An Appraisal of the Progress in Utilizing Radiosondes and Satellites for Monitoring Upper Air Temperature Profiles
Abstract
:1. Introduction
2. Research Method and Literature Search
3. Results
3.1. In Situ Measurements for Monitoring Upper Air Temperature Profiles
3.2. Challenges of In Situ Radiosonde Measurements for Upper Air Temperature Observations
3.3. Remote Sensing Applications for Upper Air Temperature Observations
Platform | Instrument Type | Area of Interest | Variables | Accuracy | Reference |
---|---|---|---|---|---|
Space-borne | FY-3E—Microwave Temperature Sounder (MWTS-III) | China | Temperature | The bias between the observed and simulated temperature (O–B) was less than 2.0 K in the study. | [114] |
Space-borne | NOAA-Microwave Sounding Unit (MSU) and the Advanced Microwave Sounding Unit (AMSU) | Global and tropical regions | Temperature | The uncertainty for all MSU/AMSU tropospheric channels (e.g., TLT (temperature lower troposphere), TMT (temperature middle troposphere), TTS (temperature troposphere stratosphere), and TLS (temperature lower stratosphere)) ranged from 0.044 to 0.012 K/decade for both global and tropical regions. | [115] |
Space-borne and ground-based | FengYun-4 (FY-4)-Geostationary Interferometric Infrared Sounder (GIIRS), AERI and Ground-Based—NCAR DIAL | Perdigão, Brazil | Temperature and water vapor | Temperature biases for all tested instruments ranged from 0.1 to 1.6 °C at different altitudes. | [116] |
Space-borne and airborne | COSMIC GPS radio occultation and radiosondes | South Asia, Asian summer monsoon region | Temperature | An intercomparison of the COSMIC-2 and radiosonde measured temperature yielded an absolute mean difference and standard deviation of less than 0.5 K and 2.5 K, respectively. | [117] |
Space-borne | Suomi National Polar-orbiting Partnership (S-NPP), NOAA-20 satellites and Cross-track Infrared Sounder observations | North America | Temperature | NOAA-20 and S-NPP VIIRS temperature observations correlated with collocated Cross-track Infrared Sounder observations, with daily averaged biases within 0.1 K at the nadir. | [118] |
Ground-based | Hyperspectral Infrared Atmospheric Sounder | South Great Plain (SGP) site | Temperature and relative humidity | In comparison with radiosonde data, the Hyperspectral Infrared Atmospheric Sounder demonstrated good retrieval ability with a root mean square error (RMSE) of 0.87 K for temperature and 1.06 g/kg for the water vapor mixing ratio. | [119] |
3.4. Challenges of Using Remote Sensing Sensors in Upper Air Temperature Observations
3.5. Upper Air Observations in Weather Forecasting, Atmospheric Boundary Layer, and Climate Change Studies
3.5.1. Weather Forecasting
3.5.2. Atmospheric Boundary Layer
3.5.3. Climate Change
4. Discussion
4.1. Challenges of Using In Situ Radiosondes and Satellites for Upper Air Temperature Observations
4.2. Progress and Future Directions in the Use of Radiosondes and Satellites for Upper Air Temperature Observations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Grotjahn, R.; Black, R.; Leung, R.; Wehner, M.F.; Barlow, M.; Bosilovich, M.; Gershunov, A.; Gutowski, W.J.; Gyakum, J.R.; Katz, R.W. North American extreme temperature events and related large scale meteorological patterns: A review of statistical methods, dynamics, modeling, and trends. Clim. Dyn. 2016, 46, 1151–1184. [Google Scholar] [CrossRef]
- Essa, Y.H.; Cagnazzo, C.; Madonna, F.; Cristofanelli, P.; Yang, C.; Serva, F.; Caporaso, L.; Santoleri, R. Intercomparison of Atmospheric Upper-Air Temperature from Recent Global Reanalysis Datasets. Front. Earth Sci. 2022, 10, 935139. [Google Scholar] [CrossRef]
- Lee, H.; Calvin, K.; Dasgupta, D.; Krinner, G.; Mukherji, A.; Thorne, P.; Trisos, C.; Romero, J.; Aldunce, P.; Barret, K. IPCC, 2023: Climate Change 2023: Synthesis Report, Summary for Policymakers. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Core Writing Team, Lee, H., Romero, J., Eds.; IPCC: Geneva, Switzerland, 2023. [Google Scholar]
- Sun, B.; Reale, A.; Seidel, D.J.; Hunt, D.C. Comparing radiosonde and COSMIC atmospheric profile data to quantify differences among radiosonde types and the effects of imperfect collocation on comparison statistics. J. Geophys. Res. Atmos. 2010, 115. [Google Scholar] [CrossRef]
- Hunziker, S.; Gubler, S.; Calle, J.; Moreno, I.; Andrade, M.; Velarde, F.; Ticona, L.; Carrasco, G.; Castellón, Y.; Oria, C. Identifying, attributing, and overcoming common data quality issues of manned station observations. Int. J. Climatol. 2017, 37, 4131–4145. [Google Scholar] [CrossRef]
- Zhou, Q.; Zhang, Y.; Jia, S.; Jin, J.; Lv, S.; Li, Y. Climatology of cloud vertical structures from long-term high-resolution radiosonde measurements in Beijing. Atmosphere 2020, 11, 401. [Google Scholar] [CrossRef]
- Chen, X.; Yang, T.; Wang, Z.; Wang, F.; Wang, H. An ensemble method for improving the estimation of planetary boundary layer height from radiosonde data. Atmos. Meas. Tech. Discuss. 2023, 16, 4289–4302. [Google Scholar] [CrossRef]
- Lappin, F.M.; Bell, T.M.; Pillar-Little, E.A.; Chilson, P.B. Low-level buoyancy as a tool to understand boundary layer transitions. Atmos. Meas. Tech. Discuss. 2022, 15, 1185–1200. [Google Scholar] [CrossRef]
- Herrera-Mejía, L.; Hoyos, C.D. Characterization of the atmospheric boundary layer in a narrow tropical valley using remote-sensing and radiosonde observations and the WRF model: The Aburrá Valley case-study. Q. J. R. Meteorol. Soc. 2019, 145, 2641–2665. [Google Scholar] [CrossRef]
- Larosa, S.; Cimini, D.; Gallucci, D.; Nilo, S.T.; Romano, F. PyRTlib: An educational Python-based library for non-scattering atmospheric microwave Radiative Transfer computations. Geosci. Model Dev. Discuss. 2024, 17, 2053–2076. [Google Scholar] [CrossRef]
- Piringer, M.; Baumann-Stanzer, K. The Role of Temperature Inversions in Air Pollution Episodes Demonstrated by Examples in the Eastern Alps (Austria). In Oxford Research Encyclopedia of Climate Science; Oxford University Press: Oxford, UK, 2024. [Google Scholar]
