Variation in and Regulation of Carbon Use Efficiency of Grassland Ecosystem in Northern China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.3. Methods
2.3.1. CUE Calculation
2.3.2. Statistical Analyses
3. Results
3.1. The Relationship between NEP and GPP in Grassland Ecosystem in Northern China
3.2. Variation in and Spatial Patterns of CUE in Northern Chinese Grassland Ecosystems
3.3. Regulation Mechanism of CUE in Different Types of Grassland Ecosystems
4. Discussion
4.1. Variations in CUE in Northern Chinese Grasslands
4.2. The Regulation Mechanism of CUE in Different Grassland Ecosystems in Northern China
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Baldocchi, D. Measuring fluxes of trace gases and energy between ecosystems and the atmosphere-the state and future of the eddy covariance method. Glob. Change Biol. 2014, 20, 3600–3609. [Google Scholar] [CrossRef]
- Chen, Z.; Yu, G.; Wang, Q. Ecosystem carbon use efficiency in China: Variation and influence factors. Ecol. Indic. 2018, 90, 316–323. [Google Scholar] [CrossRef]
- Fernández-Martínez, M.; Vicca, S.; Janssens, I.A.; Sardans, J.; Luyssaert, S.; Campioli, M.; Chapin, F.S.; Ciais, P.; Malhi, Y.; Obersteiner, M.; et al. Nutrient availability as the key regulator of global forest carbon balance. Nat. Clim. Change 2014, 4, 471–476. [Google Scholar] [CrossRef]
- Ryan, M.G.; Lavigne, M.B.; Gower, S.T. Annual carbon cost of autotrophic respiration in boreal forest ecosystems in relation to species and climate. J. Geophys. Res.-Atmos. 1997, 102, 28871–28883. [Google Scholar] [CrossRef]
- Zhu, W. Advances in the carbon use efficiency of forest. Chin. J. Plant Ecol. 2014, 37, 1043–1058. (In Chinese) [Google Scholar] [CrossRef]
- Zhang, Y.; Yu, G.; Yang, J.; Wimberly, M.C.; Zhang, X.; Tao, J.; Jiang, Y.; Zhu, J. Climate-driven global changes in carbon use efficiency. Glob. Ecol. Biogeogr. 2014, 23, 144–155. [Google Scholar] [CrossRef]
- Hou, G.; Sun, J.; Wang, J. Dynamics and controls of carbon use efficiency across China’s grasslands. Pol. J. Environ. Stud. 2018, 27, 1541–1550. [Google Scholar] [CrossRef] [PubMed]
- Manzoni, S.; Čapek, P.; Porada, P.; Thurner, M.; Winterdahl, M.; Beer, C.; Brüchert, V.; Frouz, J.; Herrmann, A.M.; Lyon, S.W.; et al. Reviews and syntheses: Carbon use efficiency from organisms to ecosystems—Definitions, theories, and empirical evidence. Biogeosciences 2018, 15, 5929–5949. [Google Scholar] [CrossRef]
- Delucia, E.H.; Drake, J.E.; Thomas, R.B.; Gonzalez-Meler, M. Forest carbon use efficiency: Is respiration a constant fraction of gross primary production? Glob. Chang. Biol. 2007, 13, 1157–1167. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, M.; Chen, H.; Adams, J. Global pattern of NPP to GPP ratio derived from MODIS data: Effects of ecosystem type, geographical location and climate. Glob. Ecol. Biogeogr. 2009, 18, 280–290. [Google Scholar] [CrossRef]
- Sinsabaugh, R.L.; Moorhead, D.L.; Xu, X.; Litvak, M.E. Plant, microbial and ecosystem carbon use efficiencies interact to stabilize microbial growth as a fraction of gross primary production. New Phytol. 2017, 214, 1518–1526. [Google Scholar] [CrossRef]
- Liu, X.; Lai, Q.; Yin, S.; Bao, Y.; Tong, S.; Adiya, Z.; Sanjjav, A.; Gao, R. Spatio-temporal patterns and control mechanism of the ecosystem carbon use efficiency across the Mongolian Plateau. Sci. Total Environ. 2024, 907, 167883. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Chen, Z.; Yu, G.; Yang, M.; Zhang, W.; Zhang, T.; Han, L. Ecosystem carbon use efficiency in ecologically vulnerable areas in China: Variation and influencing factors. Front. Plant Sci. 2022, 13, 1062055. [Google Scholar] [CrossRef] [PubMed]
