SuperDARN Radar Wind Observations of Eastward-Propagating Planetary Waves
Abstract
:1. Introduction
2. Data and Methodology
2.1. Data Source
2.2. Analysis
3. Results
3.1. Climatology of Meridional Winds at Each Station
3.2. EPW-S1 and -S2 During Winters Without ES-SSWs
3.3. EPW-S1 and -S2 During Winters with ES-SSWs
4. Supporting Model Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Domeisen, D.I.V.; Martius, O.; Jiménez-Esteve, B. Rossby wave propagation into the Northern Hemisphere stratosphere: The role of zonal phase speed. Geophys. Res. Lett. 2018, 45, 2064–2071. [Google Scholar] [CrossRef]
- Iwao, K.; Hirooka, T. Opposite contributions of stationary and traveling planetary waves in the northern hemisphere winter middle atmosphere. J. Geophys. Res. Atmos. 2021, 126, e2020JD034195. [Google Scholar] [CrossRef]
- Rhodes, C.T.; Limpasuvan, V.; Orsolini, Y.J. Eastward propagating planetary waves prior to the January 2009 sudden stratospheric warming. J. Geophys. Res. Atmos. 2021, 126, e2020JD033696. [Google Scholar] [CrossRef]
- Harnik, N.; Heifetz, E. Relating overreflection and wave geometry to the counter propagating Rossby wave perspective: Toward a deeper mechanistic understanding of shear instability. J. Atmos. Sci. 2007, 64, 2238–2261. [Google Scholar] [CrossRef]
- Rhodes, C.T.; Limpasuvan, V.; Orsolini, Y.J. The Composite Response of Traveling Planetary Waves in the Middle Atmosphere Surrounding Sudden Stratospheric Warmings through an Overreflection Perspective. J. Atmos. Sci. 2023, 80, 2635–2652. [Google Scholar] [CrossRef]
- Hartmann, D.L. Barotropic instability of the polar night jet stream. J. Atmos. Sci. 1983, 40, 817–835. [Google Scholar] [CrossRef]
- Manney, G.L.; Randel, W.J. Instability at the winter stratopause: A mechanism for the 4-day wave. J. Atmos. Sci. 1993, 50, 3928–3938. [Google Scholar] [CrossRef]
- Orsolini, Y.; Simon, P. Idealized life cycles of planetary-scale barotropic waves in the middle atmosphere. J. Atmos. Sci. 1995, 52, 3817–3835. [Google Scholar] [CrossRef]
- Watanabe, S.; Tomikawa, Y.; Sato, K.; Kawatani, Y.; Miyazaki, K.; Takahashi, M. Simulation of the eastward 4-day wave in the Antarctic winter mesosphere using a gravity wave resolving general circulation model. J. Geophys. Res. Atmos. 2009, 114, D16111. [Google Scholar] [CrossRef]
- Lu, X.; Chu, X.; Fuller-Rowell, T.; Chang, L.; Fong, W.; Yu, Z. Eastward propagating planetary waves with periods of 1-5 days in the winter Antarctic stratosphere as revealed by MERRA and lidar. J. Geophys. Res. Atmos. 2013, 118, 9565–9578. [Google Scholar] [CrossRef]
- Yoo, J.; Chun, H.; Kang, M. Vortex preconditioning of the 2021 sudden stratospheric warming: Barotropic-baroclinic instability associated with the double westerly jets. Atmos. Chem. Phys. 2023, 23, 10869–10881. [Google Scholar] [CrossRef]
- Iida, C.; Hirooka, T.; Eguchi, N. Circulation changes in the stratosphere and mesosphere during the stratospheric sudden warming event in January 2009. J. Geophys. Res. Atmos. 2014, 119, 7104–7115. [Google Scholar] [CrossRef]
- Gelaro, R.; McCarty, W.; Suárez, M.J.; Todling, R.; Molod, A.; Takacs, L.; Randles, C.A.; Darmenov, A.; Bosilovich, M.G.; Reichle, R. The Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2). J. Clim. 2017, 30, 5419–5454. [Google Scholar] [CrossRef] [PubMed]
- Ma, Z.; Gong, Y.; Zhang, S.; Xiao, Q.; Huang, C.; Huang, K. Quasi–5–day oscillations during Arctic major sudden stratospheric warmings from 2005 to 2021. J. Geophys. Res. Space Phys. 2024, 129, e2023JA032292. [Google Scholar] [CrossRef]
