Assessment of Indoor Radon Gas Concentration in Latvian Households
Abstract
:1. Introduction
2. Materials and Methods
2.1. Institutions Involved
2.2. Course of Study
2.3. Measurement Equipment
2.4. Data Processing and Statistics
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BSS | Basic Safety Standards |
DNA | Deoxyribonucleic acid |
EPA | Environmental Protection Agency |
IAEA | International Atomic Energy Agency |
IARC | International Agency for Research on Cancer |
IOSEH | Institute of Occupational Safety and Environmental Health |
MEPRD | Ministry of Environmental Protection and Regional Development |
Q–Q | Quantile–quantile |
RNA | Ribonucleic acid |
RSC SES | Radiation Safety Centre State Environmental Service of the Republic of Latvia |
RSU | Rīga Stradiņš University |
TCP | Technical Cooperation Program |
WHO | World Health Organization |
References
- United Nations (UN) Scientific Committee on the Effects of Atomic Radiation. Sources, Effects and Risks of Ionizing Radiation: Report to the General Assembly, with Scientific Annexes; UN: New York, NY, USA, 1988; p. 50. [Google Scholar]
- Grzywa-Celinska, A.; Krusinski, A.; Mazur, J.; Szewczyk, K.; Kozak, K. Radon—The Element of Risk. The impact of radon exposure on human health. Toxics 2020, 8, 120. [Google Scholar] [CrossRef] [PubMed]
- Our World in Data: 2024. Changes in Residential Duration During COVID-19. Available online: https://ourworldindata.org/grapher/changes-residential-duration-covid?time=latest (accessed on 5 March 2024).
- International Agency for Research on Cancer (IARC). Ionizing Radiation, Part 2: Some Internally Deposited Radionuclides. In IARC Monographs on the Evaluation of Carcinogenic Risks to Humans; IARC Working Group on the Evaluation of Carcinogenic Risks to Humans; International Agency for Research on Cancer: Lyon, France, 2001; Volume 78, p. 38. [Google Scholar]
- Field, R.W. Radon: An Overview of Health Effects. Encycl. Environ. Health 2011, 745–753. [Google Scholar] [CrossRef]
- Faanu, A.; Ephraim, J.H.; O’Darko, E. Assessment of public exposure to naturally occurring radioactive materials from mining and mineral processing activities of Tarkwa Goldmine in Ghana. Environ. Monit. Assess. 2010, 180, 15–29. [Google Scholar] [CrossRef] [PubMed]
- Bruenner, S.; Cichon, D.; Eurin, G.; Herrero Gómez, P.; Jörg, F.; Marrodán Undagoitia, T.; Simgen, H.; Rupp, N. Radon daughter removal from PTFE surfaces and its application in liquid xenon detectors. Eur. Phys. J. C 2021, 81, 343. [Google Scholar] [CrossRef]
- Jonckheere, R.; Gögen, K. A Monte-Carlo calculation of the size distribution of latent alpha-recoil tracks. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2001, 183, 347–357. [Google Scholar] [CrossRef]
- Alperen Bulut, H.; Şahin, R. Radon, Concrete, Buildings and Human Health—A Review Study. Buildings 2024, 14, 510. [Google Scholar] [CrossRef]
- International Agency for Research on Cancer (IARC). Man-Made Mineral Fibers and Radons. In IARC Monographs on the Evaluation of Carcinogenic Risks to Humans; International Agency for Research on Cancer: Lyon, France, 1988; Volume 43, p. 241. [Google Scholar]
- World Health Organization (WHO). WHO Handbook on Indoor Radon: A Public Health; World Health Organization: Geneva, Switzerland, 2009; p. 3. [Google Scholar]
- Lee, G.-W.; Yang, J.-Y.; Kim, H.-J.; Kwon, M.-H.; Lee, W.-S.; Kim, G.-H.; Shin, D.-C.; Lim, Y.-W. Estimation of health risk and effective dose based on measured radon levels in Korean homes and a qualitative assessment for residents’ radon awareness. Indoor Built Environ. 2017, 26, 1123–1134. [Google Scholar] [CrossRef]
- Belete, G.D.; Anteneh, Y.A. General Overview of Radon Studies in Health Hazard Perspectives. J. Oncol. 2021, 2021, 6659795. [Google Scholar] [CrossRef]
- Leonel, J.R.; Curado, A.; Lopes, S.I. The Relationship between Radon and Geology: Sources, Transport and Indoor Accumulation. Appl. Sci. 2023, 13, 7460. [Google Scholar] [CrossRef]
- European Commission. Directive 90/143/Euratom of European Commission. Recommendation of 21 February 1990 on the Protection of the Public against Indoor Exposure to Radon; OJ L 80 27.03.1990; pp. 1–26. Available online: http://data.europa.eu/eli/reco/1990/143/oj (accessed on 17 March 2024).
