Investigation of Temperature, Precipitation, Evapotranspiration, and New Thornthwaite Climate Classification in Thailand
Abstract
:1. Introduction
2. Study Boundary
3. Data and Meteorology
3.1. Trend and Characteristics of Monthly Air Temperature, Monthly Precipitation, and Evapotranspiration (PET) in Thailand
3.1.1. Data Variability
3.1.2. Mean of the Data Calculation in Time Series
3.1.3. Homogeneity Test of Data and Abrupt Change Analysis
3.1.4. Trend Analysis
3.2. The New Thornthwaite Climate Classification
3.3. Spatial Distribution Analysis
4. Results and Discussions
4.1. Temperature during 1987 to 2021
4.2. Precipitation during 1987 to 2021
4.3. Potential Evapotranspiration (PET) during 1987–2021
4.4. The New Thornthwaite Climate Classification
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Prisecaru, P. Challenges of the fourth industrial revolution. Knowl. Horiz. Econ. 2016, 8, 57. [Google Scholar]
- Xu, M.; David, J.M.; Kim, S.H. The fourth industrial revolution: Opportunities and challenges. Int. J. Financ. Res. 2018, 9, 90–95. [Google Scholar] [CrossRef]
- IPCC. 2014: Summary for Policymakers. In Climate Change 2014: Mitigation of Climate Change; Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Edenhofer, O., Pichs-Madruga, R., Sokona, Y., Farahani, E., Kadner, S., Seyboth, K., Adler, A., Baum, I., Brunner, S., Eickemeier, P., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013. [Google Scholar]
- The Warming Effects of the Industrial Revolution-Global Temperatures. Available online: https://www.climate-policy-watcher.org/global-temperatures/the-warming-effects-of-the-industrial-revolution.html (accessed on 6 October 2023).
- Wunsch, C.; Schmitt, R.W.; Baker, D.J. Climate change as an intergenerational problem. Proc. Natl. Acad. Sci. USA 2013, 110, 4435–4436. [Google Scholar] [CrossRef]
- Neukom, R.; Steiger, N.; Gómez-Navarro, J.J.; Wang, J.; Werner, J.P. No evidence for globally coherent warm and cold periods over the preindustrial Common Era. Nature 2019, 571, 550–554. [Google Scholar] [CrossRef]
- Fleming, R.J. An updated review about carbon dioxide and climate change. Environ. Earth Sci. 2018, 77, 262. [Google Scholar] [CrossRef]
- Cox, E.; Spence, E.; Pidgeon, N. Public perceptions of carbon dioxide removal in the United States and the United Kingdom. Nat. Clim. Chang. 2020, 10, 744–749. [Google Scholar] [CrossRef]
- Mehmood, I.; Bari, A.; Irshad, S.; Khalid, F.; Liaqat, S.; Anjum, H.; Fahad, S. Carbon cycle in response to global warming. In Environment, Climate, Plant and Vegetation Growth; Fahad, S., Hasanuzzaman, M., Alam, M., Ullah, H., Saeed, M., Ali Khan, I., Adnan, M., Eds.; Springer: Cham, Switzerland, 2020; pp. 1–15. [Google Scholar] [CrossRef]
- Voumik, L.C.; Ridwan, M.; Rahman, M.H.; Raihan, A. An investigation into the primary causes of carbon dioxide releases in Kenya: Does renewable energy matter to reduce carbon emission? Renew. Energy Focus 2023, 47, 100491. [Google Scholar] [CrossRef]
- Geng, Q.; Wu, P.; Zhao, X.; Wang, Y. Comparison of classification methods for the divisions of wet/dry climate regions in Northwest China. Int. J. Climatol. 2014, 34, 2163–2174. [Google Scholar] [CrossRef]
- Aparecido, L.E.D.O.; Rolim, G.D.S.; Richetti, J.; Souza, P.S.D.; Johann, J.A. Köppen, Thornthwaite and Camargo climate classifications for climatic zoning in the State of Paraná, Brazil. Ciência Agrotecnologia 2016, 40, 405–417. [Google Scholar] [CrossRef]
- Jylhä, K.; Tuomenvirta, H.; Ruosteenoja, K.; Niemi-Hugaerts, H.; Keisu, K.; Karhu, J.A. Observed and projected future shifts of climatic zones in Europe and their use to visualize climate change information. Weather Clim. Soc. 2010, 2, 148–167. [Google Scholar] [CrossRef]
