Evaluation and Error Analysis of Multi-Source Precipitation Datasets during Summer over the Tibetan Plateau
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.2.1. Gridded Precipitation Datasets
2.2.2. Observed Data
2.3. Methods
2.3.1. Spatial Interpolation
2.3.2. Linear Tendency Estimation
2.3.3. Evaluation Method
3. Results
3.1. Spatial and Temporal Patterns of Summer Precipitation on the TP
3.2. Evaluation with Reference to the Original Stations from 2000 to 2018
3.2.1. Evaluation at an Annual Scale
3.2.2. Evaluation at a Monthly Scale
3.2.3. Evaluation at a Daily Scale
3.3. Evaluation with Reference to the Additional Stations from 2016 to 2018 at a Daily Scale
4. Discussion
4.1. Dataset Differences
4.2. Observational Limitations
4.3. Error Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Maggioni, V.; Meyers, P.C.; Robinson, M.D. A review of merged high-resolution satellite precipitation product accuracy during the tropical rainfall measuring mission (TRMM) era. J. Hydrometeorol. 2016, 17, 1101–1117. [Google Scholar] [CrossRef]
- Kidd, C.; Becker, A.; Huffman, G.J.; Muller, C.L.; Joe, P.; Skofronick-Jackson, G.; Kirschbaum, D.B. So, how much of the earth’s surface is covered by rain gauges? Bull. Am. Meteorol. Soc. 2017, 98, 69–78. [Google Scholar] [CrossRef] [PubMed]
- Lei, H.; Zhao, H.; Ao, T. Ground validation and error decomposition for six state-of-the-art satellite precipitation products over mainland China. Atmos. Res. 2022, 269, 106017. [Google Scholar] [CrossRef]
- Tan, X.; Ma, Z.; He, K.; Han, X.; Ji, Q.; He, Y. Evaluations on gridded precipitation products spanning more than half a century over the Tibetan Plateau and its surroundings. J. Hydrol. 2020, 582, 124455. [Google Scholar] [CrossRef]
- Lei, H.; Li, H.; Zhao, H.; Ao, T.; Li, X. Comprehensive evaluation of satellite and reanalysis precipitation products over the eastern Tibetan plateau characterized by a high diversity of topographies. Atmos. Res. 2021, 259, 105661. [Google Scholar] [CrossRef]
- Michaelides, S.; Levizzani, V.; Anagnostou, E.; Bauer, P.; Kasparis, T.; Lane, J.E. Precipitation: Measurement, remote sensing, climatology and modeling. Atmos. Res. 2009, 94, 512–533. [Google Scholar] [CrossRef]
- Lanza, L.G.; Stagi, L. Certified accuracy of rainfall data as a standard requirement in scientific investigations. Adv. Geosci. 2008, 16, 43–48. [Google Scholar] [CrossRef]
- Tang, G.; Clark, M.P.; Papalexiou, S.M.; Ma, Z.; Hong, Y. Have satellite precipitation products improved over last two decades? A comprehensive comparison of GPM IMERG with nine satellite and reanalysis datasets. Remote Sens. Environ. 2020, 240, 111697. [Google Scholar] [CrossRef]
- Yatagai, A.; Kamiguchi, K.; Arakawa, O.; Hamada, A.; Yasutomi, N.; Kitoh, A. APHRODITE: Constructing a long-term daily gridded precipitation dataset for Asia based on a dense network of rain gauges. Bull. Am. Meteorol. Soc. 2012, 93, 1401–1415. [Google Scholar] [CrossRef]
- Schneider, U.; Becker, A.; Finger, P.; Meyer-Christoffer, A.; Ziese, M.; Rudolf, B. GPCC’s new land surface precipitation climatology based on quality-controlled in situ data and its role in quantifying the global water cycle. Theor. Appl. Climatol. 2014, 115, 15–40. [Google Scholar] [CrossRef]
