Occurrence of Polycyclic Aromatic Hydrocarbons and Polychlorinated Biphenyls in Fogwater at Urban, Suburban, and Rural Sites in Northeast France between 2015 and 2021
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites
2.2. Sampling Campaign
2.3. Analytical Procedure of Fogwater Samples
2.3.1. Samples Treatment
2.3.2. Extraction Procedure
2.3.3. Chromatographic Analysis
2.4. PAHs Diagnostic Ratios
2.5. PCBs Risk Assessment
2.6. Principal Component Analysis
3. Results and Discussion
3.1. PAHs Analysis in Fogwater
3.2. PCBs Analysis in Fogwater
3.3. Source Analysis
3.3.1. Diagnostic Ratio
3.3.2. Principal Analysis
3.4. Inter-Site Variability for Simultaneous Events
4. Comparison with Previous Studies
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Roach, W.T. Back to Basics: Fog: Part 1—Definitions and Basic Physics. Weather 1994, 49, 411–415. [Google Scholar] [CrossRef]
- Pérez-Díaz, J.; Ivanov, O.; Peshev, Z.; Álvarez-Valenzuela, M.; Valiente-Blanco, I.; Evgenieva, T.; Dreischuh, T.; Gueorguiev, O.; Todorov, P.; Vaseashta, A. Fogs: Physical Basis, Characteristic Properties, and Impacts on the Environment and Human Health. Water 2017, 9, 807. [Google Scholar] [CrossRef]
- Khoury, D.; Millet, M.; Jabali, Y.; Delhomme, O. Fog Water: A General Review of Its Physical and Chemical Aspects. Environments 2023, 10, 224. [Google Scholar] [CrossRef]
- Ervens, B.; Wang, Y.; Eagar, J.; Leaitch, W.R.; Macdonald, A.M.; Valsaraj, K.T.; Herckes, P. Dissolved Organic Carbon (DOC) and Select Aldehydes in Cloud and Fog Water: The Role of the Aqueous Phase in Impacting Trace Gas Budgets. Atmos. Chem. Phys. 2013, 13, 5117–5135. [Google Scholar] [CrossRef]
- Facchini, M.C.; Fuzzi, S.; Zappoli, S.; Andracchio, A.; Gelencsér, A.; Kiss, G.; Krivácsy, Z.; Mészáros, E.; Hansson, H.; Alsberg, T.; et al. Partitioning of the Organic Aerosol Component between Fog Droplets and Interstitial Air. J. Geophys. Res. Atmos. 1999, 104, 26821–26832. [Google Scholar] [CrossRef]
- Fuzzi, S.; Facchini, M.C.; Orsi, G.; Ferri, D. Seasonal Trend of Fog Water Chemical Composition in the Po Valley. Environ. Pollut. 1992, 75, 75–80. [Google Scholar] [CrossRef] [PubMed]
- Yin, H.; Ye, Z.; Yang, Y.; Yuan, W.; Qiu, C.; Yuan, H.; Wang, M.; Li, S.; Zou, C. Evolution of Chemical Composition of Fogwater in Winter in Chengdu, China. J. Environ. Sci. 2013, 25, 1824–1832. [Google Scholar] [CrossRef]
- Kim, H.; Collier, S.; Ge, X.; Xu, J.; Sun, Y.; Jiang, W.; Wang, Y.; Herckes, P.; Zhang, Q. Chemical Processing of Water-Soluble Species and Formation of Secondary Organic Aerosol in Fogs. Atmos. Environ. 2019, 200, 158–166. [Google Scholar] [CrossRef]
- Herckes, P.; Valsaraj, K.T.; Collett, J.L. A Review of Observations of Organic Matter in Fogs and Clouds: Origin, Processing and Fate. Atmospheric Res. 2013, 132–133, 434–449. [Google Scholar] [CrossRef]
