Exploring How Aerosol Optical Depth Varies in the Yellow River Basin and Its Urban Agglomerations by Decade
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. MCD19A2 AOD
2.3. Methods
2.3.1. Theil–Sen Slope
2.3.2. Mann–Kendall Test
2.3.3. Standard Deviation Ellipse (SDE)
3. Results
3.1. Interannual Variation in AOD in the YRB
3.2. Quarterly Comparison of AOD Among the YRB Urban Agglomerations
3.3. AOD Offset Trajectory of the YRB Urban Agglomerations
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Baltensperger, U.; Prévôt, A.S.H. Chemical analysis of atmospheric aerosols. Anal. Bioanal. Chem. 2008, 390, 277–280. [Google Scholar] [CrossRef] [PubMed]
- Nizar, S.; Dodamani, B.M. Spatiotemporal distribution of aerosols over the Indian subcontinent and its dependence on prevailing meteorological conditions. Air Qual. Atmos. Health 2019, 12, 503–517. [Google Scholar] [CrossRef]
- Lushnikov, A.A.; Zagaynov, V.A.; Lyubovtseva, Y.S. Formation of Aerosols in the Atmosphere. In The Atmosphere and Ionosphere: Dynamics, Processes and Monitoring; Bychkov, V., Golubkov, G., Nikitin, A., Eds.; Springer: Dordrecht, The Netherlands, 2010; pp. 69–95. [Google Scholar] [CrossRef]
- Luo, Y.; Zheng, X.; Zhao, T.; Chen, J. A climatology of aerosol optical depth over China from recent 10 years of MODIS remote sensing data. Int. J. Climatol. 2014, 34, 863–870. [Google Scholar] [CrossRef]
- Xue, R.; Ai, B.; Lin, Y.; Pang, B.; Shang, H. Spatial and Temporal Distribution of Aerosol Optical Depth and Its Relationship with Urbanization in Shandong Province. Atmosphere 2019, 10, 110. [Google Scholar] [CrossRef]
- Li, J.; He, Q.; Ge, X.; abbas, A. Spatiotemporal distribution of aerosols over the Tibet Plateau and Tarim Basin (1980–2020). J. Clean. Prod. 2022, 374, 133958. [Google Scholar] [CrossRef]
- Holben, B.N.; Eck, T.F.; Slutsker, I.; Tanré, D.; Buis, J.P.; Setzer, A.; Vermote, E.; Reagan, J.A.; Kaufman, Y.J.; Nakajima, T.; et al. AERONET—A Federated Instrument Network and Data Archive for Aerosol Characterization. Remote Sens. Environ. 1998, 66, 1–16. [Google Scholar] [CrossRef]
- Okpalaonwuka, C.; Olusegun, C.F.; Olusola, A.; Ogunjo, S. Validation of MODIS AOD retrievals in West Africa: A comparison with AERONET observations. Air Qual. Atmos. Health 2023, 16, 2085–2094. [Google Scholar] [CrossRef]
- Yuan, X.; Xia, Y.; He, J.; Cheng, M.; Qi, B.; Yu, Z.; Wang, B. Study on Accuracy Evaluation of MODIS AOD Products and Spatio-Temporal Distribution Characteristics of AOD in Hangzhou. Sustainability 2023, 15, 10171. [Google Scholar] [CrossRef]
- Wang, D.; Zhang, F.; Yang, S.; Xia, N.; Ariken, M. Exploring the spatial-temporal characteristics of the aerosol optical depth (AOD) in Central Asia based on the moderate resolution imaging spectroradiometer (MODIS). Environ. Monit. Assess. 2020, 192, 383. [Google Scholar] [CrossRef]
- Yousefi, R.; Wang, F.; Ge, Q.; Shaheen, A. Long-term aerosol optical depth trend over Iran and identification of dominant aerosol types. Sci. Total Environ. 2020, 722, 137906. [Google Scholar] [CrossRef]
- Lyapustin, A.; Wang, Y.; Korkin, S.; Huang, D. MODIS Collection 6 MAIAC algorithm. Atmos. Meas. Tech. 2018, 11, 5741–5765. [Google Scholar] [CrossRef]
- Martins, V.S.; Lyapustin, A.; de Carvalho, L.A.S.; Barbosa, C.C.F.; Novo, E.M.L.M. Validation of high-resolution MAIAC aerosol product over South America. J. Geophys. Res. Atmos. 2017, 122, 7537–7559. [Google Scholar] [CrossRef]