- Huffman, G.J.; Bolvin, D.T.; Braithwaite, D.; Hsu, K.; Joyce, R.; Xie, P. NASA global precipitation measurement (GPM) integrated multi-satellite retrievals for GPM (IMERG). In Algorithm Theoretical Basis Document (ATBD); NASA/GSFC: Greenbelt, MD, USA, 2015. [Google Scholar]
- Huffman, G.J.; Bolvin, D.T.; Nelkin, E.J.; Wolff, D.B.; Adler, R.F.; Gu, G.; Hong, Y.; Bowman, K.P.; Stocker, E.F. The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeorol. 2007, 8, 38–55. [Google Scholar] [CrossRef]
- Li, Y.; Guo, B.; Wang, K.; Wu, G.; Shi, C.; Ueno, K. Performance of TRMM product in quantifying frequency and intensity of precipitation during daytime and nighttime across China. Remote Sens. 2020, 12, 740. [Google Scholar] [CrossRef]
- Pirmoradian, R.; Hashemi, H.; Fayne, J. Performance evaluation of IMERG and TMPA daily precipitation products over CONUS (2000–2019). Atmos. Res. 2022, 279, 106389. [Google Scholar] [CrossRef]
- Adhikari, A.; Ehsani, M.R.; Song, Y.; Behrangi, A. Comparative assessment of snowfall retrieval from Microwave Humidity Sounders using machine learning methods. Earth Space Sci. 2020, 7, e2020EA001357. [Google Scholar] [CrossRef]
- Muñoz-Sabater, J.; Dutra, E.; Agustí-Panareda, A.; Albergel, C.; Arduini, G.; Balsamo, G.; Boussetta, S.; Choulga, M.; Harrigan, S.; Hersbach, H.; et al. ERA5-Land: A state-of-the-art global reanalysis dataset for land applications. Earth Syst. Sci. Data 2021, 13, 4349–4383. [Google Scholar] [CrossRef]
- Kistler, R.; Kalnay, E.; Collins, W.; Saha, S.; White, G.; Woollen, J.; Chelliah, M.; Ebisuzaki, W.; Kanamitsu, M.; Kousky, V.; et al. The NCEP–NCAR 50-Year Reanalysis: Monthly Means CD-ROM and Documentation. Bull. Am. Meteorol. Soc. 2001, 82, 247–268. [Google Scholar] [CrossRef]
- Yuan, X.; Yang, K.; Lu, H.; He, J.; Sun, J.; Wang, Y. Characterizing the features of precipitation for the Tibetan Plateau among four gridded datasets: Detection accuracy and spatio-temporal variabilities. Atmos. Res. 2021, 264, 105875. [Google Scholar] [CrossRef]
- Xu, J.; Ma, Z.; Yan, S.; Peng, J. Do ERA5 and ERA5-land precipitation estimates outperform satellite-based precipitation products? A comprehensive comparison between state-of-the-art model-based and satellite-based precipitation products over mainland China. J. Hydrol. 2022, 605, 127353. [Google Scholar] [CrossRef]
- He, J.; Yang, K.; Tang, W.; Lu, H.; Qin, J.; Chen, Y.; Li, X. The first high-resolution meteorological forcing dataset for land process studies over China. Sci. Data 2020, 7, 25. [Google Scholar] [CrossRef]
- Degefu, M.A.; Bewket, W.; Amha, Y. Evaluating performance of 20 global and quasi-global precipitation products in representing drought events in Ethiopia I: Visual and correlation analysis. Weather Clim. Extrem. 2022, 35, 100416. [Google Scholar] [CrossRef]
- Wang, B.; Bao, Q.; Hoskins, B.; Wu, G.; Liu, Y. Tibetan Plateau warming and precipitation changes in East Asia. Geophys. Res. Lett. 2008, 35, L14702. [Google Scholar] [CrossRef]
- Immerzeel, W.W.; Van Beek, L.P.H.; Bierkens, M.F.P. Climate change will affect the Asian water towers. Science 2010, 328, 1382–1385. [Google Scholar] [CrossRef]