- European Commission. Council Directive 2013/59/Euratom of 5 December 2013 Laying down Basic Safety Standards for Protection against the Dangers Arising from Exposure to Ionising Radiation, and Repealing Directives 89/618/Euratom, 90/641/Euratom, 96/29/Euratom, 97/43/Euratom and 2003/122/Euratom; OJ L 13, 17.1.2014; pp. 1–73. Available online: http://data.europa.eu/eli/dir/2013/59/oj (accessed on 17 March 2024).
- Cabinet of Ministers of the Republic of Latvia. Regulations for Protection against Ionizing Radiation, Legal Act Nº149 (9 April 2002) of the Republic of Latvia. Available online: https://likumi.lv/ta/en/en/id/61173 (accessed on 17 March 2024).
- Krewski, D.; Lubin, J.H.; Zielinski, J.M.; Alavanja, M.; Catalan, V.S.; Field, W.R.; Klotz, J.B.; Létourneau, E.G.; Lynch, C.F.; Lyon, J.I.; et al. Residential radon and risk of lung cancer: A combined analysis of 7 North American case-control studies. Epidemiology 2005, 16, 137–145. [Google Scholar] [CrossRef]
- Darby, S.; Hill, D.; Auvinen, A.; Barros-Dios, J.M.; Baysson, H.; Bochicchio, F.; Deo, H.; Falk, R.; Forastiere, F.; Hakama, M.; et al. Radon in homes and risk of lung cancer: Collaborative analysis of individual data from 13 European case-control studies. BMJ 2005, 330, 223. [Google Scholar] [CrossRef] [PubMed]
- Lubin, J.H.; Wang, Z.Y.; Boice, J.D., Jr.; Wang, Z.Y.; Boice, J.D., Jr.; Xu, Z.Y.; Blot, W.J.; De Wang, L.; Kleinerman, R.A. Risk of lung cancer and residential radon in China: Pooled results of two studies. Int. J. Cancer 2004, 109, 132–137. [Google Scholar] [CrossRef] [PubMed]
- Rosofsky, A.; Levy, J.I.; Breen, M.S.; Zanobetti, A.; Fabian, M.P. The impact of air exchange rate on ambient air pollution exposure and inequalities across all residential parcels in Massachusetts. J. Expo. Sci. Environ. Epidemiol. 2019, 29, 520–530. [Google Scholar] [CrossRef] [PubMed]
- Reste, J.; Pavlovska, I.; Martinsone, Z.; Romans, A.; Martinsone, I.; Vanadzins, I. Indoor Air Radon Concentration in Premises of Public Companies and Workplaces in Latvia. Int. J. Environ. Res. Public Health 2022, 4, 1993. [Google Scholar] [CrossRef] [PubMed]
- Colgan, P.A.; Gutiérrez, J. National approaches to controlling exposure to radon. Environ. Int. 1996, 22 (Suppl. S1), 1083–1092. [Google Scholar] [CrossRef]
- International Atomic Energy Agency (IAEA). National and Regional Surveys of Radon Concentration in Dwellings; Review of Methodology and Measurement Techniques; Analytical Quality in Nuclear Applications Series No. 33; IAEA: Vienna, Austria, 2013; Volume 33, pp. 1–35. [Google Scholar]
- 11665-4:2012; Measurement of Radioactivity in the Environment − Air: Radon-222–Part 4: Integrated Measurement Method for Determining Average Activity Concentration Using Passive Sampling and Delayed Analysis. International Organization for Standardization: Geneva, Switzerland, 2012. Available online: https://www.iso.org/standard/52190.html (accessed on 17 March 2024).