- Seinfeld, J.H.; Pandis, S.N. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, 3rd ed.; Wiley: Hoboken, NJ, USA, 2016. [Google Scholar]
- Mazzoleni, L.R.; Ehrmann, B.M.; Shen, X.; Marshall, A.G.; Collett, J.L. Water-Soluble Atmospheric Organic Matter in Fog: Exact Masses and Chemical Formula Identification by Ultrahigh-Resolution Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Environ. Sci. Technol. 2010, 44, 3690–3697. [Google Scholar] [CrossRef]
- Khoury, D.; Millet, M.; Jabali, Y.; Delhomme, O. Analytical Procedure for the Concomitant Analysis of 242 Polar and Non-Polar Organic Compounds of Different Functional Groups in Fog Water. Microchem. J. 2023, 185, 108235. [Google Scholar] [CrossRef]
- Fernández-González, R.; Yebra-Pimentel, I.; Martínez-Carballo, E.; Simal-Gándara, J.; Pontevedra-Pombal, X. Atmospheric Pollutants in Fog and Rain Events at the Northwestern Mountains of the Iberian Peninsula. Sci. Total Environ. 2014, 497–498, 188–199. [Google Scholar] [CrossRef] [PubMed]
- Zacharia, J.T. Degradation Pathways of Persistent Organic Pollutants (POPs) in the Environment. In Persistent Organic Pollutants; Kudom Donyinah, S., Ed.; IntechOpen: London, UK, 2019. [Google Scholar] [CrossRef]
- Castro-Jiménez, J.; Eisenreich, S.J.; Vives, I. Persistent Organic Pollutants (POPs) in the European Atmosphere: An Updated Overview; European Commission Joint Research Centre: Brussels, Belgium, 2007. [Google Scholar]
- Meeker, J.D. Exposure to Environmental Endocrine Disruptors and Child Development. Arch. Pediatr. Adolesc. Med. 2012, 166, 952–958. [Google Scholar] [CrossRef]
- Wang, J.-Z.; Nie, Y.-F.; Luo, X.-L.; Zeng, E.Y. Occurrence and Phase Distribution of Polycyclic Aromatic Hydrocarbons in Riverine Runoff of the Pearl River Delta, China. Mar. Pollut. Bull. 2008, 57, 767–774. [Google Scholar] [CrossRef]
- Pathiratne, K.A.S.; De Silva, O.C.P.; Hehemann, D.; Atkinson, I.; Wei, R. Occurrence and Distribution of Polycyclic Aromatic Hydrocarbons (PAHs) in Bolgoda and Beira Lakes, Sri Lanka. Bull. Environ. Contam. Toxicol. 2007, 79, 135–140. [Google Scholar] [CrossRef]
- Barhoumi, B.; Beldean-Galea, M.S.; Al-Rawabdeh, A.M.; Roba, C.; Martonos, I.M.; Bălc, R.; Kahlaoui, M.; Touil, S.; Tedetti, M.; Driss, M.R.; et al. Occurrence, Distribution and Ecological Risk of Trace Metals and Organic Pollutants in Surface Sediments from a Southeastern European River (Someşu Mic River, Romania). Sci. Total Environ. 2019, 660, 660–676. [Google Scholar] [CrossRef] [PubMed]
- Jianrong, C.; Yanjun, L.; Sujie, Y. The Concentrations and Sources of PAHs and PCBs in Soil from an Oil Field and Estuary in the Yellow River Delta, China. Front. Environ. Sci. 2022, 10, 1028299. [Google Scholar] [CrossRef]
- Vane, C.H.; Kim, A.W.; Beriro, D.J.; Cave, M.R.; Knights, K.; Moss-Hayes, V.; Nathanail, P.C. Polycyclic Aromatic Hydrocarbons (PAH) and Polychlorinated Biphenyls (PCB) in Urban Soils of Greater London, UK. Appl. Geochem. 2014, 51, 303–314. [Google Scholar] [CrossRef]