- Walsh, J.; Wuebbles, D.; Hayhoe, K.; Kossin, J.; Kunkel, K.; Stephens, G.; Thorne, P.; Vose, R.; Wehner, M.; Willis, J.; et al. Appendix 3: Climate science supplement. In Climate Change Impacts in the United States: The Third National Climate Assessment; U.S. Global Change Research Program: Washington, DC, USA, 2014; pp. 735–789. [Google Scholar]
- Inthacha, S. The Climatology of Thailand and Future Climate Change Projections USING the Regional Climate Model PRECIS. PhD Thesis, University of East Anglia, Norwich, UK, 2011. [Google Scholar]
- Phumkokrux, N.; Rukveratham, S. Investigation of mean monthly maximum temperature of Thailand using mapping analysis method: A case study of summer 1987 to 2019. E3S Web Conf. 2020, 158, 01001. [Google Scholar] [CrossRef]
- Phumkokrux, N. Trend analysis and prediction of temperature change in the continental, Thailand. Bull. Serbian Geogr. Soc. 2023, 103, 65–86. [Google Scholar] [CrossRef]
- Kornkosa, S.; Phumkokrux, N.; Pattanasak, P.; Manajitprasert, S. Analysis and Prediction of Meteorological Drought Area by Using Standardized Precipitation Index in Northeast, Thailand. Int. J. Environ. Sci. Dev. 2021, 12, 372–376. [Google Scholar] [CrossRef]
- Köppen, W. Versuch einer Klassifikation der Klimate, vorzugsweise nach ihren Beziehungen zur Pflanzenwelt. Geogr. Z. 1900, 6, 593–611. [Google Scholar]
- Geiger, R.; Pohl, W. Eine neue Wandkarte der Klimagebiete der Erde nach W. Köppens Klassifikation (A New Wall Map of the Climatic Regions of the World According to W. Köppen’s Classification). Erdkunde 1954, 8, 58–61. [Google Scholar]
- Phumkokrux, N. Köppen-Geiger Climate System Classification and Forecasting in Thailand. Folia Geogr. 2021, 63, 108–134. [Google Scholar]
- Thornthwaite, C.W. Problems in the classification of climates. Geogr. Rev. 1943, 33, 233–255. [Google Scholar] [CrossRef]
- Thornthwaite, C.W. An approach toward a rational classification of climate. Geogr. Rev. 1948, 38, 55–94. [Google Scholar] [CrossRef]
- Gharsallah, O.; Facchi, A.; Gandolfi, C. Comparison of six evapotranspiration models for a surface irrigated maize agro-ecosystem in Northern Italy. Agric. Water Manag. 2013, 130, 119–130. [Google Scholar] [CrossRef]
- Ghiat, I.; Mackey, H.R.; Al-Ansari, T. A review of evapotranspiration measurement models, techniques and methods for open and closed agricultural field applications. Water 2021, 13, 2523. [Google Scholar] [CrossRef]
- Tegos, A.; Stefanidis, S.; Cody, J.; Koutsoyiannis, D. On the Sensitivity of Standardized-Precipitation-Evapotranspiration and Aridity Indexes Using Alternative Potential Evapotranspiration Models. Hydrology 2023, 10, 64. [Google Scholar] [CrossRef]
- Aschonitis, V.; Touloumidis, D.; ten Veldhuis, M.C.; Coenders-Gerrits, M. Correcting Thornthwaite potential evapotranspiration using a global grid of local coefficients to support temperature-based estimations of reference evapotranspiration and aridity indices. Earth Syst. Sci. Data 2022, 14, 163–177. [Google Scholar] [CrossRef]
- Carter, D.B.; Mather, J.R. Climatic Classification for Environmental Biology; CW Thornthwaite Associates, Laboratory of Climatology: Elmer, NJ, USA, 1966. [Google Scholar]
- Thornthwaite, C.W. The water balance. Public Clim. 1955, 8, 1–104. [Google Scholar]
- Sriwongsitanon, N.; Suwawong, T.; Thianpopirug, S.; Williams, J.; Jia, L.; Bastiaanssen, W. Validation of seven global remotely sensed ET products across Thailand using water balance measurements and land use classifications. J. Hydrol. Reg. Stud. 2020, 30, 100709. [Google Scholar] [CrossRef]
- Pomoim, N.; Hughes, A.C.; Trisurat, Y.; Corlett, R.T. Vulnerability to climate change of species in protected areas in Thailand. Sci. Rep. 2022, 12, 5705. [Google Scholar] [CrossRef] [PubMed]
- TMD Knowledge. Available online: https://tmd-dev.azurewebsites.net/ (accessed on 6 October 2023).
