scholar] [CrossRef]
- Schaer, S.; Gurtner, W.; Feltens, J. IONEX: The ionosphere map exchange format version 1. In Proceedings of the IGS AC Workshop, Darmstadt, Germany, 25 February 1998; Volume 9, pp. 1–15. [Google Scholar]
- Astafyeva, E.; Zakharenkova, I.; Förster, M. Ionospheric response to the 2015 St. Patrick’s Day storm: A global multi-instrumental overview. J. Geophys. Res. Space Phys. 2015, 120, 9023–9037. [Google Scholar] [CrossRef]
- Lin, C.Y.; Lin, C.C.H.; Liu, J.Y.; Rajesh, P.K.; Matsuo, T.; Chou, M.Y.; Tasi, H.F.; Yeh, W.H. The early results and validation of FORMOSAT-7/COSMIC-2 space weather products: Global ionospheric specification and Ne-aided Abel electron density profile. J. Geophys. Res. Space Phys. 2020, 125, e2020JA028028. [Google Scholar] [CrossRef]
- Spogli, L.; Sabbagh, D.; Regi, M.; Cesaroni, C.; Perrone, L.; Alfonsi, L.; Di Mauro, D.; Lepidi, S.; Campuzano, S.A.; Marchetti, D.; et al. Ionospheric response over Brazil to the August 2018 geomagnetic storm as probed by CSES-01 and Swarm satellites and by local ground based observations. J. Geophys. Res. Space Phys. 2021, 126, e2020JA028368. [Google Scholar] [CrossRef]
- Vardhan, A.; Babu Sree Harsha, P.; Venkata Ratnam, D.; Upadhayaya, A.K. Low latitude ionospheric response to March 2015 geomagnetic storm using multi-instrument TEC observations over India. Astrophys. Space Sci. 2020, 365, 187. [Google Scholar] [CrossRef]
- Xu, J.; Wang, Q.; Ke, F.; Zhang, B.; Yan, C.; Zhang, H. Analysis of ionospheric parameters retrieved from Feng-Yun 3C and COSMIC radio occultation. Adv. Space Res. 2021, 68, 214–224. [Google Scholar] [CrossRef]
- Azpilicueta, F.; Nava, B. On the TEC bias of altimeter satellites. J. Geod. 2021, 95, 114. [Google Scholar] [CrossRef]
- Zhang, R.; Le, H.; Li, W.; Ma, H.; Yang, Y.; Huang, H.; Li, Q.; Zhao, X.; Xie, H.; Sun, W.; et al. Multiple technique observations of the ionospheric responses to the 21 June 2020 solar eclipse. J. Geophys. Res. Space Phys. 2021, 125, e2020JA028450. [Google Scholar] [CrossRef]
- Atabati, A.; Jazireeyan, I.; Alizadeh, M.; Pirooznia, M.; Flury, J.; Schuh, H.; Soja, B. Analyzing the Ionospheric Irregularities Caused by the September 2017 Geomagnetic Storm Using Ground-Based GNSS, Swarm, and FORMOSAT-3/COSMIC Data near the Equatorial Ionization Anomaly in East Africa. Remote Sens. 2023, 15, 5762. [Google Scholar] [CrossRef]
- Emmela, S.; Ratnam, D.V.; Leong, T.E. Regional ionospheric TEC modeling during geomagnetic storm in August 2021-data fusion using multi-instrument observations. Adv. Space Res. 2024, 73, 3818–3832. [Google Scholar] [CrossRef]
- Jiang, C.; An, Q.; Wang, S.; Nie, W.; Zhu, H.; Liu, G. Accuracy assessment of the ionospheric total electron content derived from COSMIC-2 radio occultation based on multi-source data. Adv. Space Res. 2024, 73, 5157–5170. [Google Scholar] [CrossRef]
- Yang, H.; Monte-Moreno, E.; Hernández-Pajares, M.; Roma-Dollase, D. Real-time interpolation of global ionospheric maps by means of sparse representation. J. Geod. 2021, 95, 71. [Google Scholar] [CrossRef]
- Available online: https://cdaac-www.cosmic.ucar.edu/ (accessed on 18 January 2024).
- Bai, W.; Tan, G.; Sun, Y.; Xia, J.; Cheng, C.; Du, Q.; Wang, X.; Yang, G.; Liao, M.; Liu, Y.; et al. Comparison and validation of the ionospheric climatological morphology of FY3C/GNOS with COSMIC during the recent low solar activity period. Remote Sens. 2019, 11, 2686. [Google Scholar] [CrossRef]
- Zhao, Q.; Wang, C.; Guo, J.; Yang, G.; Liao, M.; Ma, H.; Liu, J. Enhanced orbit determination for BeiDou satellites with FengYun-3C onboard GNSS data. GPS Solut. 2017, 21, 1179–1190. [Google Scholar] [CrossRef]
- Available online: http://satellite.nsmc.org.cn (accessed on 20 January 2024).