- Motelay-Massei, A.; Ollivon, D.; Garban, B.; Teil, M.J.; Blanchard, M.; Chevreuil, M. Distribution and Spatial Trends of PAHs and PCBs in Soils in the Seine River Basin, France. Chemosphere 2004, 55, 555–565. [Google Scholar] [CrossRef]
- Cetin, B.; Yurdakul, S.; Gungormus, E.; Ozturk, F.; Sofuoglu, S.C. Source Apportionment and Carcinogenic Risk Assessment of Passive Air Sampler-Derived PAHs and PCBs in a Heavily Industrialized Region. Sci. Total Environ. 2018, 633, 30–41. [Google Scholar] [CrossRef]
- Merhaby, D.; Rabodonirina, S.; Net, S.; Ouddane, B.; Halwani, J. Overview of Sediments Pollution by PAHs and PCBs in Mediterranean Basin: Transport, Fate, Occurrence, and Distribution. Mar. Pollut. Bull. 2019, 149, 110646. [Google Scholar] [CrossRef]
- Shahpoury, P.; Lammel, G.; Holubová Šmejkalová, A.; Klánová, J.; Přibylová, P.; Váňa, M. Polycyclic Aromatic Hydrocarbons, Polychlorinated Biphenyls, and Chlorinated Pesticides in Background Air in Central Europe–Investigating Parameters Affecting Wet Scavenging of Polycyclic Aromatic Hydrocarbons. Atmos. Chem. Phys. Discuss. 2014, 14, 26939–26970. [Google Scholar] [CrossRef]
- Carratalá, A.; Moreno-González, R.; León, V.M. Occurrence and Seasonal Distribution of Polycyclic Aromatic Hydrocarbons and Legacy and Current-Use Pesticides in Air from a Mediterranean Coastal Lagoon (Mar Menor, SE Spain). Chemosphere 2017, 167, 382–395. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Li, P.; Yan, L.; Chen, J.; Cheng, T.; Xu, S. Characterization of Polycyclic Aromatic Hydrocarbons in Fog–Rain Events. J. Environ. Monit. 2011, 13, 2988. [Google Scholar] [CrossRef]
- Li, P.; Wang, Y.; Li, Y.; Wang, Z.; Zhang, H.; Xu, P.; Wang, W. Characterization of Polycyclic Aromatic Hydrocarbons Deposition in PM2.5 and Cloud/Fog Water at Mount Taishan (China). Atmos. Environ. 2010, 44, 1996–2003. [Google Scholar] [CrossRef]
- Ehrenhauser, F.S.; Khadapkar, K.; Wang, Y.; Hutchings, J.W.; Delhomme, O.; Kommalapati, R.R.; Herckes, P.; Wornat, M.J.; Valsaraj, K.T. Processing of Atmospheric Polycyclic Aromatic Hydrocarbons by Fog in an Urban Environment. J. Environ. Monit. 2012, 14, 2566. [Google Scholar] [CrossRef] [PubMed]
- ATSDR. Toxicology profile for polyaromatic hydrocarbons. In Book Toxicology Profile for Polyaromatic Hydrocarbons; CRC Press: Boca Raton, FL, USA, 2005. [Google Scholar]
- Olivella, M.À. Polycyclic Aromatic Hydrocarbons in Rainwater and Surface Waters of Lake Maggiore, a Subalpine Lake in Northern Italy. Chemosphere 2006, 63, 116–131. [Google Scholar] [CrossRef]
- Erickson, M.D.; Kaley, R.G. Applications of Polychlorinated Biphenyls. Environ. Sci. Pollut. Res. 2011, 18, 135–151. [Google Scholar] [CrossRef]
- Millet, M.; Sanusi, A.; Wortham, H. Chemical Composition of Fogwater in an Urban Area: Strasbourg (France). Environ. Pollut. 1996, 94, 345–354. [Google Scholar] [CrossRef]