- Sun, X.; Zhao, T.; Tang, G.; Bai, Y.; Kong, S.; Zhou, Y.; Hu, J.; Tan, C.; Shu, Z.; Xu, J. Vertical changes of PM2.5 driven by meteorology in the atmospheric boundary layer during a heavy air pollution event in central China. Sci. Total Environ. 2023, 858, 159830. [Google Scholar] [CrossRef]
- Thorne, P.W.; Parker, D.E.; Tett, S.F.; Jones, P.D.; McCarthy, M.; Coleman, H.; Brohan, P. Revisiting radiosonde upper air temperatures from 1958 to 2002. J. Geophys. Res. Atmos. 2005, 110. [Google Scholar] [CrossRef]
- Guo, Y.; Weng, F.; Wang, G.; Xu, W. The long-term trend of upper-air temperature in China derived from microwave sounding data and its comparison with radiosonde observations. J. Clim. 2020, 33, 7875–7895. [Google Scholar] [CrossRef]
- Jovanovic, B.; Smalley, R.; Siems, S. A historical monthly upper-air humidity dataset for Australia. J. South. Hemisph. Earth Syst. Sci. 2023, 73, 148–167. [Google Scholar] [CrossRef]
- Zhou, C.; Wang, J.; Dai, A.; Thorne, P.W. A new approach to homogenize global subdaily radiosonde temperature data from 1958 to 2018. J. Clim. 2021, 34, 1163–1183. [Google Scholar] [CrossRef]
- Doi, A.; Kono, Y.; Kimura, K.; Nakahara, S.; Oyama, T.; Okada, N.; Satou, Y.; Yamashita, K.; Matsumoto, N.; Baba, M. A balloon-borne very long baseline interferometry experiment in the stratosphere: Systems design and developments. Adv. Space Res. 2019, 63, 779–793. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, H.; Zhu, Y.; Shi, H.; Zheng, Y.; Xia, X.; Teng, Y.; Wang, F.; Han, X.; Li, J. A novel method for estimating the vertical velocity of air with a descending radiosonde system. Remote Sens. 2019, 11, 1538. [Google Scholar] [CrossRef]
- Ho, S.-p.; Peng, L.; Vömel, H. Characterization of the long-term radiosonde temperature biases in the upper troposphere and lower stratosphere using COSMIC and Metop-A/GRAS data from 2006 to 2014. Atmos. Chem. Phys. 2017, 17, 4493–4511. [Google Scholar] [CrossRef]
- Seidel, D.J.; Berger, F.H.; Diamond, H.J.; Dykema, J.; Goodrich, D.; Immler, F.; Murray, W.; Peterson, T.; Sisterson, D.; Sommer, M. Reference upper-air observations for climate: Rationale, progress, and plans. Bull. Am. Meteorol. Soc. 2009, 90, 361–369. [Google Scholar] [CrossRef]
- Thorne, P.W.; Brohan, P.; Titchner, H.A.; McCarthy, M.P.; Sherwood, S.C.; Peterson, T.C.; Haimberger, L.; Parker, D.E.; Tett, S.F.; Santer, B.D. A quantification of uncertainties in historical tropical tropospheric temperature trends from radiosondes. J. Geophys. Res. Atmos. 2011, 116. [Google Scholar] [CrossRef]
- Hoshino, S.; Sugidachi, T.; Shimizu, K.; Kobayashi, E.; Fujiwara, M.; Iwabuchi, M. Comparison of GRUAN data products for Meisei iMS-100 and Vaisala RS92 radiosondes at Tateno, Japan. Atmos. Meas. Tech. 2022, 15, 5917–5948. [Google Scholar] [CrossRef]
- Domonkos, P. Time Series Homogenization with ACMANT: Comparative Testing of Two Recent Versions in Large-Size Synthetic Temperature Datasets. Climate 2023, 11, 224. [Google Scholar] [CrossRef]
- Sun, B.; Calbet, X.; Reale, A.; Schroeder, S.; Bali, M.; Smith, R.; Pettey, M. Accuracy of Vaisala RS41 and RS92 upper tropospheric humidity compared to satellite hyperspectral infrared measurements. Remote Sens. 2021, 13, 173. [Google Scholar] [CrossRef]
- Fassó, A.; Sommer, M.; von Rohden, C. Interpolation uncertainty of atmospheric temperature radiosoundings. Atmos. Meas. Tech. Discuss. 2020, 13, 6445–6458. [Google Scholar] [CrossRef]
- Tradowsky, J.S.; Bodeker, G.E.; Querel, R.R.; Builtjes, P.J.; Fischer, J. Combining data from the distributed GRUAN site Lauder–Invercargill, New Zealand, to provide a site atmospheric state best estimate of temperature. Earth Syst. Sci. Data 2018, 10, 2195–2211. [Google Scholar] [CrossRef]
- Madonna, F.; Tramutola, E.; SY, S.; Serva, F.; Proto, M.; Rosoldi, M.; Gagliardi, S.; Amato, F.; Marra, F.; Fassò, A. The new Radiosounding HARMonization (RHARM) data set of homogenized radiosounding temperature, humidity, and wind profiles with uncertainties. J. Geophys. Res. Atmos. 2022, 127, e2021JD035220. [Google Scholar] [CrossRef]
- Guo, J.; Zhang, J.; Shao, J.; Chen, T.; Bai, K.; Sun, Y.; Li, N.; Wu, J.; Li, R.; Li, J. A merged continental planetary boundary layer height dataset based on high-resolution radiosonde measurements, ERA5 reanalysis, and GLDAS. Earth Syst. Sci. Data 2024, 16, 1–14. [Google Scholar] [CrossRef]
- Bodeker, G.; Kremser, S. Techniques for analyses of trends in GRUAN data. Atmos. Meas. Tech. 2015, 8, 1673–1684. [Google Scholar] [CrossRef]
- Bodeker, G.; Bojinski, S.; Cimini, D.; Dirksen, R.; Haeffelin, M.; Hannigan, J.; Hurst, D.; Leblanc, T.; Madonna, F.; Maturilli, M. Reference upper-air observations for climate: From concept to reality. Bull. Am. Meteorol. Soc. 2016, 97, 123–135. [Google Scholar] [CrossRef]
- Eyre, J.; Bell, W.; Cotton, J.; English, S.; Forsythe, M.; Healy, S.; Pavelin, E. Assimilation of satellite data in numerical weather prediction. Part II: Recent years. Q. J. R. Meteorol. Soc. 2022, 148, 521–556. [Google Scholar] [CrossRef]
- Eyre, J.R.; English, S.J.; Forsythe, M. Assimilation of satellite data in numerical weather prediction. Part I: The early years. Q. J. R. Meteorol. Soc. 2020, 146, 49–68. [Google Scholar] [CrossRef]
- Fletcher, S.J. Data Assimilation for the Geosciences: From Theory to Application; Elsevier: Amsterdam, The Netherlands, 2022. [Google Scholar]
- Han, Y.; Hou, X. Evaluation of the in-orbit performance of the microwave temperature sounder onboard the FY-3D satellite using different radiative transfer models. J. Quant. Spectrosc. Radiat. Transf. 2020, 253, 107041. [Google Scholar] [CrossRef]
- Wallace, J.; Kanaroglou, P. The effect of temperature inversions on ground-level nitrogen dioxide (NO2) and fine particulate matter (PM2.5) using temperature profiles from the Atmospheric Infrared Sounder (AIRS). Sci. Total Environ. 2009, 407, 5085–5095. [Google Scholar] [CrossRef]
- Tradowsky, J.S.; Burrows, C.P.; Healy, S.B.; Eyre, J.R. A new method to correct radiosonde temperature biases using radio occultation data. J. Appl. Meteorol. Climatol. 2017, 56, 1643–1661. [Google Scholar] [CrossRef]
- Lima, L.M.; Paulino, A.R.; de Araujo, L.R.; Maia, F.B.P.; Batista, P.P. Monthly averages of diurnal temperature variation from meteor radar at Cachoeira Paulista (22.7° S, 45° W), Brazil. J. Atmos. Sol.-Terr. Phys. 2021, 221, 105689. [Google Scholar] [CrossRef]