- Bradford, M.A.; Crowther, T.W. Carbon Use Efficiency and Storage in Terrestrial Ecosystems. New Phytol. 2013, 199, 7–9. [Google Scholar] [CrossRef] [PubMed]
- Amthor, J.S. The McCree-de Wit-Penning de Vries-Thornley respiration paradigms: 30 years later. Ann. Bot. 2000, 86, 1–20. [Google Scholar] [CrossRef]
- Wagle, P.; Xiao, X.; Scott, R.L.; Kolb, T.E.; Cook, D.R.; Brunsell, N.; Baldocchi, D.D.; Basara, J.; Matamala, R.; Zhou, Y.; et al. Biophysical controls on carbon and water vapor fluxes across a grassland climatic gradient in the United States. Agric. For. Meteorol. 2015, 214, 293–305. [Google Scholar] [CrossRef]
- Choudhury, B.J. Carbon Use Efficiency, and Net Primary Productivity of Terrestrial Vegetation. Adv. Space Res. 2000, 26, 1105–1108. [Google Scholar] [CrossRef]
- An, X.; Chen, Y.; Tang, Y. Factors affecting the spatial variation of carbon use efficiency and carbon fluxes in east asian forest and grassland. Soil Water Conserv. 2017, 24, 79–87. (In Chinese) [Google Scholar]
- Chen, Z.; Yu, G. Spatial variations and controls of carbon use efficiency in China’s terrestrial ecosystems. Sci. Rep. 2019, 9, 19516. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, Z.; Li, J.; Gang, C.; Zhang, Y.; Odeh, I.; Qi, J. Assessing the spatiotemporal dynamic of global grassland carbon use efficiency in response to climate change from 2000 to 2013. Acta Oecologica 2017, 81, 22–31. [Google Scholar] [CrossRef]
- Kwon, Y.; Larsen, C.P.S. Effects of forest type and environmental factors on forest carbon use efficiency assessed using MODIS and FIA data across the eastern USA. Int. J. Remote Sens. 2013, 34, 8425–8448. [Google Scholar] [CrossRef]
- Kato, T.; Tang, Y. Spatial variability and major controlling factors of CO2 sink strength in Asian terrestrial ecosystems: Evidence from eddy covariance data. Glob. Change Biol. 2008, 14, 2333–2348. [Google Scholar] [CrossRef]
- Yuan, W.; Luo, Y.; Richardson, A.D.; Oren, R.; Luyssaert, S.; Janssens, I.A.; Ceulemans, R.; Zhou, X.; Grünwald, T.; Aubinet, M.; et al. Latitudinal patterns of magnitude and interannual variability in net ecosystem exchange regulated by biological and environmental variables. Glob. Change Biol. 2009, 15, 2905–2920. [Google Scholar] [CrossRef]
- Fernández-Martínez, M.; Vicca, S.; Janssens, I.A.; Luyssaert, S.; Campioli, M.; Sardans, J.; Estiarte, M.; Peñuelas, J. Spatial variability and controls over biomass stocks, carbon fluxes, and resource-use efficiencies across forest ecosystems. Trees-Struct. Funct. 2014, 28, 597–611. [Google Scholar] [CrossRef]
- Scurlock, J.M.O.; Hall, D.O. The Global Carbon Sink: A Grassland Perspective. Glob. Chang. Biol. 1998, 4, 229–233. [Google Scholar] [CrossRef]
- Piipponen, J.; Jalava, M.; de Leeuw, J.; Rizayeva, A.; Godde, C.; Cramer, G.; Herrero, M.; Kummu, M. Global Trends in Grassland Carrying Capacity and Relative Stocking Density of Livestock. Glob. Change Biol. 2022, 28, 3902–3919. [Google Scholar] [CrossRef] [PubMed]
- Bai, Y.; Zhao, Y.; Wang, Y.; Zhou, K. Assessment of ecosystem services and ecological regionalization of grasslands support establishment of ecological security barriers in northern China. J. Chin. Acad. Sci. 2020, 35, 675–689. (In Chinese) [Google Scholar]
- Yu, G.; Zhu, X.; Fu, Y.; He, H.; Wang, Q.; Wen, X.; Li, X.; Zhang, L.; Zhang, L.; Su, W.; et al. Spatial patterns and climate drivers of carbon fluxes in terrestrial ecosystems of China. Glob. Change Biol. 2012, 19, 798–810. [Google Scholar] [CrossRef] [PubMed]
- Wei, D. Carbon, Water and Heat Flux Data Set under Grazing Exclusion Ecological Restoration Project in Alpine Grassland of the Tibetan Plateau (2019–2022). National Tibetan Plateau/Third Pole Environment Data Center. 2022. Available online: https://data.tpdc.ac.cn/en/data/544ddbee-38b7-4ca1-bd72-1c3ebeeebe20 (accessed on 15 May 2024).
