Sensitivity of the Land–Atmosphere Coupling to Soil Moisture Anomalies during the Warm Season in China and its Surrounding Areas
Abstract
:1. Introduction
2. Data and Methods
2.1. Study Region
2.2. ERA5 Data
2.3. Methods
2.3.1. Land–Atmosphere Coupling Strength
2.3.2. Model Setup
2.3.3. Vertically-Integrated Moisture Flux Convergence (VIMFC)
3. Results
3.1. Regional Characteristics and Intraseasonal Evolution of Daytime Land–Atmosphere Coupling under Different SM Conditions
3.2. Sensitivity Experiments of Impact of SM Anomalies on L–A Coupling in the North China Plain
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Santanello, J.A.; Dirmeyer, P.A.; Ferguson, C.R.; Findell, K.L.; Tawfik, A.B.; Berg, A.; Ek, M.; Gentine, P.; Guillod, B.P.; Van Heerwaarden, C.; et al. Land-Atmosphere Interactions the LoCo Perspective. Bull. Am. Meteorol. Soc. 2018, 99, 1253–1272. [Google Scholar] [CrossRef]
- Seneviratne, S.I.; Lüthi, D.; Litschi, M.; Schär, C. Land-Atmosphere Coupling and Climate Change in Europe. Nature 2006, 443, 205–209. [Google Scholar] [CrossRef]
- Seneviratne, S.I.; Corti, T.; Davin, E.L.; Hirschi, M.; Jaeger, E.B.; Lehner, I.; Orlowsky, B.; Teuling, A.J. Investigating Soil Moisture-Climate Interactions in a Changing Climate: A Review. Earth-Science Rev. 2010, 99, 125–161. [Google Scholar] [CrossRef]
- Hu, H.; Leung, L.R.; Feng, Z. Early Warm-Season Mesoscale Convective Systems Dominate Soil Moisture–Precipitation Feedback for Summer Rainfall in Central United States. Proc. Natl. Acad. Sci. USA 2021, 118, e2105260118. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Yang, X.; Zhang, W.; Li, S.; Zhang, Y. Sensitivity of Afternoon Precipitation to Evaporative Fraction in Eastern Asia Based on ERA-Interim Datasets. Atmos. Sci. Lett. 2019, 20, 2–7. [Google Scholar] [CrossRef]
- Zheng, Y.; Kumar, A.; Niyogi, D. Impacts of Land–Atmosphere Coupling on Regional Rainfall and Convection. Clim. Dyn. 2015, 44, 2383–2409. [Google Scholar] [CrossRef]
- Koster, R.D.; Chang, Y.; Wang, H.; Schubert, S.D. Impacts of Local Soil Moisture Anomalies on the Atmospheric Circulation and on Remote Surface Meteorological Fields during Boreal Summer: A Comprehensive Analysis over North America. J. Clim. 2016, 29, 7345–7364. [Google Scholar] [CrossRef]
- Berg, A.; Lintner, B.; Findell, K.; Giannini, A. Soil Moisture Influence on Seasonality and Large-Scale Circulation in Simulations of the West African Monsoon. J. Clim. 2017, 30, 2295–2317. [Google Scholar] [CrossRef]
- Zuo, Z.; Zhang, R. Influence of Soil Moisture in Eastern China on the East Asian Summer Monsoon. Adv. Atmos. Sci. 2016, 33, 151–163. [Google Scholar] [CrossRef]
- Miralles, D.G.; Gentine, P.; Seneviratne, S.I.; Teuling, A.J. Land–Atmospheric Feedbacks during Droughts and Heatwaves: State of the Science and Current Challenges. Ann. N. Y. Acad. Sci. 2019, 1436, 19–35. [Google Scholar] [CrossRef]
- Dirmeyer, P.A.; Balsamo, G.; Blyth, E.M.; Morrison, R.; Cooper, H.M. Land-Atmosphere Interactions Exacerbated the Drought and Heatwave Over Northern Europe During Summer 2018. AGU Adv. 2021, 2, e2020AV000283. [Google Scholar] [CrossRef]
- Dai, A. Increasing Drought under Global Warming in Observations and Models. Nat. Clim. Chang. 2013, 3, 52–58. [Google Scholar] [CrossRef]