- Bonafoni, S.; Biondi, R.; Brenot, H.; Anthes, R. Radio occultation and ground-based GNSS products for observing, understanding and predicting extreme events: A review. Atmos. Res. 2019, 230, 104624. [Google Scholar] [CrossRef]
- Wang, K.-N.; Ao, C.O.; Morris, M.G.; Hajj, G.A.; Kurowski, M.J.; Turk, F.J.; Moore, A.W. Joint 1DVar retrievals of tropospheric temperature and water vapor from Global Navigation Satellite System radio occultation (GNSS-RO) and microwave radiometer observations. Atmos. Meas. Tech. 2024, 17, 583–599. [Google Scholar] [CrossRef]
- Zhran, M.; Mousa, A.; Alshehri, F.; Jin, S. Evaluation of Tropopause Height from Sentinel-6 GNSS Radio Occultation Using Different Methods. Remote Sens. 2023, 15, 5513. [Google Scholar] [CrossRef]
- Inai, Y.; Aoki, S.; Honda, H.; Furutani, H.; Matsumi, Y.; Ouchi, M.; Sugawara, S.; Hasebe, F.; Uematsu, M.; Fujiwara, M. Balloon-borne tropospheric CO2 observations over the equatorial eastern and western Pacific. Atmos. Environ. 2018, 184, 24–36. [Google Scholar] [CrossRef]
- Lee, J.M.; Tao, C.; Hannah, W.M.; Xie, S.; Bader, D.C. Assessment of warm and dry bias over ARM SGP site in E3SMv2 and E3SM-MMF. J. Atmos. Sci. 2023, 80, 2545–2556. [Google Scholar] [CrossRef]
- Luers, J.K.; Eskridge, R.E. Use of radiosonde temperature data in climate studies. J. Clim. 1998, 11, 1002–1019. [Google Scholar] [CrossRef]
- Sterin, A.; Khan, V.; Rubinshtein, K. Upper-air temperature trends: Current problems and some recent results. In Climate Variabilsity and Extremes during the Past 100 Years; Springer: Berlin/Heidelberg, Germany, 2008; pp. 85–101. [Google Scholar]
- Hooker, J.; Duveiller, G.; Cescatti, A. A global dataset of air temperature derived from satellite remote sensing and weather stations. Sci. Data 2018, 5, 180246. [Google Scholar] [CrossRef]
- Scherllin-Pirscher, B.; Steiner, A.K.; Anthes, R.A.; Alexander, M.J.; Alexander, S.P.; Biondi, R.; Birner, T.; Kim, J.; Randel, W.J.; Son, S.-W. Tropical temperature variability in the UTLS: New insights from GPS radio occultation observations. J. Clim. 2021, 34, 2813–2838. [Google Scholar] [CrossRef]
- Wright, R.W.; Brand, R.A.; Dunn, W.; Spindler, K.P. How to write a systematic review. Clin. Orthop. Relat. Res. 2007, 455, 23–29. [Google Scholar] [CrossRef]
- de Bruin, M.; McCambridge, J.; Prins, J.M. Reducing the risk of bias in health behaviour change trials: Improving trial design, reporting or bias assessment criteria? A review and case study. Psychol. Health 2015, 30, 8–34. [Google Scholar] [CrossRef]
- Derviş, H. Bibliometric analysis using bibliometrix an R package. J. Scientometr. Res. 2019, 8, 156–160. [Google Scholar] [CrossRef]
- Mashala, M.J.; Dube, T.; Mudereri, B.T.; Ayisi, K.K.; Ramudzuli, M.R. A systematic review on advancements in remote sensing for assessing and monitoring land use and land cover changes impacts on surface water resources in semi-arid tropical environments. Remote Sens. 2023, 15, 3926. [Google Scholar] [CrossRef]
- McDowell, J.C. The edge of space: Revisiting the Karman Line. Acta Astronaut. 2018, 151, 668–677. [Google Scholar] [CrossRef]
- Henry, M. Assembling meteorology: Balloons, leaking gas, and colonial relations in the making of new atmospheres. J. R. Soc. N. Z. 2017, 47, 162–168. [Google Scholar] [CrossRef]
- Milrad, S. Synoptic Analysis and Forecasting: An Introductory Toolkit; Elsevier: Amsterdam, The Netherlands, 2017. [Google Scholar]
- Ferreira, A.P.; Nieto, R.; Gimeno, L. Completeness of radiosonde humidity observations based on the Integrated Global Radiosonde Archive. Earth Syst. Sci. Data 2019, 11, 603–627. [Google Scholar] [CrossRef]
- Naakka, T.; Nygård, T.; Tjernström, M.; Vihma, T.; Pirazzini, R.; Brooks, I.M. The impact of radiosounding observations on numerical weather prediction analyses in the Arctic. Geophys. Res. Lett. 2019, 46, 8527–8535. [Google Scholar] [CrossRef]
- Vömel, H.; Ingleby, B. Balloon-borne radiosondes. In Field Measurements for Passive Environmental Remote Sensing; Elsevier: Amsterdam, The Netherlands, 2023; pp. 23–35. [Google Scholar]
- Thompson, A.M.; Smit, H.G.; Kollonige, D.E.; Stauffer, R.M. Ozonesondes: Instrumentation and Data Applications. In Field Measurements for Passive Environmental Remote Sensing; Elsevier: Amsterdam, The Netherlands, 2023; pp. 57–78. [Google Scholar]
- Liu, L.; Han, Y.; Xia, Y.; Guo, Q.; Gao, W.; Guo, J. Investigation of atmospheric dynamic and thermodynamic structures of typhoon Sinlaku (2020) from high-resolution dropsonde and two-way rawinsonde measurements. Remote Sens. 2022, 14, 2704. [Google Scholar] [CrossRef]
- Zheng, M.; Torn, R.; Delle Monache, L.; Doyle, J.; Ralph, F.M.; Tallapragada, V.; Davis, C.; Steinhoff, D.; Wu, X.; Wilson, A. An Assessment of Dropsonde Sampling Strategies for Atmospheric River Reconnaissance. Mon. Weather Rev. 2024, 152, 811–835. [Google Scholar] [CrossRef]
- McPartland, M.; Bonin, T.; Reynolds, T. A New System for Obtaining Aircraft Derived Atmospheric Observations for Enhanced Weather Forecasting. In Proceedings of the AIAA AVIATION 2022 Forum, Chicago, IL, USA, 27 June–1 July 2022; p. 4154. [Google Scholar]
- Muñoz, L.E.; Campozano, L.V.; Guevara, D.C.; Parra, R.; Tonato, D.; Suntaxi, A.; Maisincho, L.; Páez, C.; Villacís, M.; Córdova, J. Comparison of Radiosonde Measurements of Meteorological Variables with Drone, Satellite Products, and WRF Simulations in the Tropical Andes: The Case of Quito, Ecuador. Atmosphere 2023, 14, 264. [Google Scholar] [CrossRef]
- Song, Y.; He, Y.; Leng, H. Analysis of Atmospheric Elements in Near Space Based on Meteorological-Rocket Soundings over the East China Sea. Remote Sens. 2024, 16, 402. [Google Scholar] [CrossRef]
- Bayomi, N.; Fernandez, J.E. Eyes in the Sky: Drones Applications in the Built Environment under Climate Change Challenges. Drones 2023, 7, 637. [Google Scholar] [CrossRef]
- Kondaveeti, H.K.; Kumaravelu, N.K.; Vanambathina, S.D.; Mathe, S.E.; Vappangi, S. A systematic literature review on prototyping with Arduino: Applications, challenges, advantages, and limitations. Comput. Sci. Rev. 2021, 40, 100364. [Google Scholar] [CrossRef]