- Herckes, P.; Wortham, H.; Mirabel, P.; Millet, M. Evolution of the Fogwater Composition in Strasbourg (France) from 1990 to 1999. Atmos. Res. 2002, 64, 53–62. [Google Scholar] [CrossRef]
- Demoz, B.B.; Collett, J.L.; Daube, B.C. On the Caltech Active Strand Cloudwater Collectors. Atmos. Res. 1996, 41, 47–62. [Google Scholar] [CrossRef]
- Khoury, D.; Millet, M.; Weissenberger, T.; Delhomme, O.; Jabali, Y. Chemical Composition of Fogwater Collected at Four Sites in North- and Mount-Lebanon during 2021. Atmos. Pollut. Res. 2024, 15, 101958. [Google Scholar] [CrossRef]
- Yunker, M.B.; Macdonald, R.W.; Vingarzan, R.; Mitchell, R.H.; Goyette, D.; Sylvestre, S. PAHs in the Fraser River Basin: A Critical Appraisal of PAH Ratios as Indicators of PAH Source and Composition. Org. Geochem. 2002, 33, 489–515. [Google Scholar] [CrossRef]
- Larsen, R.K.; Baker, J.E. Source Apportionment of Polycyclic Aromatic Hydrocarbons in the Urban Atmosphere: A Comparison of Three Methods. Environ. Sci. Technol. 2003, 37, 1873–1881. [Google Scholar] [CrossRef]
- De Luca, G.; Furesi, A.; Leardi, R.; Micera, G.; Panzanelli, A.; Costantina Piu, P.; Sanna, G. Polycyclic Aromatic Hydrocarbons Assessment in the Sediments of the Porto Torres Harbor (Northern Sardinia, Italy). Mar. Chem. 2004, 86, 15–32. [Google Scholar] [CrossRef]
- Soclo, H.H.; Garrigues, P.; Ewald, M. Origin of Polycyclic Aromatic Hydrocarbons (PAHs) in Coastal Marine Sediments: Case Studies in Cotonou (Benin) and Aquitaine (France) Areas. Mar. Pollut. Bull. 2000, 40, 387–396. [Google Scholar] [CrossRef]
- Lee, C.-C.; Chen, C.S.; Wang, Z.-X.; Tien, C.-J. Polycyclic Aromatic Hydrocarbons in 30 River Ecosystems, Taiwan: Sources, and Ecological and Human Health Risks. Sci. Total Environ. 2021, 795, 148867. [Google Scholar] [CrossRef] [PubMed]
- Moon, H.-B.; Kannan, K.; Lee, S.-J.; Ok, G. Atmospheric Deposition of Polycyclic Aromatic Hydrocarbons in an Urban and a Suburban Area of Korea from 2002 to 2004. Arch. Environ. Contam. Toxicol. 2006, 51, 494–502. [Google Scholar] [CrossRef]
- Budzinski, H.; Jones, I.; Bellocq, J.; Piérard, C.; Garrigues, P. Evaluation of Sediment Contamination by Polycyclic Aromatic Hydrocarbons in the Gironde Estuary. Mar. Chem. 1997, 58, 85–97. [Google Scholar] [CrossRef]
- Tam, N.F.Y.; Ke, L.; Wang, X.H.; Wong, Y.S. Contamination of Polycyclic Aromatic Hydrocarbons in Surface Sediments of Mangrove Swamps. Environ. Pollut. 2001, 114, 255–263. [Google Scholar] [CrossRef]
- Ravindra, K.; Sokhi, R.; Vangrieken, R. Atmospheric Polycyclic Aromatic Hydrocarbons: Source Attribution, Emission Factors and Regulation. Atmos. Environ. 2008, 42, 2895–2921. [Google Scholar] [CrossRef]
- Kutz, F.W.; Barnes, D.G.; Bretthauer, E.W.; Bottimore, D.P.; Greim, H. The International Toxicity Equivalency Factor (I-TEF) Method for Estimating Risks Associated with Exposures to Complex Mixtures of Dioxins and Related Compounds. Toxicol. Environ. Chem. 1990, 26, 99–109. [Google Scholar] [CrossRef]