- Bran, S.H.; Macatangay, R.; Surapipith, V.; Chotamonsak, C.; Chantara, S.; Han, Z.; Li, J. Surface PM2.5 mass concentrations during the dry season over northern Thailand: Sensitivity to model aerosol chemical schemes and the effects on regional meteorology. Atmos. Res. 2022, 277, 106303. [Google Scholar] [CrossRef]
- Jalilibal, Z.; Amiri, A.; Castagliola, P.; Khoo, M.B. Monitoring the coefficient of variation: A literature review. Comput. Ind. Eng. 2021, 161, 107600. [Google Scholar] [CrossRef]
- Al-Mutairi, M.; Labban, A.; Abdeldym, A.; Abdel Basset, H. Trend Analysis and Fluctuations of Winter Temperature over Saudi Arabia. Climate 2023, 11, 67. [Google Scholar] [CrossRef]
- PimenteL-Gomes, F. Curso de Estatística Experimental, 15th ed.; FEALQ: Piracicaba, Brazil, 2015; p. 451. [Google Scholar]
- Ferreira, J.P.; Schmildt, E.R.; Schmildt, O.; Cattaneo, L.F.; Alexandre, R.S.; Cruz, C.D. Comparison of methods for classification of the coefficient of variation in papaya. Rev. Ceres 2016, 63, 138–144. [Google Scholar] [CrossRef]
- Conquest, L.L. Assessing the statistical effectiveness of ecological experiments: Utility of the coefficient of variation. Int. J. Environ. Stud. 1983, 20, 209–221. [Google Scholar] [CrossRef]
- Al-Kallas, S.; Al-Mutairi, M.; Abdel Basset, H.; Abdeldym, A.; Morsy, M.; Badawy, A. Climatological Study of Ozone over Saudi Arabia. Atmosphere 2021, 12, 1275. [Google Scholar] [CrossRef]
- Kamel, A.M.; Abdel Basset, H.; Sayad, T. Rainfall analysis and variability over Egypt. Al-Azhar Bull. Sci. 2017, 28, 41–62. [Google Scholar]
- Pavia, E.G.; Graef, F. The recent rainfall climatology of the Mediterranean Californias. J. Clim. 2002, 15, 2697–2701. [Google Scholar] [CrossRef]
- Pettitt, A.N. A non-parametric approach to the change-point problem. J. R. Stat. Soc. Ser. C 1979, 28, 126–135. [Google Scholar] [CrossRef]
- Das, S.; Banerjee, S. Investigation of changes in seasonal streamflow and sediment load in the Subarnarekha-Burhabalang basins using Mann-Kendall and Pettitt tests. Arab. J. Geosci. 2021, 14, 946. [Google Scholar] [CrossRef]
- Mallakpour, I.; Villarini, G. A simulation study to examine the sensitivity of the Pettitt test to detect abrupt changes in mean. Hydrol. Sci. J. 2016, 61, 245–254. [Google Scholar] [CrossRef]
- Sa’adi, Z.; Shahid, S.; Ismail, T.; Chung, E.S.; Wang, X.J. Trends analysis of rainfall and rainfall extremes in Sarawak, Malaysia using modified Mann–Kendall test. Meteorol. Atmos. Phys. 2019, 131, 263–277. [Google Scholar] [CrossRef]
- Agbo, E.P.; Ekpo, C.M. Trend analysis of the variations of ambient temperature using Mann-Kendall test and Sen’s estimate in Calabar, southern Nigeria. J. Phys. Conf. Ser. 2021, 1734, 012016. [Google Scholar] [CrossRef]
- Garba, H.; Udokpoh, U.U. Analysis of trend in meteorological and hydrological time-series using Mann-Kendall and Sen’s slope estimator statistical test in Akwa Ibom state, Nigeria. Int. J. Environ. Clim. Change 2023, 13, 1017–1035. [Google Scholar] [CrossRef]