- Bärfuss, K.; Dirksen, R.; Schmithüsen, H.; Bretschneider, L.; Pätzold, F.; Bollmann, S.; Panten, P.; Rausch, T.; Lampert, A. Drone-Based Atmospheric Soundings up to an Altitude of 10 km-Technical Approach towards Operations. Drones 2022, 6, 404. [Google Scholar] [CrossRef]
- Osei, M.A.; Amekudzi, L.K.; Ferguson, C.R.; Danuor, S.K. Inter-comparison of AIRS temperature and relative humidity profiles with AMMA and DACCIWA radiosonde observations over West Africa. Remote Sens. 2020, 12, 2631. [Google Scholar] [CrossRef]
- Tobin, D.C.; Revercomb, H.E.; Knuteson, R.O.; Lesht, B.M.; Strow, L.L.; Hannon, S.E.; Feltz, W.F.; Moy, L.A.; Fetzer, E.J.; Cress, T.S. Atmospheric Radiation Measurement site atmospheric state best estimates for Atmospheric Infrared Sounder temperature and water vapor retrieval validation. J. Geophys. Res. Atmos. 2006, 111. [Google Scholar] [CrossRef]
- Domonkos, P.; Tóth, R.; Nyitrai, L. Climate Observations: Data Quality Control and Time Series Homogenization; Elsevier: Amsterdam, The Netherlands, 2022; Volume 3. [Google Scholar]
- Vömel, H.; Goodstein, M.; Tudor, L.; Witte, J.; Fuchs-Stone, Ž.; Sentić, S.; Raymond, D.; Martinez-Claros, J.; Juračić, A.; Maithel, V. High-resolution in situ observations of atmospheric thermodynamics using dropsondes during the Organization of Tropical East Pacific Convection (OTREC) field campaign. Earth Syst. Sci. Data 2021, 13, 1107–1117. [Google Scholar] [CrossRef]
- Li, J.; Sheng, Z.; Fan, Z.; Zhou, S.; Shi, W. Data analysis of upper atmosphere temperature detected by sounding rockets in China. J. Atmos. Ocean. Technol. 2017, 34, 555–565. [Google Scholar] [CrossRef]
- Sun, B.; Reale, A.; Pettey, M.; Smith, R.; Brown, C. The NOAA sounding Products Validation System (NPROVS). In Field Measurements for Passive Environmental Remote Sensing; Elsevier: Amsterdam, The Netherlands, 2023; pp. 281–296. [Google Scholar]
- van der Linden, R.; Knippertz, P.; Fink, A.H.; Ingleby, B.; Maranan, M.; Benedetti, A. The influence of DACCIWA radiosonde data on the quality of ECMWF analyses and forecasts over southern West Africa. Q. J. R. Meteorol. Soc. 2020, 146, 1719–1739. [Google Scholar] [CrossRef]
- Lafon, T.; Fowler, J.; Jiménez, J.F.; Cordoba, G.J.T. A viable alternative for conducting cost-effective daily atmospheric soundings in developing countries. Bull. Am. Meteorol. Soc. 2014, 95, 837–842. [Google Scholar] [CrossRef]
- Zhang, J.; Xu, X.; Luo, J. Estimating the observation errors of FY-3C radio occultation dataset using the three-cornered hat method. Terr. Atmos. Ocean. Sci. 2023, 34, 22. [Google Scholar] [CrossRef]
- Shao, J.; Zhang, J.; Wang, W.; Zhang, S.; Yu, T.; Dong, W. Occurrence frequency of Kelvin-Helmholtz instability assessed by global high-resolution radiosonde and ERA5 reanalysis. Atmos. Chem. Phys. Discuss. 2023, 23, 12589–12607. [Google Scholar] [CrossRef]
- Abdunabiev, S.; Musacchio, C.; Merlone, A.; Paredes, M.; Pasero, E.; Tordella, D. Validation and traceability of miniaturized multi-parameter cluster radiosondes used for atmospheric observations. Measurement 2024, 224, 113879. [Google Scholar] [CrossRef]
- Ingleby, B.; Pauley, P.; Kats, A.; Ator, J.; Keyser, D.; Doerenbecher, A.; Fucile, E.; Hasegawa, J.; Toyoda, E.; Kleinert, T. Progress toward high-resolution, real-time radiosonde reports. Bull. Am. Meteorol. Soc. 2016, 97, 2149–2161. [Google Scholar] [CrossRef]
- James, E.P.; Benjamin, S.G.; Jamison, B.D. Commercial-aircraft-based observations for NWP: Global coverage, data impacts, and COVID-19. J. Appl. Meteorol. Climatol. 2020, 59, 1809–1825. [Google Scholar] [CrossRef]
- Wagner, T.J.; August, T.; Hultberg, T.; Petersen, R.A. On the use of routine airborne observations for evaluation and monitoring of satellite observations of thermodynamic profiles. Atmos. Meas. Tech. 2024, 17, 1–14. [Google Scholar] [CrossRef]
- Haiden, T.; Janousek, M.; Vitart, F.; Bouallègue, Z.B.; Ferranti, L.; Prates, F.; Richardson, D. Evaluation of ECMWF Forecasts, including the 2018 Upgrade; European Centre for Medium Range Weather Forecasts: Reading, UK, 2018. [Google Scholar]
- National Oceanic and Atmospheric Administration. Radiosondes. Available online: https://www.noaa.gov/jetstream/upperair/radiosondes#:~:text=The%20radiosonde%20is%20a%20small,%2C%20temperature%2C%20and%20relative%20humidity (accessed on 28 January 2024).
- Nyamukondiwa, R.M.; Orger, N.C.; Nakayama, D.; Cho, M. A Study on the Derivation of Atmospheric Water Vapor Based on Dual Frequency Radio Signals and Intersatellite Communication Networks. Aerospace 2023, 10, 807. [Google Scholar] [CrossRef]
- Marja, F.; Aisyah, S. LabVIEW Based Radiosonde Telemetry System in RF Communication. In Proceedings of the 2018 International Conference on Applied Engineering (ICAE), Batam, Indonesia, 3–4 October 2018; pp. 1–5. [Google Scholar]
- Khan, M.S.; Farhan, M.; Fayyaz, O.; Shakoor, R. Effect of AlN Nanoparticle Concentration in the Electrolyte on Corrosion Resistance and Mechanical Properties of the Electrodeposited Composite Coatings. Mater. Today Commun. 2024, 38, 108330. [Google Scholar] [CrossRef]
- Nash, J. Measurement of upper-air pressure, temperature and humidity. World Meteorol. Organ. IOM Rep. 2015, 87, 1–89. [Google Scholar]
- Yang, J.; An, Q.; Liu, Q.; Tan, M.; Jiang, L. Development of a radiation shield for atmospheric temperature measurement system. Measurement 2024, 229, 114399. [Google Scholar] [CrossRef]
- Leung, D.P.; McCormick, D.J.; Malpas, S.C.; Budgett, D.M. Reducing Drift in Implantable Pressure Sensors. IEEE Sens. J. 2018, 19, 2458–2465. [Google Scholar] [CrossRef]
- Böck, T.; Pospichal, B.; Löhnert, U. Measurement uncertainties of scanning microwave radiometers and their influence on temperature profiling. Atmos. Meas. Tech. 2024, 17, 219–233. [Google Scholar] [CrossRef]
- Zolghadrshojaee, M.; Tegtmeier, S.; Davis, S.M.; Pilch Kedzierski, R. Variability and long-term changes of tropical cold point temperature and water vapor. EGUsphere 2024, 2024, 1–23. [Google Scholar]
- Lanzante, J.R.; Klein, S.A.; Seidel, D.J. Temporal homogenization of monthly radiosonde temperature data. Part I: Methodology. J. Clim. 2003, 16, 224–240. [Google Scholar] [CrossRef]
