Application of Lattice Boltzmann Approach for Teaching a Rock Mass Seepage Mechanics Course
Abstract
:1. Introduction
2. Methodology
2.1. Present Situation of the Rock Mass Seepage Mechanics Course
2.2. The LBM Numerical Simulation Method
3. Results and Discussions
3.1. Analysis of Coal Pore Surface Morphology
3.2. Analysis of Wetting Ability
3.3. Modeling of the Random Pore Structure of the Coal Body
3.4. LBM Simulation Results of Coal Velocity Distribution
4. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Naraghi, M.E.; Javadpour, F. A stochastic permeability model for the shale-gas systems. Int. J. Coal Geol. 2015, 140, 111–124. [Google Scholar] [CrossRef]
- Jin, H. Divided Classroom: A New Exploration of College Classroom Teaching Reform. Front. Educ. Res. 2018, 1, 7–12. [Google Scholar] [CrossRef]
- Fathi, E.; Tinni, A.; Akkutlu, I.Y. Correction to Klinkenberg slip theory for gas flow in nano-capillaries. Int. J. Coal Geol. 2012, 103, 51–59. [Google Scholar] [CrossRef]
- Fathi, E.; Akkutlu, I.Y. Lattice Boltzmann Method for Simulation of Shale Gas Transport in Kerogen. SPE J. 2012, 18, 27–37. [Google Scholar] [CrossRef]
- Dongxu, C.; Laigui, W.; Chuang, S.; Ao, Y. Particle flow study on the microscale effects and damage evolution of sandstone creep. Comput. Geotech. 2023, 161, 105606. [Google Scholar]
- Bhopalam, S.R.; Perumal, D.A.; Yadav, A.K. Three-dimensional simulations of fluid flows in oscillating lid-driven cavities using lattice Boltzmann method. Fluid Dyn. Res. 2023, 55, 045504. [Google Scholar]
- Chen, L.; Fang, W.; Kang, Q.; Hyman, J.D.H.; Viswanathan, H.S.; Tao, W.Q. Generalized lattice Boltzmann model for flow through tight porous media with Klinkenberg’s effect. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 2015, 91, 033004. [Google Scholar]
- Chen, L.; Zhang, L.; Kang, Q.; Viswanathan, H.S.; Yao, J.; Tao, W. Nanoscale simulation of shale transport properties using the lattice Boltzmann method: Permeability and diffusivity. Sci. Rep. 2015, 5, 8089. [Google Scholar] [CrossRef]
- Chen, L.; Kang, Q.; Pawar, R.; He, Y.-L.; Tao, W.-Q. Pore-scale prediction of transport properties in reconstructed nanostructures of organic matter in shales. Fuel 2015, 158, 650–658. [Google Scholar] [CrossRef]
- Wang, J.; Chen, L.; Kang, Q.; Rahman, S.S. The lattice Boltzmann method for isothermal micro-gaseous flow and its application in shale gas flow: A review. Int. J. Heat Mass Transf. 2016, 95, 94–108. [Google Scholar]
- Yi, J.; Xing, H. Pore-scale simulation of effects of coal wettability on bubble-water flow in coal cleats using lattice Boltzmann method. Chem. Eng. Sci. 2017, 161, 57–66. [Google Scholar] [CrossRef]
- Wang, J.; Chen, L.; Kang, Q.; Rahman, S.S. Apparent permeability prediction of organic shale with generalized lattice Boltzmann model considering surface diffusion effect. Fuel 2016, 181, 478–490. [Google Scholar] [CrossRef]
- Sun, H.; Yao, J.; Cao, Y.-C.; Fan, D.-Y.; Zhang, L. Characterization of gas transport behaviors in shale gas and tight gas reservoirs by digital rock analysis. Int. J. Heat Mass Transf. 2017, 104, 227–239. [Google Scholar] [CrossRef]