- Gowthaman, T.; Kumar, S.; Bhattacharyya, B. Detecting air pollutants trends using Mann-Kendall tests and Sen’s slope estimates. Environ. Conserv. J. 2023, 24, 157–166. [Google Scholar]
- World Meteorological Organization. Guide to Climatological Practices, 2nd ed.; WMO: Geneva, Switzerland, 2018. [Google Scholar]
- Aditya, F.; Gusmayanti, E.; Sudrajat, J. Rainfall trend analysis using Mann-Kendall and Sen’s slope estimator test in West Kalimantan. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2021; p. 012006. [Google Scholar]
- Willmott, C.J.; Feddema, J.J. A more rational climatic moisture index. Prof. Geogr. 1992, 44, 84–88. [Google Scholar] [CrossRef]
- Al-Sudani, H.I.Z. Temperature–potential evapotranspiration relationship in Iraq using Thornthwaite method. J. Univ. Babylon Eng. Sci. 2019, 27, 16–25. [Google Scholar] [CrossRef]
- Feddema, J.J. A revised Thornthwaite-type global climate classification. Phys. Geogr. 2005, 26, 442–466. [Google Scholar] [CrossRef]
- Thailand-Subnational Administrative Boundaries. Available online: https://data.humdata.org/dataset/cod-ab-tha? (accessed on 16 October 2020).
- Climatological Data for the Period 1981–2010. Available online: http://climate.tmd.go.th/content/file/75 (accessed on 6 October 2023).
- Pakarnseree, R.; Chunkao, K.; Bualert, S. Physical characteristics of Bangkok and its urban heat island phenomenon. Build. Environ. 2018, 143, 561–569. [Google Scholar] [CrossRef]
- Khamchiangta, D.; Dhakal, S. Physical and non-physical factors driving urban heat island: Case of Bangkok Metropolitan Administration, Thailand. J. Environ. Manag. 2019, 248, 109285. [Google Scholar] [CrossRef] [PubMed]
- Jansri, S.; Ketpichainarong, W. Investigating In-Service Science Teachers Conceptions of Astronomy, and Determine the Obstacles in Teaching Astronomy in Thailand. Int. J. Educ. Methodol. 2020, 6, 745–758. [Google Scholar] [CrossRef]
- Srivanit, M.; Jareemit, D. Modeling the influences of layouts of residential townhouses and tree-planting patterns on outdoor thermal comfort in Bangkok suburb. J. Build. Eng. 2020, 30, 101262. [Google Scholar] [CrossRef]
- History & Geography & Geology. Available online: https://www.tourismthailand.org/Articles/plan-your-trip-history-and-geography-geology (accessed on 6 October 2023).
- Yuan, S.; Ren, Z.; Shan, X.; Deng, Q.; Zhou, Z. Seasonal different effects of land cover on urban heat island in Wuhan’s metropolitan area. Urban Clim. 2023, 49, 101547. [Google Scholar] [CrossRef]
- Trewartha, G.T. An Introduction to Weather and Climate, 4th ed.; McGraw-Hill: New York, NY, USA, 1968; pp. 27–28. [Google Scholar]
- Weather Summary (Yearly). Available online: http://climate.tmd.go.th/content/category/17?lang=en (accessed on 6 October 2023).
- ENSO. Available online: http://climate.tmd.go.th/content/category/23?lang=en (accessed on 6 October 2023).