- Van Den Berg, M.; Birnbaum, L.S.; Denison, M.; De Vito, M.; Farland, W.; Feeley, M.; Fiedler, H.; Hakansson, H.; Hanberg, A.; Haws, L.; et al. The 2005 World Health Organization Reevaluation of Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-Like Compounds. Toxicol. Sci. 2006, 93, 223–241. [Google Scholar] [CrossRef]
- Simcik, M.F.; Eisenreich, S.J.; Lioy, P.J. Source Apportionment and Source/Sink Relationships of PAHs in the Coastal Atmosphere of Chicago and Lake Michigan. Atmos. Environ. 1999, 33, 5071–5079. [Google Scholar] [CrossRef]
- Li, B.; Feng, C.; Li, X.; Chen, Y.; Niu, J.; Shen, Z. Spatial Distribution and Source Apportionment of PAHs in Surficial Sediments of the Yangtze Estuary, China. Mar. Pollut. Bull. 2012, 64, 636–643. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Liu, Z.; Yang, Y.; Li, T.; Liu, M. Distribution of PAHs in Tissues of Wetland Plants and the Surrounding Sediments in the Chongming Wetland, Shanghai, China. Chemosphere 2012, 89, 221–227. [Google Scholar] [CrossRef] [PubMed]
- Pozo, K.; Harner, T.; Rudolph, A.; Oyola, G.; Estellano, V.H.; Ahumada-Rudolph, R.; Garrido, M.; Pozo, K.; Mabilia, R.; Focardi, S. Survey of Persistent Organic Pollutants (POPs) and Polycyclic Aromatic Hydrocarbons (PAHs) in the Atmosphere of Rural, Urban and Industrial Areas of Concepción, Chile, Using Passive Air Samplers. Atmos. Pollut. Res. 2012, 3, 426–434. [Google Scholar] [CrossRef]
- Yang, X.; Wang, L.; Zhang, A.; Liu, X.; Bidegain, G.; Zong, H.; Guan, C.; Song, M.; Qu, L.; Huang, W.; et al. Levels, Sources and Potential Risks of Polychlorinated Biphenyls and Organochlorine Pesticides in Sediments of Qingduizi Bay, China: Does Developing Mariculture Matter? Front. Mar. Sci. 2019, 6, 602. [Google Scholar] [CrossRef]
- Babut, M.; Miege, C.; Villeneuve, B.; Abarnou, A.; Duchemin, J.; Marchand, P.; Narbonne, J.F. Correlations between Dioxin-like and Indicators PCBs: Potential Consequences for Environmental Studies Involving Fish or Sediment. Environ. Pollut. 2009, 157, 3451–3456. [Google Scholar] [CrossRef] [PubMed]
- Lima, A.L.C.; Farrington, J.W.; Reddy, C.M. Combustion-Derived Polycyclic Aromatic Hydrocarbons in the Environment—A Review. Environ. Forensics 2005, 6, 109–131. [Google Scholar] [CrossRef]
- Delhomme, O.; Rieb, E.; Millet, M. Polycyclic aromatic hydrocarbons analyzed in rainwater collected on two sites in east of france (strasbourg and erstein). Polycycl. Aromat. Compd. 2008, 28, 472–485. [Google Scholar] [CrossRef]
- Atmo Grand Est Surveillance Réglementaire Des Hydrocarbures Aromatiques Polycycliques Dans l’air Ambiant Site “Clémenceau”—Valeurs Des 12 Derniers Mois En Date Du 31/12/18. Available online: http://www.atmo-grandest.eu/sites/prod/files/2019-03/Bulletin_trimestriel_HAP_Clemenceau_122018.pdf (accessed on 24 August 2022).