- Haimberger, L.; Tavolato, C.; Sperka, S. Toward elimination of the warm bias in historic radiosonde temperature records—Some new results from a comprehensive intercomparison of upper-air data. J. Clim. 2008, 21, 4587–4606. [Google Scholar] [CrossRef]
- Fassò, A.; Ignaccolo, R.; Madonna, F.; Demoz, B.; Franco-Villoria, M. Statistical modelling of collocation uncertainty in atmospheric thermodynamic profiles. Atmos. Meas. Tech. 2014, 7, 1803–1816. [Google Scholar] [CrossRef]
- Rodgers, C.D. Inverse Methods for Atmospheric Sounding: Theory and Practice; World Scientific: Singapore, 2000; Volume 2. [Google Scholar]
- Lavender, S.; Lavender, A. Practical Handbook of Remote Sensing; CRC Press: Boca Raton, FL, USA, 2023. [Google Scholar]
- Burrows, J.; Dehn, A.; Deters, B.; Himmelmann, S.; Richter, A.; Voigt, S.; Orphal, J. Atmospheric remote-sensing reference data from GOME: Part 1. Temperature-dependent absorption cross-sections of NO2 in the 231–794 nm range. J. Quant. Spectrosc. Radiat. Transf. 1998, 60, 1025–1031. [Google Scholar] [CrossRef]
- Chen, H.; Guan, L. Assessing FY-3E HIRAS-II Radiance Accuracy Using AHI and MERSI-LL. Remote Sens. 2022, 14, 4309. [Google Scholar] [CrossRef]
- Teng, H.F.; Kuo, Y.H.; Done, J.M. Potential Impacts of Radio Occultation Data Assimilation on Forecast Skill of Tropical Cyclone Formation in the Western North Pacific. Geophys. Res. Lett. 2023, 50, e2021GL096750. [Google Scholar] [CrossRef]
- Wee, T.-K. A variational regularization of Abel transform for GPS radio occultation. Atmos. Meas. Tech. 2018, 11, 1947–1969. [Google Scholar] [CrossRef]
- Nalli, N.R.; Kalluri, S. Introduction: Field measurements and remote sensing. In Field Measurements for Passive Environmental Remote Sensing; Elsevier: Amsterdam, The Netherlands, 2023; pp. 1–20. [Google Scholar]
- Kotthaus, S.; Bravo-Aranda, J.A.; Collaud Coen, M.; Guerrero-Rascado, J.L.; Costa, M.J.; Cimini, D.; O’Connor, E.J.; Hervo, M.; Alados-Arboledas, L.; Jiménez-Portaz, M. Atmospheric boundary layer height from ground-based remote sensing: A review of capabilities and limitations. Atmos. Meas. Tech. 2023, 16, 433–479. [Google Scholar] [CrossRef]
- Mao, S.; Yin, Z.; Wang, L.; Wei, Y.; Bu, Z.; Chen, Y.; Dai, Y.; Müller, D.; Wang, X. Aerosol Optical Properties Retrieved by Polarization Raman Lidar: Methodology and Strategy of a Quality-Assurance Tool. Remote Sens. 2024, 16, 207. [Google Scholar] [CrossRef]
- Yu, J.; Cheng, Y.; Kong, Z.; Song, J.; Chang, Y.; Liu, K.; Gong, Z.; Mei, L. Broadband continuous-wave differential absorption lidar for atmospheric remote sensing of water vapor. Opt. Express 2024, 32, 3046–3061. [Google Scholar] [CrossRef] [PubMed]
- Kartashov, V.; Babkin, S.; Kartashov, A.; Pershyn, Y. Development of the Atmosphere Radio-Acoustic Sounding Method in Ukraine and in the World in the Period of 1961–2000. In Proceedings of the 2023 IEEE International Conference on Information and Telecommunication Technologies and Radio Electronics (UkrMiCo), Kyiv, Ukraine, 13–18 November 2023; pp. 372–376. [Google Scholar]
- Li, S.; Hu, H.; Fang, C.; Wang, S.; Xun, S.; He, B.; Wu, W.; Huo, Y. Hyperspectral Infrared Atmospheric Sounder (HIRAS) atmospheric sounding system. Remote Sens. 2022, 14, 3882. [Google Scholar] [CrossRef]
- Zou, C.Z.; Xu, H.; Hao, X.; Liu, Q. Mid-Tropospheric Layer Temperature Record Derived from Satellite Microwave Sounder Observations with Backward Merging Approach. J. Geophys. Res. Atmos. 2023, 128, e2022JD037472. [Google Scholar] [CrossRef]
- He, Y.; Zhang, S.; Guo, S.; Wu, Y. Quality Assessment of the Atmospheric Radio Occultation Profiles from FY-3E/GNOS-II BDS and GPS Measurements. Remote Sens. 2023, 15, 5313. [Google Scholar] [CrossRef]
- Li, F.; Hou, C.; Kan, L.; Fu, N.; Wang, M.; Wang, Z. Mountain top-based atmospheric radio occultation observations with open/closed loop tracking: Experiment and validation. Remote Sens. 2020, 12, 4078. [Google Scholar] [CrossRef]
- Caruso, A.; Bourgoin, A.; Togni, A.; Zannoni, M.; Tortora, P. Radio Occultation Data Analysis with Analytical Ray-Tracing. Radio Sci. 2023, 58, e2023RS007740. [Google Scholar] [CrossRef]
- Schinder, P.J.; Flasar, F.M.; Marouf, E.A.; French, R.G.; McGhee, C.A.; Kliore, A.J.; Rappaport, N.J.; Barbinis, E.; Fleischman, D.; Anabtawi, A. The structure of Titan’s atmosphere from Cassini radio occultations. Icarus 2011, 215, 460–474. [Google Scholar] [CrossRef]
- Palmer, P.I.; Barnett, J.; Eyre, J.; Healy, S. A nonlinear optimal estimation inverse method for radio occultation measurements of temperature, humidity, and surface pressure. J. Geophys. Res. Atmos. 2000, 105, 17513–17526. [Google Scholar] [CrossRef]
- Gorbunov, M. Editorial for the Special Issue:“Radio Occultations for Numerical Weather Prediction, Ionosphere, and Space Weather”. Remote Sens. 2023, 15, 2107. [Google Scholar] [CrossRef]
- Liu, M.; Chen, L.; Jian, N.; Guo, P.; Kong, J.; Wang, M.; Han, Q.; Ping, J.; Wu, M. Preliminary Estimations of Mars Atmospheric and Ionospheric Profiles from Tianwen-1 Radio Occultation One-Way, Two-Way, and Three-Way Observations. Remote Sens. 2023, 15, 5506. [Google Scholar] [CrossRef]
- Culverwell, I.; Healy, S.; Elvidge, S. One-Dimensional Variational Ionospheric Retrieval Using Radio Occultation Bending Angles: 1. Theory. Space Weather. 2024, 22, e2023SW003572. [Google Scholar] [CrossRef]
- Qian, X.; Qin, Z.; Li, J.; Han, Y.; Liu, G. Preliminary Evaluation of FY-3E Microwave Temperature Sounder Performance Based on Observation Minus Simulation. Remote Sens. 2022, 14, 2250. [Google Scholar] [CrossRef]
- Mears, C.A.; Wentz, F.J.; Thorne, P.; Bernie, D. Assessing uncertainty in estimates of atmospheric temperature changes from MSU and AMSU using a Monte-Carlo estimation technique. J. Geophys. Res. Atmos. 2011, 116. [Google Scholar] [CrossRef]
- Turner, D.D.; Löhnert, U. Ground-based temperature and humidity profiling: Combining active and passive remote sensors. Atmos. Meas. Tech. 2021, 14, 3033–3048. [Google Scholar] [CrossRef]