- Voladet, S.; Chaleusinh, C. Climate change and water scarcity in Champhone district, Savannakhet province, Lao PDR. In Developmemt and Climate Change in the Mekong Region; Strategic Information and Research Development Centre: Petaling Jaya, Malaysia, 2019; pp. 189–214. [Google Scholar]
- Sein, K.K.; Chidthaisong, A.; Oo, K.L. Observed Trends and Changes in Temperature and Precipitation Extreme Indices over Myanmar. Atmosphere 2018, 9, 477. [Google Scholar] [CrossRef]
- Mie Sein, Z.M.; Ullah, I.; Syed, S.; Zhi, X.; Azam, K.; Rasool, G. Interannual Variability of Air Temperature over Myanmar: The Influence of ENSO and IOD. Climate 2021, 9, 35. [Google Scholar] [CrossRef]
- Thoeun, H.C. Observed and projected changes in temperature and rainfall in Cambodia. Weather Clim. Extrem. 2015, 7, 61–71. [Google Scholar] [CrossRef]
- Trakolkul, C.; Satirapod, C. Analysis of PWV derived from the GNSS CORS stations for determining the onset of the southwest monsoon in Thailand. Int. J. Geoinform. 2020, 16, 71–78. [Google Scholar]
- Limsakul, A.; Singhruck, P.; Wang, L. Climatology and Spatio-Temporal Variability of Wintertime Total and Extreme Rainfall in Thailand during 1970–2012. Environ. Asia 2017, 10, 162–176. [Google Scholar]
- Yang, K.; Han, G. Controls over hydrogen and oxygen isotopes of surface water and groundwater in the Mun River catchment, northeast Thailand: Implications for the water cycle. Hydrogeol. J. 2020, 28, 1021–1036. [Google Scholar] [CrossRef]
- Pinidluek, P.; Konyai, S.; Sriboonlue, V. Regionalization of rainfall in Northeastern Thailand. Geomate J. 2020, 18, 135–141. [Google Scholar] [CrossRef]
- Mahavik, N.; Tantanee, S.; Masthawee, F. Investigation of ZR relationships during tropical storm in GIS using implemented mosaicking algorithms of radar rainfall estimates from ground-based weather radar in the Yom River basin, Thailand. Appl. Geomat. 2021, 13, 645–657. [Google Scholar] [CrossRef]
- Inter-Tropical Convergence Zone. Available online: https://www.noaa.gov/jetstream/tropical/convergence-zone (accessed on 16 October 2020).
- Dandridge, C.; Lakshmi, V.; Bolten, J.; Srinivasan, R. Evaluation of Satellite-Based Rainfall Estimates in the Lower Mekong River Basin (Southeast Asia). Remote Sens 2019, 11, 2709. [Google Scholar] [CrossRef]
- Duan, X.; Gu, Z.; Li, Y.; Xu, H. The spatiotemporal patterns of rainfall erosivity in Yunnan Province, southwest China: An analysis of empirical orthogonal functions. Glob. Planet. Chang. 2016, 144, 82–93. [Google Scholar] [CrossRef]
- Amatayakul, P. Estimating the Monthly Effective Rainfall Using Dependable Rainfall at 80% in Thailand; Thai Meteorological Department: Bangkok, Thailand, 2006; p. 54. [Google Scholar]
- Chiu, C.T.; Wang, K.; Paschalis, A.; Erfani, T.; Peleg, N.; Fatichi, S.; Theeuwes, N.; Manoli, G. An analytical approximation of urban heat and dry islands and their impact on convection triggering. Urban Clim. 2022, 46, 101346. [Google Scholar] [CrossRef]
- Hu, S.; Mo, X. Attribution of Long-Term Evapotranspiration Trends in the Mekong River Basin with a Remote Sensing-Based Process Model. Remote Sens 2021, 13, 303. [Google Scholar] [CrossRef]