- Chai, X.; He, Y.; Shi, P.; Zhang, X.; Niu, B.; Zhang, L.M.; Chen, Z. An observation dataset of carbon and water fluxes over alpine meadow in Damxung (2004–2010). China Sci. Data 2021, 6, 70–79. (In Chinese) [Google Scholar]
- Xu, L.; Niu, B.; Zhang, X.; He, Y.; Shi, P.; Zong, N.; Wu, J.; Wang, X. Climate responses of carbon fluxes in two adjacent alpine grasslands in northern Tibet. Acta Prataculturae Sin. 2024, 33, 1–16. (In Chinese) [Google Scholar]
- Zhu, Z.; Hu, Z.; Ma, Y.; Li, M.; Sun, F. Net Ecosystem Carbon Dioxide Exchange in Alpine Meadow of Nagchu Region over Oinghai-Xizang Plateau. Plateau Meteorol. 2015, 34, 1217–1223. (In Chinese) [Google Scholar]
- Wang, Y.; Xiao, J.; Ma, Y.; Luo, Y.; Hu, Z.; Li, F.; Li, Y.; Gu, L.; Li, Z.; Yuan, L. Carbon fluxes and environmental controls across different alpine grassland types on the Tibetan Plateau. Agric. For. Meteorol. 2021, 311, 108694. [Google Scholar] [CrossRef]
- Wei, D.; Qi, Y.; Ma, Y.; Wang, X.; Ma, W.; Gao, T.; Huang, L.; Zhao, H.; Zhang, J.; Wang, X. Plant Uptake of CO2 Outpaces Losses from Permafrost and Plant Respiration on the Tibetan Plateau. Proc. Natl. Acad. Sci. USA 2021, 118, e2015283118. [Google Scholar] [CrossRef]
- Zhang, T.; Xu, M.; Zhang, Y.; Zhao, T.; An, T.; Li, Y.; Sun, Y.; Chen, N.; Zhao, T.; Zhu, J.; et al. Grazing-Induced Increases in Soil Moisture Maintain Higher Productivity during Droughts in Alpine Meadows on the Tibetan Plateau. Agric. For. Meteorol. 2019, 269–270, 249–256. [Google Scholar] [CrossRef]
- Zhu, L. Meteorological Data of Surface Environment and Observation Network in High and Cold Regions of China. National Tibetan Plateau. 2021. Available online: https://data.tpdc.ac.cn/en/data/4947a79a-4878-49b3-985c-acd6b3fc00db/ (accessed on 6 March 2024).
- Zhang, Y. Naqu Flux Observation Data (2018). National Tibetan Plateau. 2022. Available online: https://data.tpdc.ac.cn/en/data/384c6741-ca48-418f-8593-7551e3472b8b (accessed on 17 May 2024).
- Wu, J.; Wu, H.; Ding, Y.; Qin, J.; Li, H.; Liu, S.; Zeng, D. Interannual and Seasonal Variations in Carbon Exchanges over an Alpine Meadow in the Northeastern Edge of the Qinghai-Tibet Plateau, China. PLoS ONE 2020, 15, e0228470. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.; Che, T.; Li, H.; Wang, T.; Ma, C.; Liu, B.; Wu, Y.; Song, Z. Water and Carbon Dioxide Exchange of an Alpine Meadow Ecosystem in the Northeastern Tibetan Plateau Is Energy-Limited. Agric. For. Meteorol. 2019, 275, 283–295. [Google Scholar] [CrossRef]
- Wang, Y.; Ma, Y.; Li, H.; Yuan, L. Carbon and Water Fluxes and Their Coupling in an Alpine Meadow Ecosystem on the Northeastern Tibetan Plateau. Theor. Appl. Climatol. 2020, 142, 1–18. [Google Scholar] [CrossRef]
- Wang, T.; Wang, X.; Zhang, S.; Tan, J.; Zhang, Y.; Ren, Z.; Bai, X. Analysis of interannual change control mechanism of carbon flux in inland river basins in cold and arid regions. Earth Sci. 2022, 1–15. (In Chinese) [Google Scholar] [CrossRef]
- Wang, B.; Li, J.; Jiang, W.; Zhao, L.; Gu, S. Impacts of the rangeland degradation on CO2 flux and the underlying mechanisms in the Three-River Source Region on the Qinghai-Tibetan Plateau. China Environ. Sci. 2012, 32, 1764–1771. (In Chinese) [Google Scholar]
- Wang, B. Study on Carbon Flux and its Controlling mechanisms in a Degraded Alpine Meadow and an Artificial Pasture in the Three-River Source Region of the Oinghai-Tibetan Plateau. Ph.D. Thesis, Nankai University, Tianjin, China, 2014. [Google Scholar]
- Wu, L.; Gu, S.; Zhao, L.; Xu, S.; Zhou, H.; Feng, C.; Xu, W.; Li, Y.; Zhao, X.; Tang, Y. Variation in net CO2 exchange, gross primary production and its affecting factors in the planted pasture ecosystem in Sanjiangyuan Region of the Qinghai-Tibetan Plateau of China. Chin. J. Plant Ecol. 2010, 34, 770–780. (In Chinese) [Google Scholar]