- Zhang, J.Y.; Wu, L.Y. Land-Atmosphere Coupling Amplifies Hot Extremes over China. Chin. Sci. Bull. 2011, 56, 3328–3332. [Google Scholar] [CrossRef]
- Saini, R.; Wang, G.; Pal, J.S. Role of Soil Moisture Feedback in the Development of Extreme Summer Drought and Flood in the United States. J. Hydrometeorol. 2016, 17, 2191–2207. [Google Scholar] [CrossRef]
- Wu, S.; Wei, Z.; Li, X.; Ma, L. Land-atmosphere Coupling Effects of Soil Temperature and Moisture on Extreme Precipitation in the Arid Regions of Northwest China. Front. Earth Sci. 2023, 10, 1079131. [Google Scholar] [CrossRef]
- Koster, R.D.; Dirmeyer, P.A.; Guo, Z.; Bonan, G.; Chan, E.; Cox, P.; Gordon, C.T.; Kanae, S.; Kowalczyk, E.; Lawrence, D.; et al. Regions of Strong Coupling between Soil Moisture and Precipitation. Science 2004, 305, 1138–1140. [Google Scholar] [CrossRef]
- Findell, K.L.; Gentine, P.; Lintner, B.R.; Kerr, C. Probability of Afternoon Precipitation in Eastern United States and Mexico Enhanced by High Evaporation. Nat. Geosci. 2011, 4, 434–439. [Google Scholar] [CrossRef]
- Findell, K.L.; Eltahir, E.A.B. An Analysis of the Soil Moisture-Rainfall Feedback, Based on Direct Observations from Illinois. Water Resour. Res. 1997, 33, 725–735. [Google Scholar] [CrossRef]
- Wei, J.; Dirmeyer, P.A. Dissecting Soil Moisture-Precipitation Coupling. Geophys. Res. Lett. 2012, 39, L19711. [Google Scholar] [CrossRef]
- Denissen, J.M.C.; Teuling, A.J.; Pitman, A.J.; Koirala, S.; Migliavacca, M.; Li, W.; Reichstein, M.; Winkler, A.J.; Zhan, C.; Orth, R. Widespread Shift from Ecosystem Energy to Water Limitation with Climate Change. Nat. Clim. Chang. 2022, 12, 677–684. [Google Scholar] [CrossRef]
- Hsu, H.; Dirmeyer, P.A. Soil Moisture-Evaporation Coupling Shifts into New Gears under Increasing CO2. Nat. Commun. 2023, 14, 1162. [Google Scholar] [CrossRef] [PubMed]
- Findell, K.L.; Eltahir, E.A.B. Atmospheric Controls on Soil Moisture-Boundary Layer Interactions. Part I: Framework Development. J. Hydrometeorol. 2003, 4, 552–569. [Google Scholar] [CrossRef]
- Taylor, C.M.; De Jeu, R.A.M.; Guichard, F.; Harris, P.P.; Dorigo, W.A. Afternoon Rain More Likely over Drier Soils. Nature 2012, 489, 423–426. [Google Scholar] [CrossRef] [PubMed]
- Siqueira, M.; Katul, G.; Porporato, A. Soil Moisture Feedbacks on Convection Triggers: The Role of Soil-Plant Hydrodynamics. J. Hydrometeorol. 2009, 10, 96–112. [Google Scholar] [CrossRef]
- Guo, Z.; Dirmeyer, P.A. Interannual Variability of Land-Atmosphere Coupling Strength. J. Hydrometeorol. 2013, 14, 1636–1646. [Google Scholar] [CrossRef]
- Zeng, D.; Yuan, X. Multiscale Land-Atmosphere Coupling and Its Application in Assessing Subseasonal Forecasts over East Asia. J. Hydrometeorol. 2018, 19, 745–760. [Google Scholar] [CrossRef]
- Yang, Y.; Lin, Z.; Luo, L.; Zhong, L.; Jiang, D. Variation of Surface Air Temperature Induced by Enhanced Land–Atmosphere Coupling During 1981–2020 in Xinjiang, Northwest China. J. Geophys. Res. Atmos. 2023, 128, e2022JD037983. [Google Scholar] [CrossRef]
- Yang, Z.; Zhang, Q.; Zhang, Y.; Yue, P.; Zhang, L.; Zeng, J.; Qi, Y. Hydrothermal Factors Influence on Spatial-Temporal Variation of Evapotranspiration-Precipitation Coupling over Climate Transition Zone of North China. Remote Sens. 2022, 14, 1448. [Google Scholar] [CrossRef]