- Elguindi, N.; Grundstein, A.; Bernardes, S.; Turuncoglu, U.; Feddema, J. Assessment of CMIP5 global model simulations and climate change projections for the 21st century using a modified Thornthwaite climate classification. Clim. Change 2014, 122, 523–538. [Google Scholar] [CrossRef]
- Puttanapong, N.; Luenam, A.; Jongwattanakul, P. Spatial Analysis of Inequality in Thailand: Applications of Satellite Data and Spatial Statistics/Econometrics. Sustainability 2022, 14, 3946. [Google Scholar] [CrossRef]
- Huang, X.; Stevenson, S.; Hall, A.D. Future warming and intensification of precipitation extremes: A “double whammy” leading to increasing flood risk in California. Geophys. Res. Lett. 2020, 47, e2020GL088679. [Google Scholar] [CrossRef]
- Oakley, N.S.; Cannon, F.; Munroe, R.; Lancaster, J.T.; Gomberg, D.; Ralph, F.M. Brief communication: Meteorological and climato-logical conditions associated with the 9 January 2018 post-fire debris flows in Montecito and Carpinteria, California, USA. Nat. Hazards Earth Syst. Sci. 2018, 18, 3037–3043. [Google Scholar] [CrossRef]
- White, A.B.; Moore, B.J.; Gottas, D.J.; Neiman, P.J. Winter storm conditions leading to excessive runoff above California’s Oroville Dam during January and February 2017. Bull. Am. Meteorol. Soc. 2019, 100, 55–70. [Google Scholar] [CrossRef]
- Huang, X.; Stevenson, S. Contributions of climate change and ENSO variability to future precipitation extremes over California. Geophys. Res. Lett. 2023, 50, e2023GL103322. [Google Scholar] [CrossRef]
Met. Reg. | No. of Provinces | No. of Met. Stations |
---|---|---|
Northern Reg. | 15 | 24 |
Northeastern Reg. | 20 | 25 |
Central Reg. | 18 | 16 |
Eastern Reg. | 8 | 13 |
Southern Reg. | 16 | 26 |
Overall, of Thailand | 77 | 104 |
Lat./Month | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec |
---|---|---|---|---|---|---|---|---|---|---|---|---|
60° N | 0.54 | 0.67 | 0.97 | 1.19 | 1.33 | 1.56 | 1.55 | 1.33 | 1.07 | 0.84 | 0.58 | 0.48 |
50° N | 0.71 | 0.84 | 0.98 | 1.14 | 1.28 | 1.36 | 1.33 | 1.21 | 1.06 | 0.90 | 0.76 | 0.68 |
40° N | 0.80 | 0.89 | 0.99 | 1.10 | 1.20 | 1.25 | 1.23 | 1.15 | 1.04 | 0.93 | 0.83 | 0.78 |
30° N | 0.87 | 0.93 | 1 | 1.70 | 1.14 | 1.17 | 1.16 | 1.11 | 1.03 | 0.96 | 0.89 | 0.85 |
20° N | 0.92 | 0.96 | 1 | 1.05 | 1.09 | 1.11 | 1.10 | 1.07 | 1.02 | 0.98 | 0.93 | 0.91 |
10° N | 0.97 | 0.98 | 1 | 1.03 | 1.05 | 1.06 | 1.05 | 1.04 | 1.02 | 0.99 | 0.97 | 0.96 |
00° | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
10° S | 1.05 | 1.04 | 1.02 | 0.99 | 0.97 | 0.96 | 0.97 | 0.98 | 1 | 1.03 | 1.05 | 1.06 |
20° S | 1.10 | 1.07 | 1.02 | 0.98 | 0.93 | 0.91 | 0.92 | 0.96 | 1 | 1.05 | 1.09 | 1.11 |
30° S | 1.16 | 1.11 | 1.03 | 0.94 | 0.89 | 0.85 | 0.87 | 0.96 | 1 | 1.07 | 1.14 | 1.17 |
40° S | 1.23 | 1.15 | 1.04 | 0.93 | 0.83 | 0.78 | 0.80 | 0.98 | 0.99 | 1.10 | 1.20 | 1.25 |
50° S | 1.33 | 1.19 | 1.05 | 0.98 | 0.75 | 0.68 | 0.70 | 0.82 | 1.97 | 1.13 | 1.27 | 1.36 |
Moisture Type | Moisture Index (TMI) |
---|---|
Saturated | 0.66 to 1.00 |
Wet | 0.33 to 0.66 |