- Wang, B.; Jin, H.; Li, Q.; Chen, D.; Zhao, L.; Tang, Y.; Kato, T.; Gu, S. Diurnal and Seasonal Variations in the Net Ecosystem CO2 Exchange of a Pasture in the Three-River Source Region of the Qinghai-Tibetan Plateau. PLoS ONE 2017, 12, e0170963. [Google Scholar] [CrossRef] [PubMed]
- He, F.; Li, Q.; Chen, D.; Zhao, L. A dataset of carbon, water and heat fluxes over an Elymus nutans artificial grassland in the Sanjiangyuan Area (2012–2016). China Sci. Data 2023, 8, 72–81. (In Chinese) [Google Scholar]
- Ma, W.; Li, Y.; Zhang, F.; Han, L. Interannual dynamics and driving mechanism of CO2 flux in meadow grassland on the north shore of Qinghai Lake. Acta Ecol. Sin. 2023, 43, 1102–1112. (In Chinese) [Google Scholar]
- Zhang, F.; Li, H.; Zhao, L.; Zhang, L.; Chen, Z.; Zhu, J.; Xu, S.; Yang, Y.; Zhao, X.; Yu, G.; et al. An observation dataset of carbon, water and heat fluxes over an alpine shrubland in Haibei (2003–2010). China Sci. Data 2021, 6, 60–69. (In Chinese) [Google Scholar]
- Zhang, F.; Li, H.; Zhao, L.; Li, J.; Yang, Y.; Yu, G.; Li, Y. A dataset of the observations of carbon, water and heat fluxes over an alpine shrubland in Haibei (2011–2020). China Sci. Data 2023, 8, 137–147. (In Chinese) [Google Scholar] [CrossRef]
- Kato, T.; Tang, Y.; Gu, S.; Hirota, M.; Du, M.; Li, Y.; Zhao, X. Temperature and Biomass Influences on Interannual Changes in CO2 Exchange in an Alpine Meadow on the Qinghai-Tibetan Plateau. Glob. Change Biol. 2006, 12, 1285–1298. [Google Scholar] [CrossRef]
- Zhang, F.; Si, M.; Guo, X.; Cao, G.; Zhang, Z. A dataset of the observations of carbon, water and heat fluxes over an alpine meadow in Haibei (2015–2020). China Sci. Data 2023, 8, 127–136. (In Chinese) [Google Scholar] [CrossRef]
- Wang, S.; Zhang, Y.; Lv, S.; Su, P.; Shang, L.; Li, Z. Biophysical Regulation of Carbon Fluxes over an Alpine Meadow Ecosystem in the Eastern Tibetan Plateau. Int. J. Biometeorol. 2016, 60, 801–812. [Google Scholar] [CrossRef] [PubMed]
- Shang, L.; Zhang, Y.; Lyu, S.; Wang, S. Seasonal and Inter-Annual Variations in Carbon Dioxide Exchange over an Alpine Grassland in the Eastern Qinghai-Tibetan Plateau. PLoS ONE 2016, 11, e0166837. [Google Scholar] [CrossRef]
- Chen, W.; Wang, S.; Niu, S. A dataset of carbon, water and heat fluxes of Zoige alpine meadow from 2015 to 2020. China Sci. Data 2023, 8, 70–77. (In Chinese) [Google Scholar] [CrossRef]
- Yang, F.; Zhang, Q.; Zhou, J.; Yue, P.; Wang, R.; Wang, S. East Asian Summer Monsoon Substantially Affects the Inter-Annual Variation of Carbon Dioxide Exchange in Semi-Arid Grassland Ecosystem in Loess Plateau. Agric. Ecosyst. Environ. 2019, 272, 218–229. [Google Scholar] [CrossRef]
- Jia, X.; Mu, Y.; Zha, T.; Wang, B.; Qin, S.; Tian, Y. Seasonal and Interannual Variations in Ecosystem Respiration in Relation to Temperature, Moisture, and Productivity in a Temperate Semi-Arid Shrubland. Sci. Total Environ. 2020, 709, 136210. [Google Scholar] [CrossRef]
- Song, J. Phenology of Steppe Ecosystem Based on Eddy Covariance Carbon Flux. Master’s Thesis, Zhengzhou University, Zhengzhou, China, 2023. (In Chinese). [Google Scholar]
- Shao, C.; Chen, J.; Li, L. Grazing Alters the Biophysical Regulation of Carbon Fluxes in a Desert Steppe. Environ. Res. Lett. 2013, 8, 025012. [Google Scholar] [CrossRef]
- Yang, F.; Zhou, G. Sensitivity of Temperate Desert Steppe Carbon Exchange to Seasonal Droughts and Precipitation Variations in Inner Mongolia, China. PLoS ONE 2013, 8, e55418. [Google Scholar] [CrossRef] [PubMed]
- Niu, Y.; Li, Y.; Yun, H.; Wang, X.; Gong, X.; Duan, Y.; Liu, J. Variations in Diurnal and Seasonal Net Ecosystem Carbon Dioxide Exchange in a Semiarid Sandy Grassland Ecosystem in China’s Horqin Sandy Land. Biogeosciences 2020, 17, 6309–6326. [Google Scholar] [CrossRef]