- Yao, T.; Xue, Y.; Chen, D.; Chen, F.; Thompson, L.; Cui, P.; Koike, T.; Lau, W.K.; Lettenmaier, D.P.; Mosbrugger, V.; et al. Recent third pole’s rapid warming accompanies cryospheric melt and water cycle intensification and interactions between monsoon and environment: Multidisciplinary approach with observations, modeling, and analysis. Bull. Am. Meteorol. Soc. 2019, 100, 423–444. [Google Scholar] [CrossRef]
- Andermann, C.; Bonnet, C.; Gloaguen, R. Evaluation of precipitation data sets along the Himalayan front. Geochem. Geophys. Geosyst. 2011, 12, Q07023. [Google Scholar] [CrossRef]
- Ji, H.; Peng, D.; Gu, Y.; Liang, Y.; Luo, X. Evaluation of multiple satellite precipitation products and their potential utilities in the Yarlung Zangbo River Basin. Sci. Rep. 2022, 12, 13334. [Google Scholar] [CrossRef]
- Zhan, C.; Chen, Y.; Yang, K.; Lazhu; Zhou, X.; Jiang, Y.; Ling, X.; Tian, J.; Wang, Y.; Li, X.; et al. First evaluation of GPM-Era satellite precipitation products with new observations on the western Tibetan Plateau. Atmos. Res. 2023, 283, 106559. [Google Scholar] [CrossRef]
- He, Q.; Yang, J.; Chen, H.; Liu, J.; Ji, Q.; Wang, Y.; Tang, F. Evaluation of extreme precipitation based on three long-term gridded products over the Qinghai-Tibet Plateau. Remote Sens. 2021, 13, 3010. [Google Scholar] [CrossRef]
- Zhang, L.; Gao, L.; Chen, J.; Zhao, L.; Zhao, J.; Qiao, Y.; Shi, J. Comprehensive evaluation of mainstream gridded precipitation datasets in the cold season across the Tibetan Plateau. J. Hydrol. Reg. Stud. 2022, 43, 101186. [Google Scholar] [CrossRef]
- Zhang, L.; Zhao, L.; Xie, C.; Liu, G.; Gao, L.; Xiao, Y.; Shi, J.; Qiao, Y. Intercomparison of solid precipitation derived from the weighting rain gauge and optical instruments in the interior Qinghai-Tibetan Plateau. Adv. Meteorol. 2015, 2015, 936724. [Google Scholar] [CrossRef]
- Wu, G.; Liu, Y.; Wang, T.; Wan, R.; Liu, X.; Li, W.; Wang, Z.; Zhang, Q.; Duan, A.; Liang, X. The Influence of Mechanical and Thermal Forcing by the Tibetan Plateau on Asian Climate. J. Hydrometeorol. 2007, 8, 770–789. [Google Scholar] [CrossRef]
- Wang, R.; Fu, Y.; He, Y.; Tian, W.; Zhang, J.; Tian, H.; Luo, J. Characteristics of extreme precipitation and related near surface atmospheric conditions in summer over the Tibetan Plateau from GPM observations and multi-source reanalysis datasets. Atmos. Res. 2022, 279, 106400. [Google Scholar] [CrossRef]
- Liu, L.; Feng, J.; Chu, R.; Zhou, Y.; Ueno, K. The diurnal variation of precipitation in monsoon season in the Tibetan Plateau. Adv. Atmos. Sci. 2002, 19, 365–378. [Google Scholar] [CrossRef]
- Sun, B.; Wang, H. Interannual variation of the spring and summer precipitation over the three river source region in China and the associated regimes. J. Clim. 2018, 31, 7441–7457. [Google Scholar] [CrossRef]
- Li, G.; Yu, Z.; Li, Y.; Li, Z.; Ju, Q.; Huang, Y. The evolution of precipitation and its physical mechanisms in arid and humid regions of the Tibetan Plateau. Atmos. Res. 2023, 285, 106638. [Google Scholar] [CrossRef]