- Zhang, W.; Zhang, S.; Wan, C.; Yue, D.; Ye, Y.; Wang, X. Source Diagnostics of Polycyclic Aromatic Hydrocarbons in Urban Road Runoff, Dust, Rain and Canopy Throughfall. Environ. Pollut. 2008, 153, 594–601. [Google Scholar] [CrossRef]
- Wang, D.; Tian, F.; Yang, M.; Liu, C.; Li, Y.-F. Application of Positive Matrix Factorization to Identify Potential Sources of PAHs in Soil of Dalian, China. Environ. Pollut. 2009, 157, 1559–1564. [Google Scholar] [CrossRef]
- Cao, Q.; Wang, H.; Chen, G. Source Apportionment of PAHs Using Two Mathematical Models for Mangrove Sediments in Shantou Coastal Zone, China. Estuaries Coasts 2011, 34, 950–960. [Google Scholar] [CrossRef]
- Yang, B.; Zhou, L.; Xue, N.; Li, F.; Li, Y.; Vogt, R.D.; Cong, X.; Yan, Y.; Liu, B. Source Apportionment of Polycyclic Aromatic Hydrocarbons in Soils of Huanghuai Plain, China: Comparison of Three Receptor Models. Sci. Total Environ. 2013, 443, 31–39. [Google Scholar] [CrossRef] [PubMed]
- Sulong, N.A.; Latif, M.T.; Sahani, M.; Khan, M.F.; Fadzil, M.F.; Tahir, N.M.; Mohamad, N.; Sakai, N.; Fujii, Y.; Othman, M.; et al. Distribution, Sources and Potential Health Risks of Polycyclic Aromatic Hydrocarbons (PAHs) in PM2.5 Collected during Different Monsoon Seasons and Haze Episode in Kuala Lumpur. Chemosphere 2019, 219, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Harrison, R.M.; Smith, D.J.T.; Luhana, L. Source Apportionment of Atmospheric Polycyclic Aromatic Hydrocarbons Collected from an Urban Location in Birmingham, U.K. Environ. Sci. Technol. 1996, 30, 825–832. [Google Scholar] [CrossRef]
- Khpalwak, W.; Jadoon, W.A.; Abdel-dayem, S.M.; Sakugawa, H. Polycyclic Aromatic Hydrocarbons in Urban Road Dust, Afghanistan: Implications for Human Health. Chemosphere 2019, 218, 517–526. [Google Scholar] [CrossRef] [PubMed]
- Jamhari, A.A.; Sahani, M.; Latif, M.T.; Chan, K.M.; Tan, H.S.; Khan, M.F.; Mohd Tahir, N. Concentration and Source Identification of Polycyclic Aromatic Hydrocarbons (PAHs) in PM10 of Urban, Industrial and Semi-Urban Areas in Malaysia. Atmos. Environ. 2014, 86, 16–27. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, L.; Huang, Q.; Li, W.; Tang, Y.; Zhao, J. Source Apportionment of Polycyclic Aromatic Hydrocarbons (PAHs) in Surface Sediments of the Huangpu River, Shanghai, China. Sci. Total Environ. 2009, 407, 2931–2938. [Google Scholar] [CrossRef]
- Khalili, N.R.; Scheff, P.A.; Holsen, T.M. PAH Source Fingerprints for Coke Ovens, Diesel and, Gasoline Engines, Highway Tunnels, and Wood Combustion Emissions. Atmos. Environ. 1995, 29, 533–542. [Google Scholar] [CrossRef]
- Khan, M.F.; Latif, M.T.; Lim, C.H.; Amil, N.; Jaafar, S.A.; Dominick, D.; Mohd Nadzir, M.S.; Sahani, M.; Tahir, N.M. Seasonal Effect and Source Apportionment of Polycyclic Aromatic Hydrocarbons in PM2.5. Atmos. Environ. 2015, 106, 178–190. [Google Scholar] [CrossRef]