- Piersanti, M.; Pezzopane, M.; Zhima, Z.; Diego, P.; Xiong, C.; Tozzi, R.; Pignalberi, A.; D’Angelo, G.; Battiston, R.; Huang, J.; et al. Can an impulsive variation of the solar wind plasma pressure trigger a plasma bubble? A case study based on CSES, Swarm, and THEMIS data. Adv. Space Res. 2021, 67, 35–45. [Google Scholar] [CrossRef]
- Satti, M.S.; Ehsan, M.; Abbas, A.; Shah, M.; Oliveira-Júnior, J.F.D.; Naqvi, N. A Atmospheric and ionospheric precursors associated with Mw≥6.5 earthquakes from multiple satellites. J. Atmos. Sol. Terr. Phys. 2022, 227, 105802. [Google Scholar] [CrossRef]
- VirES. Available online: https://vires.services/ (accessed on 15 January 2024).
- Available online: https://swarmhandbook.earth.esa.int/article/documentation (accessed on 15 January 2024).
- Available online: https://www.ncei.noaa.gov/sites/default/files/2021-01/Jason-3%20Products%20Handbook.pdf (accessed on 15 January 2024).
- Available online: https://www.ncei.noaa.gov/data/oceans/ (accessed on 17 January 2024).
- Alcay, S.; Gungor, M. Investigation of ionospheric TEC anomalies caused by space weather conditions. Astrophys. Space Sci. 2020, 365, 150. [Google Scholar] [CrossRef]
- Available online: https://omniweb.gsfc.nasa.gov/form/dx1.html (accessed on 19 January 2024).
Date | Satellite | Maximum | Minimum | Mean | RMSE | VTEC Points |
---|---|---|---|---|---|---|
17 March 2015 | 24/25/28/30/31 | 19.14 | 0.20 | 6.21 | 7.66 | 48 |
11 December 2021 | 32 | 8.41 | 0.81 | 4.38 | 4.65 | 22 |
22 December 2021 | 05 | 11.45 | 2.82 | 5.78 | 6.35 | 19 |
Date | Satellites | Maximum | Minimum | Mean | RMSE | VTEC Points |
---|---|---|---|---|---|---|
17 March 2015 | 16/24/28/30/31 | 26.02 | 0.40 | 7.33 | 9.42 | 48 |
Date | Satellites | Maximum | Minimum | Mean | RMSE |
---|---|---|---|---|---|
17 March 2015 | SWARM A | 28.75 | 0.36 | 7.19 | 7.30 |
SWARM B | 32.50 | 3.48 | 13.15 | 9.66 | |
SWARM C | 34.75 | 1.42 | 13.96 | 8.64 | |
11 December 2021 | SWARM A | 25.75 | 0.25 | 7.23 | 7.26 |
SWARM B | 24.09 | 0.18 | 6.59 | 7.12 | |
SWARM C | 25.71 | 0.14 | 7.11 | 6.99 | |
22 December 2021 | SWARM A | 33.84 | 0.04 | 11.63 | 9.98 |
SWARM B | 34.79 | 0.45 | 13.15 | 10.73 | |
SWARM C | 29.03 | 0.04 | 10.75 | 8.59 |
Date | Maximum | Minimum | Mean | RMSE |
---|---|---|---|---|
17 March 2015 | 19.51 | 0.11 | 5.75 | 7.88 |
11 December 2021 | 10.92 | 1.41 | 5.20 | 5.77 |
22 December 2021 | 12.02 | 0.29 | 4.93 | 5.80 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oztan, G.; Duman, H.; Alcay, S.; Ogutcu, S.; Ozdemir, B.N. Analysis of Ionospheric VTEC Retrieved from Multi-Instrument Observations. Atmosphere 2024, 15, 697. https://doi.org/10.3390/atmos15060697
Oztan G, Duman H, Alcay S, Ogutcu S, Ozdemir BN. Analysis of Ionospheric VTEC Retrieved from Multi-Instrument Observations. Atmosphere. 2024; 15(6):697. https://doi.org/10.3390/atmos15060697
Chicago/Turabian StyleOztan, Gurkan, Huseyin Duman, Salih Alcay, Sermet Ogutcu, and Behlul Numan Ozdemir. 2024. "Analysis of Ionospheric VTEC Retrieved from Multi-Instrument Observations" Atmosphere 15, no. 6: 697. https://doi.org/10.3390/atmos15060697
APA StyleOztan, G., Duman, H., Alcay, S., Ogutcu, S., & Ozdemir, B. N. (2024). Analysis of Ionospheric VTEC Retrieved from Multi-Instrument Observations. Atmosphere, 15(6), 697. https://doi.org/10.3390/atmos15060697