- Yang, K.; He, J.; Tang, W.; Qin, J.; Cheng, C. On downward shortwave and longwave radiations over high altitude regions: Observation and modeling in the Tibetan Plateau. Agric. For. Meteorol. 2010, 150, 38–46. [Google Scholar] [CrossRef]
- Wang, Y.; Miao, C.; Zhao, X.; Zhang, Q.; Su, J. Evaluation of the GPM IMERG product at the hourly timescale over China. Atmos. Res. 2023, 285, 106656. [Google Scholar] [CrossRef]
- Abtew, W.; Obeysekera, J.; Shih, G. Spatial analysis for monthly rainfall in south Florida. J. Am. Water Resour. Assoc. 1993, 29, 179–188. [Google Scholar] [CrossRef]
- Xin, Y.; Yang, Y.; Chen, X.; Yue, X.; Liu, Y.; Yin, C. Evaluation of IMERG and ERA5 precipitation products over the Mongolian Plateau. Sci. Rep. 2022, 12, 21776. [Google Scholar] [CrossRef] [PubMed]
- Hristopulos, D.T. Trend Models and Estimation. In Random Fields for Spatial Data Modeling; Springer: Dordrecht, The Netherlands, 2020; pp. 41–81. [Google Scholar]
- Hou, X.; Zhang, Y.; Lv, X.; Lee, J. The impact of meteorological conditions and emissions on tropospheric column ozone trends in recent years. Remote Sens. 2023, 15, 5293. [Google Scholar] [CrossRef]
- Taylor, K.E. Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res. 2001, 106, 7183–7192. [Google Scholar] [CrossRef]
- Luan, L.; Zhai, P. Changes in rainy season precipitation properties over the Qinghai-Tibet Plateau based on multi-source datasets. Climate Change Research 2023, 19, 173–190. (In Chinese) [Google Scholar] [CrossRef]
- Du, Y.; Wang, D.; Zhu, J.; Lin, Z.; Zhong, Y. Intercomparison of multiple high-resolution precipitation products over China: Climatology and extremes. Atmos. Res. 2022, 278, 106342. [Google Scholar] [CrossRef]
- Yang, X.; Yong, B.; Hong, Y.; Chen, S.; Zhang, X. Error analysis of multi-satellite precipitation estimates with an independent raingauge observation network over a medium-sized humid basin. Hydrol. Sci. J. 2016, 61, 1813–1830. [Google Scholar] [CrossRef]
- Xie, W.; Yi, S.; Leng, C.; Xia, D.; Li, M.; Zhong, Z.; Ye, J. The evaluation of IMERG and ERA5-Land daily precipitation over China with considering the influence of gauge data bias. Sci. Rep. 2022, 12, 8085. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wu, C.; Yeh, P.J.F.; Li, J.; Hu, B.X.; Feng, P.; Jun, C. Evaluation and comparison of precipitation estimates and hydrologic utility of CHIRPS, TRMM 3B42 V7 and PERSIANN-CDR products in various climate regimes. Atmos. Res. 2022, 265, 105881. [Google Scholar] [CrossRef]
- Gentilucci, M.; Barbieri, M.; Pambianchi, G. Reliability of the IMERG product through reference rain gauges in Central Italy. Atmos. Res. 2022, 278, 106340. [Google Scholar] [CrossRef]
- Hong, T.; Li, H.; Chen, M. Comprehensive evaluations on the error characteristics of the state-of-the-art gridded precipitation products over Jiangxi province in 2019. Earth Space Sci. 2021, 8, e2021EA001787. [Google Scholar] [CrossRef]
- Yu, L.; Leng, G.; Python, A.; Peng, J. A Comprehensive evaluation of latest GPM IMERG V06 early, late and final precipitation products across China. Remote Sens. 2021, 13, 1208. [Google Scholar] [CrossRef]
- Steinkopf, J.; Engelbrecht, F. Verifcation of ERA5 and ERA-Interim precipitation over Africa at intra-annual and interannual timescales. Atmos. Res. 2022, 280, 106427. [Google Scholar] [CrossRef]