- Mhawish, A.; Banerjee, T.; Sorek-Hamer, M.; Lyapustin, A.; Broday, D.M.; Chatfield, R. Comparison and evaluation of MODIS Multi-angle Implementation of Atmospheric Correction (MAIAC) aerosol product over South Asia. Remote Sens. Environ. 2019, 224, 12–28. [Google Scholar] [CrossRef]
- Stafoggia, M.; Schwartz, J.; Badaloni, C.; Bellander, T.; Alessandrini, E.; Cattani, G.; de’ Donato, F.; Gaeta, A.; Leone, G.; Lyapustin, A.; et al. Estimation of daily PM10 concentrations in Italy (2006–2012) using finely resolved satellite data, land use variables and meteorology. Environ. Int. 2017, 99, 234–244. [Google Scholar] [CrossRef]
- Zhdanova, E.Y.; Chubarova, N.Y.; Lyapustin, A.I. Assessment of urban aerosol pollution over the Moscow megacity by the MAIAC aerosol product. Atmos. Meas. Tech. 2020, 13, 877–891. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, S.; Fan, Q.; Wu, D.; Chan, P.; Wang, X.; Fan, S.; Feng, Y.; Hong, Y. Accessing the Impact of Sea-Salt Emissions on Aerosol Chemical Formation and Deposition over Pearl River Delta, China. Aerosol Air Qual. Res. 2015, 15, 2232–2245. [Google Scholar] [CrossRef]
- Shen, X.J.; Sun, J.Y.; Zhang, X.Y.; Zhang, Y.M.; Zhang, L.; Che, H.C.; Ma, Q.L.; Yu, X.M.; Yue, Y.; Zhang, Y.W. Characterization of submicron aerosols and effect on visibility during a severe haze-fog episode in Yangtze River Delta, China. Atmos. Environ. 2015, 120, 307–316. [Google Scholar] [CrossRef]
- Shen, X.L.; Dang, T.G.; Liu, J. Summary of Beijing-Tianjin-Hebei Haze Causes and Solutions Research. Adv. Mater. Res. 2014, 1010–1012, 639–644. [Google Scholar] [CrossRef]
- Gao, Y.; Zhang, M.; Liu, Z.; Wang, L.; Wang, P.; Xia, X.; Tao, M.; Zhu, L. Modeling the feedback between aerosol and meteorological variables in the atmospheric boundary layer during a severe fog–haze event over the North China Plain. Atmos. Chem. Phys. 2015, 15, 4279–4295. [Google Scholar] [CrossRef]
- Gu, T.; Guan, X.; Huang, J.; Shen, X.; Huang, X.; Zhang, G.; Han, D.; Fu, L.; Nie, J. The turning of ecological change in the Yellow River Basin. Hydrol. Process. 2023, 37, e15055. [Google Scholar] [CrossRef]
- Hu, Z.-Y.; Wu, Y.-H.; Wu, F.-C.; Ma, S.-D. The Number of Independent Kruppa Constraints from N Images. J. Comput. Sci. Technol. 2006, 21, 209–217. [Google Scholar] [CrossRef]
- Sun, Z.-L.; Sun, L.-Q.; Wang, B. Microplastic Pollution in the Yellow River Basin: Current Status and Control Strategy. Water Air Soil Pollut. 2023, 234, 30. [Google Scholar] [CrossRef]
- Lu, D.; Sun, D. Development and management tasks of the Yellow River Basin:A preliminary understanding and suggestion. Acta Geogr. Sin. 2019, 74, 2431–2436. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, G.; Ju, H. The spatial pattern and influencing factors of tourism development in the Yellow River Basin of China. PLoS ONE 2020, 15, e0242029. [Google Scholar] [CrossRef]
- Dai, Q.; Cui, C.-F.; Wang, S. Spatiotemporal variation and sustainability of NDVI in the Yellow River basin. Irrig. Drain. 2022, 71, 1304–1318. [Google Scholar] [CrossRef]
- Li, J.; Sun, W.; Li, M.; Linlin, M. Coupling coordination degree of production, living and ecological spaces and its influencing factors in the Yellow River Basin. J. Clean. Prod. 2021, 298, 126803. [Google Scholar] [CrossRef]
- Meng, H.; Bai, G.; Wang, L. Analysis of the spatial and temporal distribution characteristics of AOD in typical industrial cities in northwest China and the influence of meteorological factors. Atmos. Pollut. Res. 2024, 15, 101957. [Google Scholar] [CrossRef]
- Lu, Z.; Chen, Y.; Zhao, C. Motion Segmentation Based on Pixel Distribution Learning on Unseen Videos. Smart Multimed. 2022, 13497, 309–321. [Google Scholar] [CrossRef]