- An, X. The Influence Factors of Carbon Flux of Grassland in the Loess Hilly Region of Northern Shaanxi. Master’s Thesis, Northwest A&F University, Xianyang, China, 2017. (In Chinese). [Google Scholar]
- Chen, S.; Chen, J.; Lin, G.; Zhang, W.; Miao, H.; Wei, L.; Huang, J.; Han, X. Energy Balance and Partition in Inner Mongolia Steppe Ecosystems with Different Land Use Types. Agric. For. Meteorol. 2009, 149, 1800–1809. [Google Scholar] [CrossRef]
- Wang, Y.; Zhou, G.; Wang, Y. Environmental Effects on Net Ecosystem CO2 Exchange at Half-Hour and Month Scales over Stipa Krylovii Steppe in Northern China. Agric. For. Meteorol. 2008, 148, 714–722. [Google Scholar] [CrossRef]
- Hao, Y.; Zhang, L.; Sun, X.; Yu, G.; Chen, Z.; Wang, Y. A dataset of carbon and water fluxes over Xilinhot temperate steppe in Inner Mongolia from 2003 to 2010. China Sci. Data 2023, 8, 70–77. (In Chinese) [Google Scholar]
- Zhao, H.; Jia, G.; Wang, H.; Zhang, A.; Xu, X. Seasonal and Interannual Variations in Carbon Fluxes in East Asia Semi-Arid Grasslands. Sci. Total Environ. 2019, 668, 1128–1138. [Google Scholar] [CrossRef]
- Jing, Y.; Wang, A.; Guan, D.; Wu, J.; Yuan, F.; Jin, C. Carbon Dioxide Fluxes over a Temperate Meadow in Eastern Inner Mongolia, China. Environ. Earth Sci. 2014, 72, 4401–4411. [Google Scholar] [CrossRef]
- Du, Q.; Liu, H. Seven Years of Carbon Dioxide Exchange over a Degraded Grassland and a Cropland with Maize Ecosystems in a Semiarid Area of China. Agric. Ecosyst. Environ. 2013, 173, 1–12. [Google Scholar] [CrossRef]
- Qu, L.; Chen, J.; Dong, G.; Jiang, S.; Li, L.; Guo, J.; Shao, C. Heat Waves Reduce Ecosystem Carbon Sink Strength in a Eurasian Meadow Steppe. Environ Res. 2016, 144, 39–48. [Google Scholar] [CrossRef] [PubMed]
- Chambers, J.Q.; Tribuzy, E.S.; Toledo, L.C.; Crispim, B.F.; Higuchi, N.; Dos Santos, J.; Araújo, A.C.; Kruijt, B.; Nobre, A.D.; Trumbore, S.E. Respiration from a tropical forest ecosystem: Partitioning of sources and low carbon use efficiency. Ecol. Appl. 2004, 14, 72–88. [Google Scholar] [CrossRef]
- Di, Y.; Zeng, H.; Zhang, Y.; Chen, N.; Cong, N. Advances in carbon use efficiency research at multiple scales. Chin. J. Ecol. 2021, 40, 1849–1860. (In Chinese) [Google Scholar]
- Gilmanov, T.G.; Aires, L.; Barcza, Z.; Baron, V.S.; Belelli, L.; Beringer, J.; Billesbach, D.; Bonal, D.; Bradford, J.; Ceschia, E.; et al. Productivity, Respiration, and Light-Response Parameters of World Grassland and Agroecosystems Derived from Flux-Tower Measurements. Rangel. Ecol. Manag. 2010, 63, 16–39. [Google Scholar] [CrossRef]
- Street, L.E.; Subke, J.A.; Sommerkorn, M.; Sloan, V.; Ducrotoy, H.; Phoenix, G.K.; Williams, M. The Role of Mosses in Carbon Uptake and Partitioning in Arctic Vegetation. New Phytol. 2013, 199, 163–175. [Google Scholar] [CrossRef] [PubMed]
- Ammann, C.; Flechard, C.R.; Leifeld, J.; Neftel, A.; Fuhrer, J. The Carbon Budget of Newly Established Temperate Grassland Depends on Management Intensity. Agric. Ecosyst. Environ. 2007, 121, 5–20. [Google Scholar] [CrossRef]
- Wagle, P.; Gowda, P.H.; Billesbach, D.P.; Northup, B.K.; Torn, M.S.; Neel, J.P.S.; Biraud, S.C. Dynamics of CO2 and H2O Fluxes in Johnson Grass in the U.S. Southern Great Plains. Sci. Total. Environ. 2020, 739, 140077. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Rajan, N.; Cui, S.; Maas, S.; Casey, K.; Ale, S.; Jessup, R. Carbon and Evapotranspiration Dynamics of a Non-Native Perennial Grass with Biofuel Potential in the Southern U.S. Great Plains. Agric. For. Meteorol. 2019, 269–270, 285–293. [Google Scholar] [CrossRef]
- Zeeman, M.J.; Hiller, R.; Gilgen, A.K.; Michna, P.; Plüss, P.; Buchmann, N.; Eugster, W. Management and Climate Impacts on Net CO2 Fluxes and Carbon Budgets of Three Grasslands along an Elevational Gradient in Switzerland. Agric. For. Meteorol. 2010, 150, 519–530. [Google Scholar] [CrossRef]