- Ringerud, S.; Peters-Lidard, C.; Munchak, J.; You, Y. Applications of dynamic land surface information for passive microwave precipitation retrieval. J. Atmos. Ocean. Technol. 2021, 38, 167–180. [Google Scholar] [CrossRef]
- Zhang, A.; Fu, Y. The structural characteristics of precipitation cases detected by dual-frequency radar of GPM satellite. Chin. J. Atmos. Sci. 2018, 42, 33–51. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
Evaluation Metric | Formula 1 | Perfect Value |
---|---|---|
Correlation coefficient (CC) | 1 | |
Relative bias (bias) | 0 | |
Root-mean-square error (RMSE) | 0 | |
Probability of detection (POD) | 1 | |
False alarm ratio (FAR) | 0 | |
Critical success index (CSI) | 1 |
Month | Evaluation Metric | CMFD | ERA5-Land | IMERG |
---|---|---|---|---|
Jun. | CC | 0.932 | 0.692 | 0.846 |
Bias (%) | 2.375 | 56.006 | 8.113 | |
RMSE (mm/month) | 19.921 | 71.310 | 30.099 | |
Jul. | CC | 0.837 | 0.624 | 0.743 |
Bias (%) | 4.996 | 58.462 | 15.523 | |
RMSE (mm/month) | 34.519 | 90.711 | 46.040 | |
Aug. | CC | 0.868 | 0.633 | 0.736 |
Bias (%) | 5.494 | 61.442 | 16.676 | |
RMSE (mm/month) | 28.488 | 80.821 | 43.258 |
Dataset | Spatio-Temporal Resolution | Temporal Coverage | Spatial Coverage | Addition |
---|---|---|---|---|
CMFD | 0.1°, 3 h | 1979 to 2018 | China | release latency, CMA station calibration |
ERA5-Land | 0.1°, 1 h | 1950 to present | Global land | release latency, GPCC calibration |
IMERG | 0.1°, 0.5 h | 2000 to 2021 | 60°N-S | release latency, NCEP Stage IV calibration |
Station | Latitude (°E) | Longitude (°N) | OBS (mm) | CMFD (mm) | ERA5-Land (mm) | IMERG (mm) |
---|---|---|---|---|---|---|
EW01 | 32.51 | 79.68 | 88.6 | 95.4 | 286.1 | 139.6 |
EW03 | 32.37 | 80.61 | 99.6 | 93.5 | 246.3 | 177.3 |
EW05 | 32.21 | 81.56 | 181.2 | 211.4 | 332.3 | 200.2 |
EW06 | 32.22 | 82.26 | 163.6 | 233.7 | 232.0 | 321.7 |
EW07 | 32.53 | 82.59 | 114.2 | 247.2 | 250.0 | 400.6 |
EW08 | 32.4 | 83.42 | 173.4 | 252.8 | 330.2 | 346.5 |
EW09 | 32.29 | 84.07 | 166.0 | 196.3 | 286.8 | 237.1 |
EW11 | 32.02 | 85.48 | 250.8 | 203.4 | 281.9 | 376.0 |
EW16 | 31.87 | 88.15 | 296.8 | 283.3 | 457.3 | 436.9 |
SN28 | 32.38 | 89.15 | 312.0 | 289.5 | 371.5 | 332.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, K.; Zhong, S. Evaluation and Error Analysis of Multi-Source Precipitation Datasets during Summer over the Tibetan Plateau. Atmosphere 2024, 15, 165. https://doi.org/10.3390/atmos15020165
Zhao K, Zhong S. Evaluation and Error Analysis of Multi-Source Precipitation Datasets during Summer over the Tibetan Plateau. Atmosphere. 2024; 15(2):165. https://doi.org/10.3390/atmos15020165
Chicago/Turabian StyleZhao, Keyue, and Shanshan Zhong. 2024. "Evaluation and Error Analysis of Multi-Source Precipitation Datasets during Summer over the Tibetan Plateau" Atmosphere 15, no. 2: 165. https://doi.org/10.3390/atmos15020165
APA StyleZhao, K., & Zhong, S. (2024). Evaluation and Error Analysis of Multi-Source Precipitation Datasets during Summer over the Tibetan Plateau. Atmosphere, 15(2), 165. https://doi.org/10.3390/atmos15020165