- Jia, C.; Sun, L.; Zhang, X.; Wang, Y. Verification of Mcd19a2 Data and Study of Aerosol Characteristics in Beijing-Tianjin-Hebei Region. ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci. 2020, V-3-2020, 675–679. [Google Scholar] [CrossRef]
- Theil, H. A rank-invariant method of linear and polynomial regression analysis. Indag. Math. 1950, 12, 173. [Google Scholar]
- Sen, P.K. Estimates of the Regression Coefficient Based on Kendall’s Tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Mann, H.B. Nonparametric tests against trend. Econom. J. Econom. Soc. 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Methods; Charles Griffin & Co., Ltd.: London, UK, 1948. [Google Scholar]
- Lefever, D.W. Measuring geographic concentration by means of the standard deviational ellipse. Am. J. Sociol. 1926, 32, 88–94. [Google Scholar] [CrossRef]
- Bai, B.; Zhang, Q.; Tan, D.; Huang, P.; Yin, F. Responses of the Optical Properties and Distribution of Aerosols to the Summer Monsoon in the Main Climate Zones of China. Atmosphere 2021, 12, 482. [Google Scholar] [CrossRef]
- Yong, J.; Xie, Y.; Guo, H.; Li, Y.; Sun, S. Unraveling the influence of biogenic volatile organic compounds and their constituents on ozone and SOA formation within the Yellow River Basin, China. Chemosphere 2024, 353, 141549. [Google Scholar] [CrossRef]
- Wang, Z.; Xue, L.; Liu, J.; Ding, K.; Lou, S.; Ding, A.; Wang, J.; Huang, X. Roles of Atmospheric Aerosols in Extreme Meteorological Events: A Systematic Review. Curr. Pollut. Rep. 2022, 8, 177–188. [Google Scholar] [CrossRef]
- Han, L.; Han, M.; Wang, Y.; Wang, H.; Niu, J. Spatial and temporal characteristic of PM2.5 and influence factors in the Yellow River Basin. Front. Public Health 2024, 12, 1403414. [Google Scholar] [CrossRef]
- Zhao, H.; Liu, Y.; Gu, T.; Zheng, H.; Wang, Z.; Yang, D. Identifying Spatiotemporal Heterogeneity of PM2.5 Concentrations and the Key Influencing Factors in the Middle and Lower Reaches of the Yellow River. Remote Sens. 2022, 14, 2643. [Google Scholar] [CrossRef]
- Che, H.; Gui, K.; Xia, X.; Wang, Y.; Holben, B.N.; Goloub, P.; Cuevas-Agulló, E.; Wang, H.; Zheng, Y.; Zhao, H.; et al. Large contribution of meteorological factors to inter-decadal changes in regional aerosol optical depth. Atmos. Chem. Phys. 2019, 19, 10497–10523. [Google Scholar] [CrossRef]
- Collaud Coen, M.; Andrews, E.; Aliaga, D.; Andrade, M.; Angelov, H.; Bukowiecki, N.; Ealo, M.; Fialho, P.; Flentje, H.; Hallar, A.G.; et al. Identification of topographic features influencing aerosol observations at high altitude stations. Atmos. Chem. Phys. 2018, 18, 12289–12313. [Google Scholar] [CrossRef]
- Tang, G.; Zhu, X.; Hu, B.; Xin, J.; Wang, L.; Münkel, C.; Mao, G.; Wang, Y. Impact of emission controls on air quality in Beijing during APEC 2014: Lidar ceilometer observations. Atmos. Chem. Phys. 2015, 15, 12667–12680. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, L.; Li, S.; Wang, X.; Yu, C.; Si, Y.; Zhang, Z. Interference of Heavy Aerosol Loading on the VIIRS Aerosol Optical Depth (AOD) Retrieval Algorithm. Remote Sens. 2017, 9, 397. [Google Scholar] [CrossRef]
- Zeduo, Z.; Wei, Z.; Mou, Y.; Zhiqiang, L.; Daxiang, G.; Kadun, T. Evolutionary relationship between the PM2.5 concentration and urbanization in the Yellow River Ecological and Economic Zone. Environ. Sustain. Indic. 2022, 16, 100198. [Google Scholar] [CrossRef]
- Liu, J.; Shi, T.; Huang, L. A Study on the Impact of Industrial Restructuring on Carbon Dioxide Emissions and Scenario Simulation in the Yellow River Basin. Water 2022, 14, 3833. [Google Scholar] [CrossRef]