- Seo, E.; Dirmeyer, P.A. Understanding the Diurnal Cycle of Land-Atmosphere Interactions from Flux Site Observations. Hydrol. Earth Syst. Sci. 2022, 26, 5411–5429. [Google Scholar] [CrossRef]
- Yin, Z.; Findell, K.L.; Dirmeyer, P.; Shevliakova, E.; Malyshev, S.; Ghannam, K.; Raoult, N.; Tan, Z. Daytime-Only Mean Data Enhance Understanding of Land-Atmosphere Coupling. Hydrol. Earth Syst. Sci. 2023, 27, 861–872. [Google Scholar] [CrossRef]
- Wang, A.; Ma, X. An Overview of Soil Moisture Drought Research in China: Progress and Perspective. Atmos. Ocean. Sci. Lett. 2023, 16, 100297. [Google Scholar] [CrossRef]
- Qiao, L.; Zuo, Z.; Zhang, R.; Piao, S.; Xiao, D.; Zhang, K. Soil Moisture–Atmosphere Coupling Accelerates Global Warming. Nat. Commun. 2023, 14, 4908. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Yuan, H. Evaluation of Nine Sub-Daily Soil Moisture Model Products over China Using High-Resolution in Situ Observations. J. Hydrol. 2020, 588, 125054. [Google Scholar] [CrossRef]
- Chen, H.; Yu, B.; Zhou, B.; Zhang, W.; Zhang, J. Role of Local Atmospheric Forcing and Land-Atmosphere Interaction in Recent Land Surface Warming in the Midlatitudes over East Asia. J. Clim. 2020, 33, 2295–2309. [Google Scholar] [CrossRef]
- Gao, C.; Chen, H.; Sun, S.; Xu, B.; Ongoma, V.; Zhu, S.; Ma, H.; Li, X. Regional Features and Seasonality of Land–Atmosphere Coupling over Eastern China. Adv. Atmos. Sci. 2018, 35, 689–701. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 Global Reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Song, Y.; Wei, J. Diurnal Cycle of Summer Precipitation over the North China Plain and Associated Land–Atmosphere Interactions: Evaluation of ERA5 and MERRA-2. Int. J. Climatol. 2021, 41, 6031–6046. [Google Scholar] [CrossRef]
- Sun, G.; Hu, Z.; Ma, Y.; Xie, Z.; Sun, F.; Wang, J.; Yang, S. Analysis of Local Land Atmosphere Coupling Characteristics over Tibetan Plateau in the Dry and Rainy Seasons Using Observational Data and ERA5. Sci. Total Environ. 2021, 774, 145138. [Google Scholar] [CrossRef]
- Koster, R.D.; Guo, Z.; Dirmeyer, P.A.; Bonan, G.; Chan, E.; Cox, P.; Davies, H.; Gordon, C.T.; Kanae, S.; Kowalczyk, E.; et al. GLACE: The Global Land-Atmosphere Coupling Experiment. Part I: Overview. J. Hydrometeorol. 2006, 7, 590–610. [Google Scholar] [CrossRef]
- Dirmeyer, P.A. The Terrestrial Segment of Soil Moisture-Climate Coupling. Geophys. Res. Lett. 2011, 38, L16702. [Google Scholar] [CrossRef]
- Dirmeyer, P.A.; Wei, J.; Bosilovich, M.G.; Mocko, D. Intensified Land Surface Control on Boundary Layer Growth in a Changing Climate. Geophysical 2014, 41, 1290–1294. [Google Scholar] [CrossRef]
- Hua, W.; Dong, X.; Liu, Q.; Zhou, L.; Chen, H.; Sun, S. High-Resolution WRF Simulation of Extreme Heat Events in Eastern China: Large Sensitivity to Land Surface Schemes. Front. Earth Sci. 2021, 9, 770826. [Google Scholar] [CrossRef]
- Wei, J.; Su, H.; Yang, Z.L. Impact of Moisture Flux Convergence and Soil Moisture on Precipitation: A Case Study for the Southern United States with Implications for the Globe. Clim. Dyn. 2016, 46, 467–481. [Google Scholar] [CrossRef]
- Santanello, J.A.; Peters-Lidard, C.D.; Kumar, S.V. Diagnosing the Sensitivity of Local Land-Atmosphere Coupling via the Soil Moisture-Boundary Layer Interaction. J. Hydrometeorol. 2011, 12, 766–786. [Google Scholar] [CrossRef]