- Veenus, V.; Das, S.S.; Sama, B.; Uma, K. A comparison of temperature and relative humidity measurements derived from COSMIC-2 radio occultations with radiosonde observations made over the Asian summer monsoon region. Remote Sens. Lett. 2022, 13, 394–405. [Google Scholar] [CrossRef]
- Wang, W.; Cao, C. NOAA-20 and S-NPP VIIRS thermal emissive bands on-orbit calibration algorithm update and long-term performance inter-comparison. Remote Sens. 2021, 13, 448. [Google Scholar] [CrossRef]
- Yang, W.; Liu, L.; Deng, W.; Huang, W.; Ye, J.; Hu, S. Deep Retrieval Architecture of Temperature and Humidity Profiles from Ground-Based Infrared Hyperspectral Spectrometer. Remote Sens. 2023, 15, 2320. [Google Scholar] [CrossRef]
- Dee, D.P. Variational bias correction of radiance data in the ECMWF system. In Proceedings of the ECMWF Workshop on Assimilation of High Spectral Resolution Sounders in NWP, Reading, UK, 28 June–1 July 2004; pp. 97–112. [Google Scholar]
- Gomaa, H.E.; Mousa, A.; Yousef, M.; Mahrous, A. Statistical Validation of GNSS Radio Occultation data over Egypt. Adv. Basic Appl. Sci. 2024, 2, 29–45. [Google Scholar] [CrossRef]
- Mears, C.A.; Wentz, F.J. A satellite-derived lower-tropospheric atmospheric temperature dataset using an optimized adjustment for diurnal effects. J. Clim. 2017, 30, 7695–7718. [Google Scholar] [CrossRef]
- Pu, Z.; Kalnay, E. Numerical weather prediction basics: Models, numerical methods, and data assimilation. In Handbook of Hydrometeorological Ensemble Forecasting; Springer: Berlin/Heidelberg, Germany, 2019; pp. 67–97. [Google Scholar] [CrossRef]
- Zhu, S.; Wang, B.; Zhang, L.; Liu, J.; Liu, Y.; Gong, J.; Xu, S.; Wang, Y.; Huang, W.; Liu, L. A 4DEnVar-Based Ensemble Four-Dimensional Variational (En4DVar) Hybrid Data Assimilation System for Global NWP: System Description and Primary Tests. J. Adv. Model. Earth Syst. 2022, 14, e2022MS003023. [Google Scholar] [CrossRef]
- Gneiting, T.; Raftery, A.E. Weather forecasting with ensemble methods. Science 2005, 310, 248–249. [Google Scholar] [CrossRef]
- Divakarla, M.G.; Barnet, C.D.; Goldberg, M.D.; McMillin, L.M.; Maddy, E.; Wolf, W.; Zhou, L.; Liu, X. Validation of Atmospheric Infrared Sounder temperature and water vapor retrievals with matched radiosonde measurements and forecasts. J. Geophys. Res. Atmos. 2006, 111. [Google Scholar] [CrossRef]
- Wolf, K.; Bellouin, N.; Boucher, O. Long-term upper-troposphere climatology of potential contrail occurrence over the Paris area derived from radiosonde observations. Atmos. Chem. Phys. 2023, 23, 287–309. [Google Scholar] [CrossRef]
- Boukabara, S.-A.; Jones, E.; Geer, A.; Kazumori, M.; Garrett, K.; Maddy, E. Assimilation of precipitation observations from space into numerical weather prediction (NWP). Satell. Precip. Meas. 2020, 2, 941–982. [Google Scholar]
- Madonna, F.; Summa, D.; Di Girolamo, P.; Marra, F.; Wang, Y.; Rosoldi, M. Assessment of trends and uncertainties in the atmospheric boundary layer height estimated using radiosounding observations over Europe. Atmosphere 2021, 12, 301. [Google Scholar] [CrossRef]
- Chandra, S.; Dwivedi, A.K.; Kumar, M. Characterization of the atmospheric boundary layer from radiosonde observations along eastern end of monsoon trough of India. J. Earth Syst. Sci. 2014, 123, 1233–1240. [Google Scholar] [CrossRef]
- Korhonen, K.; Giannakaki, E.; Mielonen, T.; Pfüller, A.; Laakso, L.; Vakkari, V.; Baars, H.; Engelmann, R.; Beukes, J.; Van Zyl, P. Atmospheric boundary layer top height in South Africa: Measurements with lidar and radiosonde compared to three atmospheric models. Atmos. Chem. Phys. 2014, 14, 4263–4278. [Google Scholar] [CrossRef]
- Garratt, J.R. The atmospheric boundary layer. Earth-Sci. Rev. 1994, 37, 89–134. [Google Scholar] [CrossRef]
- Silva, E.; Tirabassi, T.; Vilhena, M.T.; Buske, D.; Quadros, R. Solution of the puff model for pollutant dispersion in the atmospheric boundary layer by the Giltt method. In Proceedings of the 22nd International Congress of Mechanical Engineering, Ribeirão Preto, Brazil, 3–7 November 2013; pp. 3–7. [Google Scholar]
- Romm, J.J. Climate Change: What Everyone Needs to Know; Oxford University Press: Oxford, UK, 2022. [Google Scholar]
- Pirani, A.; Fuglestvedt, J.S.; Byers, E.; O’Neill, B.; Riahi, K.; Lee, J.-Y.; Marotzke, J.; Rose, S.K.; Schaeffer, R.; Tebaldi, C. Scenarios in IPCC assessments: Lessons from AR6 and opportunities for AR7. NPJ Clim. Action 2024, 3, 1. [Google Scholar] [CrossRef]
- Immler, F.; Dykema, J.; Gardiner, T.; Whiteman, D.; Thorne, P.; Vömel, H. Reference quality upper-air measurements: Guidance for developing GRUAN data products. Atmos. Meas. Tech. 2010, 3, 1217–1231. [Google Scholar] [CrossRef]
- Lackner, B.C.; Steiner, A.K.; Hegerl, G.C.; Kirchengast, G. Atmospheric climate change detection by radio occultation data using a fingerprinting method. J. Clim. 2011, 24, 5275–5291. [Google Scholar] [CrossRef]
- Innerkofler, J.; Kirchengast, G.; Schwärz, M.; Marquardt, C.; Andres, Y. GNSS radio occultation excess-phase processing for climate applications including uncertainty estimation. Atmos. Meas. Tech. 2023, 16, 5217–5247. [Google Scholar] [CrossRef]
- Wang, Y.; Li, Y.; Wang, G.; Yuan, Y.; Geng, H. Influences of Sudden Stratospheric Warming Events on Tropopause Based on GNSS Radio Occultation Data. Atmosphere 2023, 14, 1553. [Google Scholar] [CrossRef]
- Jing, X.; Ho, S.-P.; Shao, X.; Liu, T.-C.; Chen, Y.; Zhou, X. Spire RO Thermal Profiles for Climate Studies: Initial Comparisons of the Measurements from Spire, NOAA-20 ATMS, Radiosonde, and COSMIC-2. Remote Sens. 2023, 15, 3710. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, J.; Huo, P.; Shi, C.; Liu, Z.; Yan, Y.; Yao, J.; Chang, A. A novel design of fast response Mn–Ni–Cu–Fe–O microbead thermistors for radiosonde. J. Mater. Sci. Mater. Electron. 2023, 34, 1737. [Google Scholar] [CrossRef]
- Ming, Z.; Li, X.; Teng, G.; Wu, C.; Huang, C.; Chang, Q. Research on retrieval algorithm of middle atmospheric temperature using Rayleigh lidar based on Kalman filter. In Proceedings of the AOPC 2022: Advanced Laser Technology and Applications, Online, 18–19 December 2022; pp. 55–60. [Google Scholar]