- Zhao, Y.-L.; Zhao, L.; Wang, Z.-M.; Yang, H. Numerical simulation of multi-seam coalbed methane production using a gray lattice Boltzmann method. J. Pet. Sci. Eng. 2019, 175, 587–594. [Google Scholar] [CrossRef]
- Miao, Y.; Chi, Y.; Luan, G.; Kang, W.; Yu, Z.; Li, H.; Zhou, G.; Zhao, C. Numerical investigation of methane seepage behaviour in coal with lattice Boltzmann approach: The synergistic effects of oxidizing acid and ionic liquid. Fuel 2023, 340, 127538. [Google Scholar] [CrossRef]
- Wang, H.; Chen, L.; Qu, Z.; Yin, Y.; Kang, Q.; Yu, B.; Tao, W.-Q. Modeling of multi-scale transport phenomena in shale gas production—A critical review. Appl. Energy 2020, 262, 114575. [Google Scholar] [CrossRef]
- Li, Y.; Yu, Y.; Tang, S. The multiphase lattice Boltzmann method and its application in phase transition heat transfer. SciEngine 2020, 65, 17. [Google Scholar]
- Chai, Z. Study of Nonlinear Flow in Porous Media Based on Lattice Boltzmann Method. Ph.D. Dissertation, HUST, Wuhan, China, 2009. [Google Scholar]
- Zhao, H. Study on Micro Scale Pore Structure and Flow Mechanism of Tight Oil. Ph.D. Dissertation, China University of Petroleum, Beijing, China, 2017. [Google Scholar]
- Zhou, L.; Qu, Z.; Chen, L.; Tao, W. Lattice Boltzmann simulation of gas–solid adsorption processes at pore scale level. J. Comput. Phys. 2015, 300, 800–813. [Google Scholar] [CrossRef]
- Zhang, T.; Luo, S.; Zhou, H.; Hu, H.; Zhang, L.; Zhao, Y.; Li, J.; Javadpour, F. Pore-scale modelling of water sorption in nanopore systems of shale. Int. J. Coal Geol. 2023, 273, 104266. [Google Scholar]
- Zhao, W.; Jia, C.; Zhang, T.; Jiang, L.; Li, X.; Jiang, Z.; Zhang, F. Effects of nanopore geometry on confined water flow: A view of lattice Boltzmann simulation. Chem. Eng. Sci. 2021, 230, 116183. [Google Scholar] [CrossRef]
- Moradi, B.; Ghasemi, S.; Hosseini Moghadam, A.; Rasaei, M.R.; Sajjadi, M. Dynamic behavior investigation of capillary rising at various dominant forces using free energy lattice Boltzmann method. Meccanica 2021, 56, 2961–2977. [Google Scholar]
- Raiskinmäki, P.; Shakib-Manesh, A.; Jäsberg, A.; Koponen, A.; Merikoski, J.; Timonen, J. Lattice-Boltzmann Simulation of Capillary Rise Dynamics. J. Stat. Phys. 2002, 107, 143–158. [Google Scholar] [CrossRef]
- Wolf, F.G.; dos Santos, L.O.; Philippi, P.C. Capillary rise between parallel plates under dynamic conditions. J. Colloid Interface Sci. 2010, 344, 171–179. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miao, Y.; Li, G.; Ma, H.; Zhou, G.; Li, H. Application of Lattice Boltzmann Approach for Teaching a Rock Mass Seepage Mechanics Course. Atmosphere 2024, 15, 496. https://doi.org/10.3390/atmos15040496
Miao Y, Li G, Ma H, Zhou G, Li H. Application of Lattice Boltzmann Approach for Teaching a Rock Mass Seepage Mechanics Course. Atmosphere. 2024; 15(4):496. https://doi.org/10.3390/atmos15040496
Chicago/Turabian StyleMiao, Yanan, Guangchuan Li, He Ma, Gang Zhou, and Haoran Li. 2024. "Application of Lattice Boltzmann Approach for Teaching a Rock Mass Seepage Mechanics Course" Atmosphere 15, no. 4: 496. https://doi.org/10.3390/atmos15040496
APA StyleMiao, Y., Li, G., Ma, H., Zhou, G., & Li, H. (2024). Application of Lattice Boltzmann Approach for Teaching a Rock Mass Seepage Mechanics Course. Atmosphere, 15(4), 496. https://doi.org/10.3390/atmos15040496