- Capel, P.D.; Leuenberger, C.; Giger, W. Hydrophobic Organic Chemicals in Urban Fog. Atmos. Environ. Part Gen. Top. 1991, 25, 1335–1346. [Google Scholar] [CrossRef]
Chromatographic Conditions | |
---|---|
Device | GC-MS/MS (TraceTM, ITQTM 700) |
Separation column | XLB (50% phenyl/50% methylsiloxane) (30 m length, 0.25 mm diameter, 0.25 μm film thickness) |
Injection parameters | |
DCM Rinsing | 2 Rinsing with 1 µL (pre-run and post-run) |
Injection volume | 1 µL |
Injection type | Splitless mode |
Injector temperature | 250 °C |
Purge | 50 mL.min−1 after t = 2 min |
Gas saver | 15 mL.min−1 after t = 5 min |
Chromatographic parameters | |
Carrier gas | Helium (purity > 99.99%) |
Carrier gas flow | Constant at 1 mL.min−1 |
Pressure | ≈10.253 psi (à t = 0 et T = 90 °C) |
Oven temperature programming | |
Mass spectrometer parameters | |
Transfer line temperature | 300 °C |
Electron energy | 70 eV |
Source temperature | 210 °C |
Acquisition mode | MRM |
Year | Ant/(Ant + Phe) | |||
---|---|---|---|---|
Geispolsheim | Erstein | Strasbourg | Cronenbourg | |
2015 | 0.50 ± 0.2 | 0.40 | ||
2016 | 0.56 ± 0.18 | 0.46 ± 0.15 | 0.46 | |
2017 | 0.72 | |||
2018 | 0.65 ± 0.1 | 0.65 ± 0.13 | 0.60 ± 0.12 | 0.56 ± 0.28 |
2021 | 0.52 ± 0.12 | |||
Average | 0.6 ± 0.09 | 0.51 ± 0.13 | 0.53 ± 0.09 | 0.54 ± 0.02 |
Flu/(Flu + Pyr) | ||||
Geispolsheim | Erstein | Strasbourg | Cronenbourg | |
2015 | 0.41 ± 0.18 | 0.63 | ||
2016 | 0.73 ± 0.22 | 0.47 ± 0.28 | 0.51 | |
2017 | 0.36 | |||
2018 | 0.74 ± 0.10 | 0.72 ± 0.13 | 0.86 ± 0.06 | 0.60 ± 0.02 |
2021 | 0.42 ± 0.15 | |||
Average | 0.56 ± 0.2 | 0.60 ± 0.12 | 0.68 ± 0.24 | 0.52 ± 0.12 |
Flo/(Flo + Pyr) | ||||
Geispolsheim | Erstein | Strasbourg | Cronenbourg | |
2015 | 0.58 ± 0.1 | 0.38 | ||
2016 | 0.52 ± 0.13 | 0.49 ± 0.21 | 0.39 | |
2017 | 0.42 | |||
2018 | 0.55 ± 0.12 | 0.36 ± 0.11 | 0.5 ± 0.11 | 0.36 ± 0.18 |
2021 | 0.48 ± 0.12 | |||
Average | 0.52 ± 0.07 | 0.41 ± 0.07 | 0.45 ± 0.07 | 0.42 ± 0.08 |
Variables | Factor 1 | Factor 2 | Factor 3 | Factor 4 |
---|---|---|---|---|
Flu | 0.51 | |||
Phe | 0.61 | |||
Flo | 0.81 | |||
Pyr | 0.74 | |||
BaA | 0.69 | |||
BbF | 0.62 | |||
BkF | 0.51 | 0.57 | ||
BeP | 0.61 | 0.64 | ||
BaP | 0.57 | 0.59 | ||
Eigen values | 3.14 | 2.00 | 1.89 | 1.55 |
Variance (%) | 22.50 | 14.35 | 13.47 | 11.08 |
Cumulative (%) | 22.50 | 36.85 | 50.31 | 61.39 |
Variables | Factor 1 | Factor 2 | Factor 3 | Factor 4 |
---|---|---|---|---|
PCB18 | 0.68 | |||
PCB28 | 0.71 | |||
PCB31 | 0.82 | |||
PCB52 | 0.94 | |||
PCB70 | 0.93 | |||
PCB81 | 0.78 | |||
PCB105 | 0.66 | |||
PCB114 | 0.83 | |||
PCB118 | −0.61 | |||
PCB123 | 0.84 | |||
PCB138 | 0.61 | |||
PCB149 | 0.86 | |||
PCB153 | 0.81 | |||
PCB157 | 0.60 | |||
PCB189 | 0.75 | |||
Flu | 0.58 | |||
Phe | 0.59 | |||
BaA | 0.70 | |||
BeP | 0.53 | |||
Eigen values | 9.22 | 3.39 | 2.43 | 2.33 |
Variance (%) | 28.84 | 10.60 | 7.61 | 7.30 |
Cumulative (%) | 28.84 | 39.44 | 47.05 | 54.36 |