- Chen, Z.; Yu, G.; Wang, Q. Magnitude, pattern and controls of carbon flux and carbon use efficiency in China’s typical forests. Glob. Planet. Change 2019, 172, 464–473. [Google Scholar] [CrossRef]
- Chen, Z.; Yu, G.; Ge, J.; Sun, X.; Hirano, T.; Saigusa, N.; Wang, Q.; Zhu, X.; Zhang, Y.; Zhang, J.; et al. Temperature and precipitation control of the spatial variation of terrestrial ecosystem carbon exchange in the asian region. Agric. For. Meteorol. 2013, 182, 266–276. [Google Scholar] [CrossRef]
- Chen, Z.; Yu, G.Y.; Zhu, X.J.; Wang, Q.F. Spatial pattern and regional characteristics of terrestrial ecosystem carbon fluxes in the Northern Hemisphere. Quat. Sci. 2014, 34, 710–722. (In Chinese) [Google Scholar]
- Chuai, X.; Guo, X.; Zhang, M.; Yuan, Y.; Li, J.; Zhao, R.; Yang, W.; Li, J. Vegetation and climate zones based carbon use efficiency variation and the main determinants analysis in China. Ecol. Indic. 2020, 111, 105967. [Google Scholar] [CrossRef]
- Chen, Z.; Yu, G.; Zhu, X.; Wang, Q.; Niu, S.; Hu, Z. Covariation between Gross Primary Production and Ecosystem Respiration across Space and the Underlying Mechanisms: A Global Synthesis. Agric. For. Meteorol. 2015, 203, 180–190. [Google Scholar] [CrossRef]
- Xu, B.; Yang, Y.; Li, P.; Shen, H.; Fang, J. Global Patterns of Ecosystem Carbon Flux in Forests: A Biometric Data-Based Synthesis. Glob. Biogeochem. Cycles 2014, 28, 962–973. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, Q.; Yang, Y.; Tong, L.; Li, J.; Zhang, Z.; Wang, Z. Spatiotemporal Dynamic of Vegetation Carbon Use Efficiency and Its Relationship with Climate Factors in China During the Period 2000–2013. Soil Water Conserv. 2019, 26, 278–286. (In Chinese) [Google Scholar]
- Hirata, R.; Saigusa, N.; Yamamoto, S.; Ohtani, Y.; Ide, R.; Asanuma, J.; Gamo, M.; Hirano, T.; Kondo, H.; Kosugi, Y.; et al. Spatial Distribution of Carbon Balance in Forest Ecosystems across East Asia. Agric. For. Meteorol. 2008, 148, 761–775. [Google Scholar] [CrossRef]
- Wang, X.C.; Wang, C.K.; Yu, G.R. Spatio-Temporal Patterns of Forest Carbon Dioxide Exchange Based on Global Eddy Covariance Measurements. Sci. China Ser. D Earth Sci. 2008, 51, 1129–1143. [Google Scholar] [CrossRef]
- Cannell, M.G.R. Physiological basis of wood production: A review. Scand. J. For. Res. 1989, 4, 459–490. [Google Scholar] [CrossRef]
- Ryan, M.G.; Linder, S.; Vose, J.M.; Hubbard, R.M. Dark Respiration of Pines. Ecol. Bull. 1994, 6, 262–263. [Google Scholar]
- Metcalfe, D.B.; Meir, P.; Aragão, L.E.O.C.; Lobo-do-Vale, R.; Galbraith, D.; Fisher, R.A.; Chaves, M.M.; Maroco, J.P.; da Costa, A.C.L.; de Almeida, S.S.; et al. Shifts in plant respiration and carbon use efficiency at a large-scale drought experiment in the eastern Amazon. New Phytol. 2010, 187, 608–621. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Fan, J.; Hu, Z. Comparison of carbon-use efficiency among different land-use patterns of the temperate steppe in the northern China pastoral farming ecotone. Sustainability 2018, 10, 487. [Google Scholar] [CrossRef]
- Marchin, R.M.; McHugh, I.; Simpson, R.R.; Ingram, L.J.; Balas, D.S.; Evans, B.J.; Adams, M.A. Productivity of an Australian Mountain Grassland Is Limited by Temperature and Dryness despite Long Growing Seasons. Agric. For. Meteorol. 2018, 256–257, 116–124. [Google Scholar] [CrossRef]
- Peichl, M.; Leahy, P.; Kiely, G. Six-Year Stable Annual Uptake of Carbon Dioxide in Intensively Managed Humid Temperate Grassland. Ecosystems 2011, 14, 112–126. [Google Scholar] [CrossRef]
- Yi, C.; Ricciuto, D.; Li, R.; Wolbeck, J.; Xu, X.; Nilsson, M.; Aires, L.; Albertson, J.D.; Ammann, C.; Arain, M.A.; et al. Climate control of terrestrial carbon exchange across biomes and continents. Environ. Res. Lett. 2010, 5, 034007. [Google Scholar] [CrossRef]