- International Atomic Energy Agency (IAEA). Protection of the Public against Exposure Indoors Due to Radon and Other Natural Sources of Radiation; Specific Safety Guides; IAEA: Vienna, Austria, 2015; p. 112. [Google Scholar]
- Cinelli, G.; Tondeur, F. Log-normality of indoor radon data in the Walloon region of Belgium. J. Environ. Radioact. 2015, 143, 100–109. [Google Scholar] [CrossRef] [PubMed]
- Daraktchieva, Z.; Miles, J.C.H.; McColl, N. Radon, the lognormal distribution and deviation from it. J. Radiol. Prot. 2014, 34, 183–190. [Google Scholar] [CrossRef] [PubMed]
- Silva, J.; Lopes, N.; Curado, A.; Nunes, L.J.R.; Lopes, S.I. A pre-diagnosis model for radon potential evaluation in buildings: A tool for balancing ventilation, indoor air quality and energy efficiency. Energy Rep. 2022, 8, 539–546. [Google Scholar] [CrossRef]
- Baltrocchi, A.P.D.; Maggi, L.; Lago, B.D.; Torretta, V.; Torretta, V.; Szabó, M.; Nasirov, M.; Kabilov, E.; Rada, E.C. Mechanisms of Diffusion of Radon in Buildings and Mitigation Techniques. Sustainability 2024, 16, 324. [Google Scholar] [CrossRef]
- Kurkela, O.; Nevalainen, J.; Pätsi, S.-M.; Kojo, K.; Holmgren, O.; Auvinen, A. Lung cancer incidence attributable to residential radon exposure in Finland. Radiat. Environ. Biophys. 2023, 62, 35–49. [Google Scholar] [CrossRef] [PubMed]
- Stanley, F.K.; Irvine, J.L.; Jacques, W.R.; Salgia, S.R.; Innes, D.G.; Winquist, B.D.; Torr, D.; Brenner, D.R.; Goodarzi, A.A. Radon exposure is rising steadily within the modern North American residential environment, and is increasingly uniform across seasons. Sci. Rep. 2019, 9, 18472. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.; Hong, H.; Lee, J.; Kim, S.; Kim, G.; Park, B.; Cho, E.-M.; Lee, C. Comparison of Indoor Radon Reduction Effects Based on Apartment Housing Ventilation Methods. Atmosphere 2022, 13, 204. [Google Scholar] [CrossRef]
- Tsapalov, A.; Kovler, K. Metrology for Indoor Radon Measurements and Requirements for Different Types of Devices. Sensors 2024, 24, 504. [Google Scholar] [CrossRef] [PubMed]
- Nunes, L.J.R.; Curado, A.; da Graça, L.C.C.; Soares, S.; Lopes, S.I. Impacts of Indoor Radon on Health: A Comprehensive Review on Causes, Assessment and Remediation Strategies. Int. J. Environ. Res. Public Health 2022, 19, 3929. [Google Scholar] [CrossRef] [PubMed]
- Yurt, A.; Çavuşoğlu, B.; Günay, T. Awareness of these natural radiation sources and their associated risks is crucial for developing effective strategies to mitigate exposure and safeguard public health. Mol. Imaging Radionucl. Ther. 2014, 23, 48–53. [Google Scholar] [CrossRef] [PubMed]
- International Atomic Energy Agency (IAEA). Making Sense of Radiation Safety. Protecting People and the Environment; Division of Radiation, Transport and Waste Safety: Vienna, Austria, 2023; Available online: https://www-ns.iaea.org/downloads/rw/about-radiation-safety.pdf (accessed on 14 March 2024).