Site | Mount Taishan (China) [28] | Shanghai (China) [27] | Northwestern Mountains (Spain) [13] | Geispolsheim (France) This study | Erstein (France) This study | Strasbourg (France) This study | Cronenbourg (France) This study |
---|---|---|---|---|---|---|---|
Compounds | |||||||
Nap | n.a | 376 (2–1448) | n.a | 534 (11–1367) | 412 (255–1141) | 333 (158–556) | 314 (66–554) |
Flu | 17 (5–63) | 66 (3–520) | 18 (n.d–134) | 112 (38–307) | 173 (22–559) | 58 (11–88) | 180 (12–328) |
Acy | 24 (n.d–62) | 13 (n.d–27) | n.a | n.a | n.a | n.a | n.a |
Ace | 28 (3–53) | 30 (n.d–114) | n.a | n.a | n.a | n.a | n.a |
Phe | 80 (21–222) | 138 (3–1043) | n.a | 546 (145–1920) | 750 (298–2432) | 626 (252–1219) | 1064 (206–1770) |
Ant | 13 (2–25) | 172 (3–1281) | n.a | 1076 (152–3181) | 851 (137–3566) | 996 (263–2600) | 1175 (114–1315) |
Flo | 42 (19–95) | 34 (n.d–178) | n.a | 179 (23–356) | 217 (57–496) | 226 (114–460) | 150 (103–178) |
Pyr | 12 (1–45) | 34 (n.d–133) | 24 (n.d–70) | 115 (n.d–262) | 298 (n.d–1259) | 97 (24–197) | 273 (63–553) |
BaA | 13 (4–51) | 41 (n.d–189) | 0.1 (n.d–1.2) | 46 (n.d–364.1) | 61 (n.d–91) | 46 (n.d–57) | n.d |
Chry | 9 (3–35) | 19 (n.d–86) | 1 (n.d–15) | 27 (n.d–72) | 52 (n.d–73) | n.d | 57 (n.d–67) |
BeP | 9 (n.d –47) | 2 (n.d–9) | n.a | 68 (n.d–79) | 57 (n.d–80) | n.d | n.d |
BbF | 23 (1–102) | 4 (n.d–22) | 0.9 (n.d–10) | 51 (n.d–69) | 52 (n.d–86) | n.d | 46 (n.d–56) |
BkF | 6 (n.d–38) | 6 (n.d–17) | 0.6 (n.d–2.1) | 67 (n.d–79) | 30 (n.d–45) | n.d | n.d |
BaP | 6 (n.d–27) | n.d | 0.7 (n.d–1.7) | 97 (n.d–170) | 41 (n.d–56) | 22 (n.d–43) | n.d |
Total | 273 (90–975) | 982 (30–6670) | 45 (8–216) | 2959 (451–5866) | 2994 (520–6725) | 2404 (985–5132) | 2765 (578–5097) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khoury, D.; Millet, M.; Jabali, Y.; Delhomme, O. Occurrence of Polycyclic Aromatic Hydrocarbons and Polychlorinated Biphenyls in Fogwater at Urban, Suburban, and Rural Sites in Northeast France between 2015 and 2021. Atmosphere 2024, 15, 291. https://doi.org/10.3390/atmos15030291
Khoury D, Millet M, Jabali Y, Delhomme O. Occurrence of Polycyclic Aromatic Hydrocarbons and Polychlorinated Biphenyls in Fogwater at Urban, Suburban, and Rural Sites in Northeast France between 2015 and 2021. Atmosphere. 2024; 15(3):291. https://doi.org/10.3390/atmos15030291
Chicago/Turabian StyleKhoury, Dani, Maurice Millet, Yasmine Jabali, and Olivier Delhomme. 2024. "Occurrence of Polycyclic Aromatic Hydrocarbons and Polychlorinated Biphenyls in Fogwater at Urban, Suburban, and Rural Sites in Northeast France between 2015 and 2021" Atmosphere 15, no. 3: 291. https://doi.org/10.3390/atmos15030291
APA StyleKhoury, D., Millet, M., Jabali, Y., & Delhomme, O. (2024). Occurrence of Polycyclic Aromatic Hydrocarbons and Polychlorinated Biphenyls in Fogwater at Urban, Suburban, and Rural Sites in Northeast France between 2015 and 2021. Atmosphere, 15(3), 291. https://doi.org/10.3390/atmos15030291