- Sogacheva, L.; Rodriguez, E.; Kolmonen, P.; Virtanen, T.H.; Saponaro, G.; de Leeuw, G.; Georgoulias, A.K.; Alexandri, G.; Kourtidis, K.; van der A, R.J. Spatial and seasonal variations of aerosols over China from two decades of multi-satellite observations—Part 2: AOD time series for 1995–2017 combined from ATSR ADV and MODIS C6.1 and AOD tendency estimations. Atmos. Chem. Phys. 2018, 18, 16631–16652. [Google Scholar] [CrossRef]
- Li, J.; Han, Z.; Zhang, R. Influence of aerosol hygroscopic growth parameterization on aerosol optical depth and direct radiative forcing over East Asia. Atmos. Res. 2014, 140–141, 14–27. [Google Scholar] [CrossRef]
- de Leeuw, G.; Kang, H.; Fan, C.; Li, Z.; Fang, C.; Zhang, Y. Meteorological and anthropogenic contributions to changes in the Aerosol Optical Depth (AOD) over China during the last decade. Atmos. Environ. 2023, 301, 119676. [Google Scholar] [CrossRef]
- Che, H.; Xia, X.; Zhu, J.; Li, Z.; Dubovik, O.; Holben, B.; Goloub, P.; Chen, H.; Estelles, V.; Cuevas-Agulló, E.; et al. Column aerosol optical properties and aerosol radiative forcing during a serious haze-fog month over North China Plain in 2013 based on ground-based sunphotometer measurements. Atmos. Chem. Phys. 2014, 14, 2125–2138. [Google Scholar] [CrossRef]
- Zhang, M.; Liu, J.; Bilal, M.; Zhang, C.; Zhao, F.; Xie, X.; Khedher, K.M. Optical and Physical Characteristics of the Lowest Aerosol Layers over the Yellow River Basin. Atmosphere 2019, 10, 638. [Google Scholar] [CrossRef]
- Zheng, Y.; Wang, X.; Zhang, X.; Hu, G. Multi-spatiotemporal patterns of aerosol optical depth and influencing factors during 2000–2020 from two spatial perspectives: The entire Yellow River Basin region and its urban agglomerations. Int. J. Appl. Earth Obs. Geoinf. 2022, 106, 102643. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, M.; Bilal, M.; Su, B.; Zhang, C.; Guo, L. Comparison of MODIS- and CALIPSO-Derived Temporal Aerosol Optical Depth over Yellow River Basin (China) from 2007 to 2015. Earth Syst. Environ. 2020, 4, 535–550. [Google Scholar] [CrossRef]
- de Leeuw, G.; Fan, C.; Li, Z.; Dong, J.; Li, Y.; Ou, Y.; Zhu, S. Spatiotemporal variation and provincial scale differences of the AOD across China during 2000–2021. Atmos. Pollut. Res. 2022, 13, 101359. [Google Scholar] [CrossRef]
- Li, H.; Han, Z.; Cheng, T.; Du, H.; Kong, L.; Chen, J.; Zhang, R.; Wang, W. Agricultural fire impacts on the air quality of Shanghai during summer harvesttime. Aerosol Air Qual. Res. 2010, 10, 95–101. [Google Scholar] [CrossRef]
- Xu, Y.; Ying, Q.; Hu, J.; Gao, Y.; Yang, Y.; Wang, D.; Zhang, H. Spatial and temporal variations in criteria air pollutants in three typical terrain regions in Shaanxi, China, during 2015. Air Qual. Atmos. Health 2018, 11, 95–109. [Google Scholar] [CrossRef]
- Xu, Y.; Hu, J.; Ying, Q.; Hao, H.; Wang, D.; Zhang, H. Current and future emissions of primary pollutants from coal-fired power plants in Shaanxi, China. Sci. Total Environ. 2017, 595, 505–514. [Google Scholar] [CrossRef]
- Du, W.; Chen, Y.; Shen, G.; Wang, W.; Zhuo, S.; Huang, Y.; Pan, X.; Tao, S. Winter air pollution by and inhalation exposure to nitrated and oxygenated PAHs in rural Shanxi, north China. Atmos. Environ. 2018, 187, 210–217. [Google Scholar] [CrossRef]
- Wang, J.; Li, X. Influence of industrial sustainability transition on air quality in a typical resource-exhausted city. Heliyon 2024, 10, e25138. [Google Scholar] [CrossRef]
- Dong, Z.; Yu, X.; Li, X.; Dai, J. Analysis of variation trends and causes of aerosol optical depth in Shaanxi Province using MODIS data. Chin. Sci. Bull. 2013, 58, 4486–4496. [Google Scholar] [CrossRef]