- Chen, J. Canadian Lung Cancer Relative Risk from Radon Exposure for Short Periods in Childhood Compared to a Lifetime. Int. J. Environ. Res. Public Health 2013, 10, 1916–1926. [Google Scholar] [CrossRef] [PubMed]
- Tong, J.; Hei, T.K. Aging and age-related health effects of ionizing radiation. Radiat. Med. Prot. 2020, 1, 15–23. [Google Scholar] [CrossRef]
- Simms, J.A.; Pearson, D.D.; Cholowsky, N.L.; Irvine, J.L.; Nielsen, M.E.; Jacques, W.R.; Taron, J.M.; Peters, C.E.; Carlson, L.E.; Goodarzi, A.A. Younger North Americans are exposed to more radon gas due to occupancy biases within the residential built environment. Sci. Rep. 2021, 11, 6724. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.S.; Pearson, D.; Rönnqvist, T.; Nielsen, M.E.; Taron, J.M.; Goodarzi, A.A. Rising Canadian and falling Swedish radon gas exposure as a consequence of 20th to 21st century residential build practices. Sci. Rep. 2021, 11, 17551. [Google Scholar] [CrossRef] [PubMed]
Type of Household/ Building/Condition | Number of Measurements | Radon Concentration, Bq/m3 | |||
---|---|---|---|---|---|
Mean (±SD) | Median (Q1, Q3) | Min | Max | ||
Private detached house | 701 | 74.26 (±59.9) | 58 (31, 98) | 1 | 384 |
Multistory block of flats with more than two floors | 168 | 53.57 (±53.67) | 39 (23, 58) | 2 | 372 |
Cellar | |||||
Building with cellar | 486 | 63.30 (±60.10) | 43 (26, 81) | 1 | 372 |
Building without cellar | 391 | 78.21 (±56.83) | 67 (35, 106) | 5 | 384 |
Floor material | |||||
wood | 529 | 78.62 (±62.88) | 62 (35, 101) | 1 | 384 |
concrete/stone/bricks | 289 | 57.58 (±52.48) | 39 (24, 75) | 7 | 372 |
Age of building | |||||
≤10 years | 64 | 72.33 (±80.76) | 38 (23, 100) | 5 | 368 |
11–40 years | 389 | 48.97 (±37.48) | 39 (24, 59) | 1 | 247 |
≥41 years | 413 | 89.34 (±65.16) | 79 (43, 113) | 5 | 384 |
Insulation/reconstruction | |||||
yes | 328 | 74.03 (±63.79) | 56 (31, 97) | 5 | 372 |
no | 547 | 67.30 (±55.85) | 51 (27, 90) | 1 | 384 |
Ventilation | |||||
natural | 824 | 71.16 (±59.91) | 54 (30, 94) | 2 | 384 |
mechanical | 50 | 42.66 (±31.28) | 31 (21, 57) | 1 | 124 |
Heating system | |||||
central | 496 | 61.28 (±54.88) | 43 (25, 80) | 2 | 372 |
stove (gas, wood) | 360 | 82.56 (±62.75) | 71 (37, 101) | 5 | 384 |
electricity | 16 | 58.88 (±56.16) | 35 (14, 107) | 1 | 192 |
Windows | |||||
plastic | 623 | 70.58 (±61.15) | 52 (28, 94) | 1 | 372 |
other types | 252 | 67.18 (±50.23) | 53 (31, 91) | 8 | 326 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reste, J.; Rīmere, N.; Romans, A.; Martinsone, Ž.; Mārtiņsone, I.; Vanadziņš, I.; Pavlovska, I. Assessment of Indoor Radon Gas Concentration in Latvian Households. Atmosphere 2024, 15, 611. https://doi.org/10.3390/atmos15050611
Reste J, Rīmere N, Romans A, Martinsone Ž, Mārtiņsone I, Vanadziņš I, Pavlovska I. Assessment of Indoor Radon Gas Concentration in Latvian Households. Atmosphere. 2024; 15(5):611. https://doi.org/10.3390/atmos15050611
Chicago/Turabian StyleReste, Jeļena, Nadīna Rīmere, Andris Romans, Žanna Martinsone, Inese Mārtiņsone, Ivars Vanadziņš, and Ilona Pavlovska. 2024. "Assessment of Indoor Radon Gas Concentration in Latvian Households" Atmosphere 15, no. 5: 611. https://doi.org/10.3390/atmos15050611
APA StyleReste, J., Rīmere, N., Romans, A., Martinsone, Ž., Mārtiņsone, I., Vanadziņš, I., & Pavlovska, I. (2024). Assessment of Indoor Radon Gas Concentration in Latvian Households. Atmosphere, 15(5), 611. https://doi.org/10.3390/atmos15050611