- Chen, N.; Zhang, Y.; Zhu, J.; Cong, N.; Zhao, G.; Zu, J.; Wang, Z.; Huang, K.; Wang, L.; Liu, Y.; et al. Multiple-scale negative impacts of warming on ecosystem carbon use efficiency across the Tibetan Plateau grasslands. Glob. Ecol. Biogeogr. 2021, 30, 398–413. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, Q.; Song, J.; Ru, J.; Zhou, Z.; Xia, J.; Dukes, J.S.; Wan, S. Nighttime warming enhances ecosystem carbon-use efficiency in a temperate steppe. Funct. Ecol. 2020, 34, 1721–1730. [Google Scholar] [CrossRef]
- Zhou, X.F.; Yu, F.; Cao, G.Z.; Yang, W.S.; Zhou, Y. Spatiotemporal features of carbon source-sink and its relationship with climate factors in Qinghai-Tibet Plateau grassland ecosystem during 2001–2015. Soil Water Conserv. 2019, 26, 76–81. (In Chinese) [Google Scholar]
- Wang, Y.; Zhu, Z.; Ma, Y.; Yuan, L. Carbon and water fluxes in an alpine steppe ecosystem in the Nam Co area of the Tibetan Plateau during two years with contrasting amounts of precipitation. Int. J. Biometeorol. 2020, 64, 1183–1196. [Google Scholar] [CrossRef]
- McDonald, A.J.S.; Lohammar, T.; Ericsson, A. Growth response to step-decrease in nutrient availability in small birch (Betula pendula Roth). Plant Cell Environ. 1986, 9, 427–432. [Google Scholar] [CrossRef]
- Aires, L.M.I.; Pio, C.A.; Pereira, J.S. Carbon dioxide exchange above a Mediterranean C3/C4 grassland during two climatologically contrasting years. Glob. Change Biol. 2007, 14, 539–555. [Google Scholar] [CrossRef]
- Jia, X.; Zha, T.; Gong, J.; Wang, B.; Zhang, Y.; Wu, B.; Qin, S.; Peltola, H. Carbon and water exchange over a temperate semi-arid shrubland during three years of contrasting precipitation and soil moisture patterns. Agric. For. Meteorol. 2016, 228, 120–129. [Google Scholar] [CrossRef]
- Jia, X.; Zha, T.S.; Gong, J.N.; Wu, B.; Zhang, Y.Q.; Qin, S.G.; Chen, G.P.; Feng, W.; Kellomäki, S.; Peltola, H. Energy partitioning over a semi-arid shrubland in northern China. Hydrol. Process. 2016, 30, 972–985. [Google Scholar] [CrossRef]
- Zhou, W.; Huang, L.; Yang, H.; Ju, W.; Yue, T. Interannual variation in grassland net ecosystem productivity and its coupling relation to climatic factors in China. Environ. Geochem. Health 2019, 41, 1583–1597. [Google Scholar] [CrossRef]
- Liu, X.; Wan, S.; Su, B.; Hui, D.; Luo, Y. Response of soil CO2 efflux to water manipulation in a tallgrass prairie ecosystem. Plant Soil 2002, 240, 213–223. [Google Scholar] [CrossRef]
- Sponseller, R.A. Precipitation Pulses and Soil CO2 Flux in a Sonoran Desert Ecosystem. Glob. Change Biol. 2007, 13, 426–436. [Google Scholar] [CrossRef]
- Zhu, J.; Zhang, Y.; Jiang, L. Experimental Warming Drives a Seasonal Shift of Ecosystem Carbon Exchange in Tibetan Alpine Meadow. Agric. For. Meteorol. 2017, 233, 242–249. [Google Scholar] [CrossRef]
Site | Observation Year | Longitude (° E) | Latitude (° N) | Altitude (m) | Grassland Type | MAP (mm) | MAT (°C) | Reference |
---|---|---|---|---|---|---|---|---|
Shenzha | 2019–2022 | 88.70 | 30.95 | 4750 | Alpine Grassland | 283.43 | 0.99 | [29] |
Damxung | 2004–2011 | 91.08 | 30.85 | 4333 | Alpine Grassland | 438.26. | 2.73 | [30,31] |
Naqu1 | 2008 2013–2014 | 91.90 | 31.37 | 4509 | Alpine Grassland | 528.25 | 0.38 | [32,33] |
Naqu2 | 2017–2021 | 92.01 | 31.64 | 4598 | Alpine Grassland | 475.07 | −0.90 | [34,35] |
Naqu3 * | 2014 2017–2021 | 92.01 | 31.64 | 4598 | Alpine Grassland | 467.08 | −1.04 | [34,36,37] |
Shule | 2009–2012 | 98.32 | 38.42 | 3885 | Alpine Grassland | 364.83 | −3.81 | [38] |
Yakou | 2015–2016 | 100.24 | 38.01 | 4148 | Alpine Grassland | 479.90 | −4.20 | [39] |
Arou | 2013–2018 | 100.46 | 38.05 | 3033 | Alpine Grassland | 440.17 | −0.15 | [40,41] |
Guoluo1 | 2007–2008 | 100.55 | 34.35 | 3958 | Alpine Grassland | 561.70 | −0.40 | [42,43] |
Guoluo2 | 2006–2008 | 100.55 | 34.35 | 3980 | Alpine Grassland | 544.95 | −1.27 | [44,45] |
Sanjiangyuan | 2012–2016 | 100.70 | 35.25 | 3960 | Alpine Grassland | 384.68 | 2.19 | [46] |