- Chen, S.; Zhang, Y.; Zhang, Y.; Liu, Z. The relationship between industrial restructuring and China’s regional haze pollution: A spatial spillover perspective. J. Clean. Prod. 2019, 239, 115808. [Google Scholar] [CrossRef]
- Bai, X.; Tian, H.; Liu, X.; Wu, B.; Liu, S.; Hao, Y.; Luo, L.; Liu, W.; Zhao, S.; Lin, S.; et al. Spatial-temporal variation characteristics of air pollution and apportionment of contributions by different sources in Shanxi province of China. Atmos. Environ. 2021, 244, 117926. [Google Scholar] [CrossRef]
- Wang, J.; Liu, D.; Xu, X.; Ma, J.; Han, L. Analysis of the temporal and spatial pattern of air pollution and the heterogeneity of its influencing factors in central Inner Mongolia from 2016 to 2018. Front. Environ. Sci. 2022, 10, 893437. [Google Scholar] [CrossRef]
- Zhao, N.; Wang, G.; Li, G.; Lang, J. Trends in air pollutant concentrations and the impact of meteorology in Shandong Province, coastal China, during 2013–2019. Aerosol Air Qual. Res. 2021, 21, 200545. [Google Scholar] [CrossRef]
- Wang, X.; Zhao, W.; Zhang, T.; Qiu, Y.; Ma, P.; Li, L.; Wang, L.; Wang, M.; Zheng, D.; Zhao, W. Analysis of the Characteristics of Ozone Pollution in the North China Plain from 2016 to 2020. Atmosphere 2022, 13, 715. [Google Scholar] [CrossRef]
- Wang, D.; Li, X.; Duan, X.; Yang, H.; Zhang, B. Exploring the spatiotemporal patterns of county-scale PM2.5 drivers in Shandong Province from 2000 to 2020. PLoS ONE 2024, 19, e0310190. [Google Scholar] [CrossRef] [PubMed]
Year | AOD | Increase (+) or Decrease (−) | Magnitude (%) |
---|---|---|---|
2011 | 0.300 | - | - |
2012 | 0.264 | −0.036 | −11.856 |
2013 | 0.278 | 0.013 | 4.954 |
2014 | 0.253 | −0.024 | −8.773 |
2015 | 0.265 | 0.012 | 4.733 |
2016 | 0.241 | −0.025 | −9.254 |
2017 | 0.228 | −0.013 | −5.232 |
2018 | 0.231 | 0.003 | 1.476 |
2019 | 0.232 | 0.000 | 0.168 |
2020 | 0.232 | 0.000 | 0.044 |
Year | CenterX (°E) | CenterY (°N) | XStdDist (°) | YStdDist (°) | θ (°) |
---|---|---|---|---|---|
2011 | 111.236 | 36.238 | 6.093 | 2.096 | 90.727 |
2012 | 111.601 | 36.243 | 6.208 | 2.059 | 90.526 |
2013 | 111.278 | 36.208 | 6.195 | 2.054 | 90.574 |
2014 | 111.557 | 36.240 | 6.241 | 2.042 | 90.486 |
2015 | 111.462 | 36.257 | 6.157 | 2.072 | 90.592 |
2016 | 111.319 | 36.244 | 6.267 | 2.061 | 90.559 |
2017 | 111.177 | 36.305 | 6.258 | 2.084 | 90.851 |
2018 | 111.095 | 36.321 | 6.210 | 2.094 | 91.063 |
2019 | 111.194 | 36.312 | 6.173 | 2.106 | 91.119 |
2020 | 110.979 | 36.330 | 6.189 | 2.109 | 91.128 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Y.; Tang, Q.; Hu, Z.; Yu, Q.; Liang, T. Exploring How Aerosol Optical Depth Varies in the Yellow River Basin and Its Urban Agglomerations by Decade. Atmosphere 2024, 15, 1466. https://doi.org/10.3390/atmos15121466
Zhao Y, Tang Q, Hu Z, Yu Q, Liang T. Exploring How Aerosol Optical Depth Varies in the Yellow River Basin and Its Urban Agglomerations by Decade. Atmosphere. 2024; 15(12):1466. https://doi.org/10.3390/atmos15121466
Chicago/Turabian StyleZhao, Yinan, Qingxin Tang, Zhenting Hu, Quanzhou Yu, and Tianquan Liang. 2024. "Exploring How Aerosol Optical Depth Varies in the Yellow River Basin and Its Urban Agglomerations by Decade" Atmosphere 15, no. 12: 1466. https://doi.org/10.3390/atmos15121466
APA StyleZhao, Y., Tang, Q., Hu, Z., Yu, Q., & Liang, T. (2024). Exploring How Aerosol Optical Depth Varies in the Yellow River Basin and Its Urban Agglomerations by Decade. Atmosphere, 15(12), 1466. https://doi.org/10.3390/atmos15121466