- Casas, M.C.; Schmidt, G.A.; Miller, R.L.; Orbe, C.; Tsigaridis, K.; Nazarenko, L.S.; Bauer, S.E.; Shindell, D.T. Understanding Model-Observation Discrepancies in Satellite Retrievals of Atmospheric Temperature Using GISS ModelE. J. Geophys. Res. Atmos. 2023, 128, e2022JD037523. [Google Scholar] [CrossRef]
- Gong, Y.; Liu, Z.; Chan, P.W.; Hon, K.K. Assimilating GNSS PWV and radiosonde meteorological profiles to improve the PWV and rainfall forecasting performance from the Weather Research and Forecasting (WRF) model over the South China. Atmos. Res. 2023, 286, 106677. [Google Scholar] [CrossRef]
- Ingleby, B.; Motl, M.; Marlton, G.; Edwards, D.; Sommer, M.; von Rohden, C.; Vömel, H.; Jauhiainen, H. On the quality of RS41 radiosonde descent data. Atmos. Meas. Tech. Discuss. 2022, 15, 165–183. [Google Scholar] [CrossRef]
- Madonna, F.; Tramutola, E.; Sy, S.; Serva, F.; Proto, M.; Rosoldi, M.; Gagliardi, S.; Amato, F.; Marra, F.; Fassò, A. Radiosounding HARMonization (RHARM): A new homogenized dataset of radiosounding temperature, humidity and wind profiles with uncertainty. Earth Syst. Sci. Data Discuss. 2020, 2020, 1–38. [Google Scholar]
- Ma, Y.; Liu, J.; Mamtimin, A.; Aihaiti, A.; Xu, L. Validation of FY-4A Temperature Profiles by Radiosonde Observations in Taklimakan Desert in China. Remote Sens. 2023, 15, 2925. [Google Scholar] [CrossRef]
- Zhang, L.; Ding, M.; Zheng, X.; Chen, J.; Guo, J.; Bian, L. Assessment of AIRS Version 7 Temperature Profiles and Low-Level Inversions with GRUAN Radiosonde Observations in the Arctic. Remote Sens. 2023, 15, 1270. [Google Scholar] [CrossRef]
- Fan, H.; Li, S.; Sun, Z.; Xiao, G.; Li, X.; Liu, X. Analysis of systematic biases in tropospheric hydrostatic delay models and construction of a correction model. Geosci. Model Dev. 2023, 16, 1345–1358. [Google Scholar] [CrossRef]
- Dirksen, R.J.; Bodeker, G.E.; Thorne, P.W.; Merlone, A.; Reale, T.; Wang, J.; Hurst, D.F.; Demoz, B.B.; Gardiner, T.D.; Ingleby, B. Managing the transition from Vaisala RS92 to RS41 radiosondes within the Global Climate Observing System Reference Upper-Air Network (GRUAN): A progress report. Geosci. Instrum. Methods Data Syst. 2020, 9, 337–355. [Google Scholar] [CrossRef]
- Voggenberger, U.; Haimberger, L.; Ambrogi, F.; Poli, P. Balloon drift estimation and improved position estimates for radiosondes. Geosci. Model Dev. Discuss. 2023, 2023, 1–29. [Google Scholar]
- Sato, K.; Inoue, J.; Yamazaki, A.; Hirasawa, N.; Sugiura, K.; Yamada, K. Antarctic radiosonde observations reduce uncertainties and errors in reanalyses and forecasts over the Southern Ocean: An extreme cyclone case. Adv. Atmos. Sci. 2020, 37, 431–440. [Google Scholar] [CrossRef]
- Chen, Z.; Zhou, Z.; Liu, Z.; Li, Q.; Zhang, X. Bias adjustment and analysis of Chinese daily historical radiosonde temperature data. J. Meteorol. Res. 2021, 35, 17–31. [Google Scholar] [CrossRef]
- von Rohden, C.; Sommer, M.; Naebert, T.; Motuz, V.; Dirksen, R.J. Laboratory characterisation of the radiation temperature error of radiosondes and its application to the GRUAN data processing for the Vaisala RS41. Atmos. Meas. Tech. Discuss. 2022, 15, 383–405. [Google Scholar] [CrossRef]
- Qiao, Y. A new method for producing temperature profiles based on ERA5 and RAOB. In Proceedings of the 2023 7th International Conference on Machine Vision and Information Technology (CMVIT), Xiamen, China, 24–26 March 2023; pp. 35–39. [Google Scholar]
- Fassò, A.; Keernik, H.; Rannat, K. On the Kalman Smoother Interpolation Error Distribution in Collocation Comparison of Atmospheric Profiles. Axioms 2023, 12, 902. [Google Scholar] [CrossRef]
- Summa, D.; Vivone, G.; Franco, N.; D’Amico, G.; De Rosa, B.; Di Girolamo, P. Atmospheric Boundary Layer Height: Inter-Comparison of Different Estimation Approaches Using the Raman Lidar as Benchmark. Remote Sens. 2023, 15, 1381. [Google Scholar] [CrossRef]
- Renju, R.; Raju, C.S.; Swathi, R.; Milan, V. Retrieval of atmospheric temperature and humidity profiles over a tropical coastal station from ground-based Microwave Radiometer using deep learning technique. J. Atmos. Sol.-Terr. Phys. 2023, 249, 106094. [Google Scholar] [CrossRef]
- Haynes, K.; Stock, J.; Dostalek, J.; Anderson, C.; Ebert-Uphoff, I. Exploring the Use of Machine Learning to Improve Vertical Profiles of Temperature and Moisture. Artif. Intell. Earth Syst. 2024, 3, e220090. [Google Scholar] [CrossRef]
- Xun Yang, J.; You, Y.; Blackwell, W.; Da, C.; Kalnay, E.; Grassotti, C.; Liu, Q.M.; Ferraro, R.; Meng, H.; Zou, C.-Z. A Community Error Inventory for Satellite Microwave Observation Error Representation and Uncertainty Quantification. Bull. Am. Meteorol. Soc. 2024, 105, E1–E20. [Google Scholar] [CrossRef]
- Chen, J.; Dai, A. The atmosphere has become increasingly unstable during 1979–2020 over the Northern Hemisphere. Geophys. Res. Lett. 2023, 50, e2023GL106125. [Google Scholar] [CrossRef]
- Tegtmeier, S.; Anstey, J.; Davis, S.; Dragani, R.; Harada, Y.; Ivanciu, I.; Pilch Kedzierski, R.; Krüger, K.; Legras, B.; Long, C. Temperature and tropopause characteristics from reanalyses data in the tropical tropopause layer. Atmos. Chem. Phys. 2020, 20, 753–770. [Google Scholar] [CrossRef]
- Bell, B.; Hersbach, H.; Simmons, A.; Berrisford, P.; Dahlgren, P.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Radu, R.; Schepers, D. The ERA5 global reanalysis: Preliminary extension to 1950. Q. J. R. Meteorol. Soc. 2021, 147, 4186–4227. [Google Scholar] [CrossRef]
- García-Comas, M.; Funke, B.; López-Puertas, M.; Glatthor, N.; Grabowski, U.; Kellmann, S.; Kiefer, M.; Linden, A.; Martínez-Mondéjar, B.; Stiller, G.P. Version 8 IMK–IAA MIPAS temperatures from 12–15 µm spectra: Middle and Upper Atmosphere modes. Atmos. Meas. Tech. 2023, 16, 5357–5386. [Google Scholar] [CrossRef]
- Ladstädter, F.; Steiner, A.K.; Gleisner, H. Resolving the 21st century temperature trends of the upper troposphere–lower stratosphere with satellite observations. Sci. Rep. 2023, 13, 1306. [Google Scholar] [CrossRef]
- Tradowsky, J.S. Enhancing the Upper-Air Observational Temperature Record to Improve Satellite Validation and Weather Forecasts. Doctoral Thesis, Freie Universität Berlin, Berlin, Germany, 2018. [Google Scholar]