- Hirschi, M.; Seneviratne, S.I.; Alexandrov, V.; Boberg, F.; Boroneant, C.; Christensen, O.B.; Formayer, H.; Orlowsky, B.; Stepanek, P. Observational Evidence for Soil-Moisture Impact on Hot Extremes in Southeastern Europe. Nat. Geosci. 2011, 4, 17–21. [Google Scholar] [CrossRef]
- Wu, L.Y.; Zhang, J.Y. Role of Land-Atmosphere Coupling in Summer Droughts and Floods over Eastern China for the 1998 and 1999 Cases. Chin. Sci. Bull. 2013, 58, 3978–3985. [Google Scholar] [CrossRef]
- Schumacher, D.L.; Keune, J.; Dirmeyer, P.; Miralles, D.G. Drought Self-Propagation in Drylands Due to Land–Atmosphere Feedbacks. Nat. Geosci. 2022, 15, 262–268. [Google Scholar] [CrossRef] [PubMed]
- Alessi, M.J.; Herrera, D.A.; Evans, C.P.; DeGaetano, A.T.; Ault, T.R. Soil Moisture Conditions Determine Land-Atmosphere Coupling and Drought Risk in the Northeastern United States. J. Geophys. Res. Atmos. 2022, 127, e2021JD034740. [Google Scholar] [CrossRef]
- Cook, B.I.; Bonan, G.B.; Levis, S. Soil Moisture Feedbacks to Precipitation in Southern Africa. J. Clim. 2006, 19, 4198–4206. [Google Scholar] [CrossRef]
- Samaniego, L.; Thober, S.; Kumar, R.; Wanders, N.; Rakovec, O.; Pan, M.; Zink, M.; Sheffield, J.; Wood, E.F.; Marx, A. Anthropogenic Warming Exacerbates European Soil Moisture Droughts. Nat. Clim. Chang. 2018, 8, 421–426. [Google Scholar] [CrossRef]
- Zhou, S.; Williams, A.P.; Berg, A.M.; Cook, B.I.; Zhang, Y.; Hagemann, S.; Lorenz, R.; Seneviratne, S.I.; Gentine, P. Land–Atmosphere Feedbacks Exacerbate Concurrent Soil Drought and Atmospheric Aridity. Proc. Natl. Acad. Sci. USA 2019, 116, 18848–18853. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Duan, Y.; Duan, J.; Jian, D.; Ma, Z. A Daily Drought Index Based on Evapotranspiration and Its Application in Regional Drought Analyses. Sci. China Earth Sci. 2022, 65, 317–336. [Google Scholar] [CrossRef]
- Zhang, X.; Duan, J.; Cherubini, F.; Ma, Z. A Global Daily Evapotranspiration Deficit Index Dataset for Quantifying Drought Severity from 1979 to 2022. Sci. Data 2023, 10, 824. [Google Scholar] [CrossRef] [PubMed]
- He, Q.; Lu, H.; Yang, K.; Leung, L.R.; Pan, M.; He, J.; Yao, P. A Simple Framework to Characterize Land Aridity Based on Surface Energy Partitioning Regimes. Environ. Res. Lett. 2022, 17, 34008. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, L.; Zhang, S.; Yan, X.; He, C. Sensitivity of the Land–Atmosphere Coupling to Soil Moisture Anomalies during the Warm Season in China and its Surrounding Areas. Atmosphere 2024, 15, 221. https://doi.org/10.3390/atmos15020221
Wang L, Zhang S, Yan X, He C. Sensitivity of the Land–Atmosphere Coupling to Soil Moisture Anomalies during the Warm Season in China and its Surrounding Areas. Atmosphere. 2024; 15(2):221. https://doi.org/10.3390/atmos15020221
Chicago/Turabian StyleWang, Lan, Shuwen Zhang, Xinyang Yan, and Chentao He. 2024. "Sensitivity of the Land–Atmosphere Coupling to Soil Moisture Anomalies during the Warm Season in China and its Surrounding Areas" Atmosphere 15, no. 2: 221. https://doi.org/10.3390/atmos15020221
APA StyleWang, L., Zhang, S., Yan, X., & He, C. (2024). Sensitivity of the Land–Atmosphere Coupling to Soil Moisture Anomalies during the Warm Season in China and its Surrounding Areas. Atmosphere, 15(2), 221. https://doi.org/10.3390/atmos15020221