Moist | 0.00 to 0.33 |
Dry | −0.33 to 0.00 |
Semi-Arid | −0.66 to −0.33 |
Arid | −1.00 to −0.66 |
Thermal Index | Annual PET (mm) |
---|---|
Torrid | >1500.0 |
Hot | 1200.0 to 1500.0 |
Warm | 900.0 to 1200.0 |
Cool | 600.0 to 900.0 |
Cold | 300.0 to 600.0 |
Frigid | 0.0 to 300.0 |
Climate Variability | Annual TMI Range |
---|---|
Low | 0.0 to 0.5 |
Medium | 0.5 to 1.0 |
High | 1.0 to 1.5 |
Extreme | 1.5 to 2.0 |
Cause | Annual Pr Range/Annual PET |
---|---|
Precipitation | <0.5 |
Combination | 0.5 to 2.0 |
Temperature | >2.0 |
Season | Min. (°C) | Max. (°C) | CMS. (°C) | S.D. | Kendall’s tau | p-Value | Sen’s Slope (°C/year) | CV (%) | Pettitt | Changing Period |
---|---|---|---|---|---|---|---|---|---|---|
Summer | 27.16 | 29.3 | 28.2 | 0.510 | 0.230 | 0.053 | 0.014 | 1.81 | 0.173 | - |
Rainy | 27.51 | 28.4 | 27.9 | 0.246 | 0.425 | 0.000 ** | 0.016 | 0.88 | 0.006 ** | 2013 |
Winter | 24.91 | 26.6 | 25.6 | 0.432 | 0.442 | 0.000 ** | 0.025 | 1.69 | 0.017 * | 1996 |
Annual | 26.70 | 28.0 | 27.2 | 0.330 | 0.469 | <0.0001 ** | 0.017 | 1.21 | 0.002 ** | 2011 |
Season | Min. (mm) | Max. (mm) | CMS. (mm) | S.D. | Kendall’s tau | p-Value | Sen’s Slope (mm/Year) | CV (%) | Pettitt | Changing Period |
---|---|---|---|---|---|---|---|---|---|---|
Summer | 166.4 | 559.2 | 349.1 | 98.4 | −0.012 | 0.932 | −0.116 | 28.19 | 0.919 | - |
Rainy | 741.2 | 1034.0 | 871.1 | 69.9 | 0.150 | 0.211 | 1.813 | 8.03 | 0.388 | - |
Winter | 202.8 | 587.8 | 376.0 | 78.0 | 0.213 | 0.074 | 2.082 | 20.75 | 0.152 | - |
Annual | 1320.4 | 2001.0 | 1596.3 | 160.3 | 0.156 | 0.191 | 4.119 | 1.21 | 0.497 | - |
Season | Min. (mm) | Max. (mm) | CMS. (mm) | S.D. | Kendall’s tau | p-Value | Sen’s Slope (mm/year) | CV (%) | Pettitt | Changing Period |
---|---|---|---|---|---|---|---|---|---|---|
Summer | 599.0 | 826.7 | 701.3 | 54.8 | 0.224 | 0.061 | 1.200 | 7.81 | 0.171 | - |
Rainy | 619.4 | 708.7 | 654.9 | 23.7 | 0.408 | 0.001** | 1.468 | 3.62 | 0.006** | 2013 |
Winter | 436.4 | 546.4 | 477.6 | 26.8 | 0.462 | <0.0001** | 1.395 | 5.61 | 0.005** | 1996 |
Annual | 1790.9 | 2171.4 | 1943.0 | 94.6 | 0.425 | 0.000** | 4.282 | 4.87 | 0.004** | 2011 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Phumkokrux, N.; Trivej, P. Investigation of Temperature, Precipitation, Evapotranspiration, and New Thornthwaite Climate Classification in Thailand. Atmosphere 2024, 15, 379. https://doi.org/10.3390/atmos15030379
Phumkokrux N, Trivej P. Investigation of Temperature, Precipitation, Evapotranspiration, and New Thornthwaite Climate Classification in Thailand. Atmosphere. 2024; 15(3):379. https://doi.org/10.3390/atmos15030379
Chicago/Turabian StylePhumkokrux, Nutthakarn, and Panu Trivej. 2024. "Investigation of Temperature, Precipitation, Evapotranspiration, and New Thornthwaite Climate Classification in Thailand" Atmosphere 15, no. 3: 379. https://doi.org/10.3390/atmos15030379
APA StylePhumkokrux, N., & Trivej, P. (2024). Investigation of Temperature, Precipitation, Evapotranspiration, and New Thornthwaite Climate Classification in Thailand. Atmosphere, 15(3), 379. https://doi.org/10.3390/atmos15030379