- Nielsen, J.K.; Gleisner, H.; Syndergaard, S.; Lauritsen, K.B. Estimation of refractivity uncertainties and vertical error correlations in collocated radio occultations, radiosondes, and model forecasts. Atmos. Meas. Tech. 2022, 15, 6243–6256. [Google Scholar] [CrossRef]
- Gopikrishnan, G.; Kuttippurath, J.; Thapliyal, P.; Shukla, M. Validation of INSAT-3D and INSAT-3DR Temperature Profile Retrievals Using Ground-Based, Satellite, and Reanalysis Data. J. Geophys. Res. Atmos. 2023, 128, e2023JD038912. [Google Scholar] [CrossRef]
- Jiang, C.; Gao, X.; Wang, S.; An, Q.; Zhu, M. Comparison of pressure, temperature and specific humidity from COSMIC-2 with radiosonde and ERA5. J. Spat. Sci. 2023, 1–19. [Google Scholar] [CrossRef]
- Zhao, H.; Ma, X.; Jia, G.; Mi, Z.; Ji, H. Synergistic Retrieval of Temperature and Humidity Profiles from Space-Based and Ground-Based Infrared Sounders Using an Optimal Estimation Method. Remote Sens. 2022, 14, 5256. [Google Scholar] [CrossRef]
- Beckert, A.A.; Eisenstein, L.; Oertel, A.; Hewson, T.; Craig, G.C.; Rautenhaus, M. The three-dimensional structure of fronts in mid-latitude weather systems as represented by numerical weather prediction models. Geosci. Model Dev. Discuss. 2023, 1–40. [Google Scholar] [CrossRef]
- Angel, A.C.; Manoj, M. A novel method of estimating atmospheric boundary layer height using a 205 MHz VHF radar. Sci. Total Environ. 2024, 907, 168109. [Google Scholar] [CrossRef]
- Xia, P.; Shan, Y.; Ye, S.; Xia, J. A New Technology to Detect the Tropopause, Solving Some Radiosonde Data’s Insufficient Detection Height Problem. In IEEE Transactions on Geoscience and Remote Sensing; IEEE: Piscataway, NJ, USA, 2023. [Google Scholar]
- Troglia Gamba, M.; Polidori, B.D.; Minetto, A.; Dovis, F.; Banfi, E.; Dominici, F. GNSS Radio Frequency Interference Monitoring from LEO Satellites: An In-Laboratory Prototype. Sensors 2024, 24, 508. [Google Scholar] [CrossRef]
- Pereira, S.; Canhoto, P.; Salgado, R. Development and assessment of artificial neural network models for direct normal solar irradiance forecasting using operational numerical weather prediction data. Energy AI 2024, 15, 100314. [Google Scholar] [CrossRef]
- Berndt, E.; Smith, N.; Barnet, C. Integrating NASA Aqua AIRS in a Real-Time NUCAPS Science-To-Applications System to Support Severe Weather Forecasting. Earth Space Sci. 2023, 10, e2022EA002725. [Google Scholar] [CrossRef]
- Yang, S.C.; Chen, S.H.; Chang, C.C. Understanding the impact of assimilating FORMOSAT-7/COSMIC-2 radio occultation refractivity on tropical cyclone genesis: Observing system simulation experiments using Hurricane Gordon (2006) as a case study. Q. J. R. Meteorol. Soc. 2023, 149, 1293–1318. [Google Scholar] [CrossRef]
- Beucler, T.; Gentine, P.; Yuval, J.; Gupta, A.; Peng, L.; Lin, J.; Yu, S.; Rasp, S.; Ahmed, F.; O’Gorman, P.A. Climate-invariant machine learning. Sci. Adv. 2024, 10, eadj7250. [Google Scholar] [CrossRef]
- Bärfuss, K.B.; Schmithüsen, H.; Lampert, A. Drone-based meteorological observations up to the tropopause—A concept study. Atmos. Meas. Tech. 2023, 16, 3739–3765. [Google Scholar] [CrossRef]
- Donnelly, J.; Daneshkhah, A.; Abolfathi, S. Forecasting global climate drivers using Gaussian processes and convolutional autoencoders. Eng. Appl. Artif. Intell. 2024, 128, 107536. [Google Scholar] [CrossRef]
- McGovern, A.; Tissot, P.; Bostrom, A. Developing trustworthy AI for weather and climate. Phys. Today 2024, 77, 26–31. [Google Scholar] [CrossRef]
Platform | Sensor Type | Launching Site | Variables | Accuracy | Reference |
---|---|---|---|---|---|
Balloon-born radiosonde | Vaisala RS92 and RS41, and Meteomodem | Global | Temperature and relative humidity | The systematic differences in the temperature profile for both Meteomodem and Vaisala were less than ±0.2 K up to 10 hPa; RH profile differences were less than 1% RH for the Sodankylä Vaisala dataset up to 300 hPa. | [27] |
Drone (LUCA) | HMP110 (Vaisala) | Baltic Sea, Germany | Temperature, humidity, and pressure | The uncertainty of the pressure was 0.6 hPa, temperature was 1 k, and humidity yielded 5%. | [65] |
Aircraft AVAPS Dropsonde | RD41 and NRD41 | Tropical East Pacific and Caribbean | Temperature, pressure, and relative humidity | The pressure was achieved with the uncertainty of 0.4 hPa, temperature with 0.2 K, and relative humidity with a bias of 2%. | [69] |
Near-space sounding rocket | n/a | China | Temperature | The precision of the temperature measurements ranged between 1.58 k below 50 km and 3.08 k between 50 and 60 km | [70] |
Balloon-born radiosonde | Various sensors accessed via NPROVS collocations | Global | Temperature | The global average biases in the 15–70 hPa layer were 0.05–1.89 K standard deviation (~52,000 profiles) at night and 0.39–1.80 K standard deviation (~64,500 profiles) in the daytime (SEA > 7.5). | [71] |
Balloon-born radiosonde | Various sensors through the DACCIWA campaign | West Africa | Temperature | The temperature biases range from 0.5 K to 1 K through the troposphere. | [72] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mashao, F.M.; Demoz, B.; Kifle, Y.; Klopper, D.; Chikoore, H.; Sakai, R.K.; Ayisi, K.K. An Appraisal of the Progress in Utilizing Radiosondes and Satellites for Monitoring Upper Air Temperature Profiles. Atmosphere 2024, 15, 387. https://doi.org/10.3390/atmos15030387
Mashao FM, Demoz B, Kifle Y, Klopper D, Chikoore H, Sakai RK, Ayisi KK. An Appraisal of the Progress in Utilizing Radiosondes and Satellites for Monitoring Upper Air Temperature Profiles. Atmosphere. 2024; 15(3):387. https://doi.org/10.3390/atmos15030387
Chicago/Turabian StyleMashao, Frederick M., Belay Demoz, Yehenew Kifle, Danitza Klopper, Hector Chikoore, Ricardo K. Sakai, and Kingsley K. Ayisi. 2024. "An Appraisal of the Progress in Utilizing Radiosondes and Satellites for Monitoring Upper Air Temperature Profiles" Atmosphere 15, no. 3: 387. https://doi.org/10.3390/atmos15030387
APA StyleMashao, F. M., Demoz, B., Kifle, Y., Klopper, D., Chikoore, H., Sakai, R. K., & Ayisi, K. K. (2024). An Appraisal of the Progress in Utilizing Radiosondes and Satellites for Monitoring Upper Air Temperature Profiles. Atmosphere, 15(3), 387. https://doi.org/10.3390/atmos15030387