Haiyan | 2010–2011 | 100.85 | 36.95 | 3140 | Alpine Grassland | 354.20 | 1.00 | [47] |
Haibei1 | 2003–2020 | 101.32 | 37.62 | 3200 | Alpine Grassland | 464.08 | −1.20 | [48,49] |
Haibei2 | 2002–2004 2015–2020 | 101.33 | 37.62 | 3250 | Alpine Grassland | 465.77 | −0.65 | [50,51] |
Maqu | 2010–2011 | 102.14 | 33.89 | 3424 | Alpine Grassland | 600.00 | 2.95 | [52,53] |
Zoige | 2016–2020 | 102.60 | 32.80 | 3500 | Alpine Grassland | 730.93 | 2.92 | [54] |
SACOL | 2007–2012 | 104.13 | 35.95 | 1966 | Desert Steppe | 376.32 | 8.07 | [55] |
Yanchi | 2012–2016 | 107.23 | 37.71 | 1530 | Desert Steppe | 320.62 | 9.41 | [56] |
Damao | 2011–2018 | 110.33 | 41.64 | 1407 | Desert Steppe | 237.81 | 5.12 | [57] |
Siziwangqi | 2010–2011 | 111.89 | 41.79 | 112 | Desert Steppe | 271.30 | 3.75 | [58] |
Sunitezuoqi | 2008–2010 | 113.57 | 44.08 | 970 | Desert Steppe | 154.67 | 2.50 | [59] |
Naiman | 2015–2018 | 120.70 | 42.92 | 345 | Desert Steppe | 288.18 | 7.66 | [60] |
Ansai | 2012–2014 | 109.32 | 36.86 | 1260 | Typical Steppe | 579.53 | 9.35 | [61] |
Duolun | 2006–2008 | 116.28 | 42.05 | 1350 | Typical Steppe | 367.33 | 3.26 | [62] |
Xilinhot1 | 2010–2021 | 116.31 | 44.14 | 1160 | Typical Steppe | 304.90 | 2.31 | [57] |
Xilinhot2 | 2004–2006 | 116.33 | 44.13 | 1030 | Typical Steppe | 228.33 | 1.90 | [63] |
Inner Mongolia | 2003–2010 | 116.40 | 43.33 | 1200 | Typical Steppe | 260.56 | 1.83 | [64] |
Maodeng | 2013–2017 | 116.49 | 44.16 | 1200 | Typical Steppe | 305.16 | 3.15 | [65] |
Keerqin | 2011–2012 | 122.28 | 43.29 | 203 | Meadow Steppe | 365.43 | 6.79 | [66] |
Tongyu | 2003–2017 | 122.92 | 44.34 | 184 | Meadow Steppe | 345.16 | 6.34 | [65,67] |
Changling | 2007–2013 | 123.51 | 44.59 | 136 | Meadow Steppe | 401.01 | 5.96 | [68] |
Predictor | Path to CUE | Effect | |||
---|---|---|---|---|---|
Alpine Grassland | Desert Steppe | Typical Steppe | Meadow Steppe | ||
NEP | Direct effect | 0.78 * | 1.14 * | 0.99 * | 1.00 * |
Indirect effect | 0 | 0 | 0 | 0 | |
Total effect | 0.78 | 1.14 | 0.99 | 1.00 | |
GPP | Direct effect | −0.15 | −0.27 * | 0.20 * | −0.09 |
Indirect effect | 0.30 | 0.86 | 0 | 0.47 | |
Total effect | 0.15 | 0.59 | 0.20 | 0.38 | |
EVI | Direct effect | 0 | 0.34 * | - | 0 |
Indirect effect | 0.12 | −0.44 | - | 0.18 | |
Total effect | 0.12 | −0.10 | - | 0.18 | |
MAP | Direct effect | 0.29 * | 0 | −0.20 | 0 |
Indirect effect | 0.03 | 0.29 | 0.64 | 0.17 | |
Total effect | 0.32 | 0.29 | 0.44 | 0.17 | |
SWC | Direct effect | 0 | 0 | - | −0.16 * |
Indirect effect | 0.33 | −0.06 | - | 0.53 | |
Total effect | 0.33 | −0.06 | - | 0.37 | |
MAT | Direct effect | - | - | 0 | - |
Indirect effect | - | - | 0.33 | - | |
Total effect | - | - | 0.33 | - | |
Ts | Direct effect | −0.35 * | 0.14 | - | 0.17 * |
Indirect effect | −0.07 | 0.18 | - | 0.56 | |
Total effect | −0.42 | 0.32 | - | 0.73 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, Z.; Zhou, L.; Zhou, G.; Wang, Y.; Zhou, H.; Lv, X.; Liu, L. Variation in and Regulation of Carbon Use Efficiency of Grassland Ecosystem in Northern China. Atmosphere 2024, 15, 678. https://doi.org/10.3390/atmos15060678
Feng Z, Zhou L, Zhou G, Wang Y, Zhou H, Lv X, Liu L. Variation in and Regulation of Carbon Use Efficiency of Grassland Ecosystem in Northern China. Atmosphere. 2024; 15(6):678. https://doi.org/10.3390/atmos15060678
Chicago/Turabian StyleFeng, Zhuoqun, Li Zhou, Guangsheng Zhou, Yu Wang, Huailin Zhou, Xiaoliang Lv, and Liheng Liu. 2024. "Variation in and Regulation of Carbon Use Efficiency of Grassland Ecosystem in Northern China" Atmosphere 15, no. 6: 678. https://doi.org/10.3390/atmos15060678
APA StyleFeng, Z., Zhou, L., Zhou, G., Wang, Y., Zhou, H., Lv, X., & Liu, L. (2024). Variation in and Regulation of Carbon Use Efficiency of Grassland Ecosystem in Northern China. Atmosphere, 15(6), 678. https://doi.org/10.3390/atmos15060678