- Kleinknecht, N.H.; Espy, P.J.; Hibbins, R.E. Climatology of zonal wave numbers 1 and 2 planetary wave structure in the MLT using a chain of Northern Hemisphere SuperDARN radars. J. Geophys. Res. Atmos. 2014, 119, 1292–1307. [Google Scholar] [CrossRef]
- Stray, N.H.; de Wit, R.J.; Espy, P.J.; Hibbins, R.E. Observational evidence for temporary planetary-wave forcing of the MLT during fall equinox. Geophys. Res. Lett. 2014, 41, 6281–6288. [Google Scholar] [CrossRef]
- Stray, N.H.; Orsolini, Y.J.; Espy, P.J.; Limpasuvan, V.; Hibbins, R.E. Observations of planetary waves in the mesosphere-lower thermosphere during stratospheric warming events. Atmos. Chem. Phys. 2015, 15, 4997–5005. [Google Scholar] [CrossRef]
- Hibbins, R.E.; Espy, P.J.; Orsolini, Y.J.; Limpasuvan, V.; Barnes, R.J. SuperDARN observations of semidiurnal tidal variability in the MLT and the response to sudden stratospheric warming events. J. Geophys. Res. Atmos. 2019, 124, 4862–4872. [Google Scholar] [CrossRef]
- Greenwald, R.A.; Baker, K.B.; Hutchins, R.A.; Hanuise, C. An HF phase-array radar for studying small-scale structure in the high-latitude ionosphere. Radio Sci. 1985, 20, 63–79. [Google Scholar] [CrossRef]
- Hall, G.E.; MacDougall, J.W.; Moorcroft, D.R.; St.-Maurice, J.P.; Manson, A.H.; Meek, C.E. Super Dual Auroral Radar Network observations of meteor echoes. J. Geophys. Res. 1997, 14, 603–614. [Google Scholar] [CrossRef]
- van Caspel, W.E.; Espy, P.J.; Hibbins, R.E.; McCormack, J.P. Migrating tide climatologies measured by a high-latitude array of SuperDARN HF radars. Ann. Geophys. 2020, 38, 1257–1265. [Google Scholar] [CrossRef]
- Reid, I.M. Meteor Radar for Investigation of the MLT Region: A Review. Atmosphere 2024, 15, 505. [Google Scholar] [CrossRef]
- Chisham, G.; Freeman, M.P. A reassessment of SuperDARN meteor echoes from the upper mesosphere and lower thermosphere. J. Atmos. Sol. Terr. Phys. 2013, 102, 207–221. [Google Scholar] [CrossRef]
- Hibbins, R.E.; Jarvis, M.J. A long-term comparison of wind and tide measurements in the upper mesosphere recorded with an imaging Doppler interferometer and SuperDARN radar at Halley, Antarctica. Atmos. Chem. Phys. 2008, 8, 1367–1376. [Google Scholar] [CrossRef]
- Mitchell, N.J.; Pancheva, D.; Middleton, H.R.; Hagan, M.E. Mean winds and tides in the Arctic mesosphere and lower thermosphere. J. Geophys. Res. 2002, 107, 1004. [Google Scholar] [CrossRef]
- Hussey, G.C.; Meek, C.E.; Andre, D.; Manson, A.H.; Sofko, G.J.; Hall, C.M. A comparison of Northern Hemisphere winds using SuperDARN meteor trail and MF radar wind measurements. J. Geophys. Res. 2000, 105, 18053–18066. [Google Scholar] [CrossRef]
- Koushik, N.; Kumar, K.K.; Ramkumar, G.; Subrahmanyam, K.V.; Kishore Kumar, G.; Hocking, W.K.; He, M.; Latteck, R. Planetary waves in the mesosphere lower thermosphere during stratospheric sudden warming: Observations using a network of meteor radars from high to equatorial latitudes. Clim. Dyn. 2020, 54, 4059–4074. [Google Scholar] [CrossRef]
- Gong, Y.; Li, C.; Ma, Z.; Zhang, S.; Zhou, Q.; Huang, C.; Huang, K.; Li, G.; Ning, B. Study of the quasi-5-day wave in the MLT region by a meteor radar chain. J. Geophys. Res. Atmos. 2018, 123, 9474–9487. [Google Scholar] [CrossRef]
- Ma, Z.; Gong, Y.; Zhang, S.; Zhou, Q.; Huang, C.; Huang, K.; Yu, Y.; Li, G.; Ning, B.; Li, C. Responses of quasi 2day waves in the MLT region to the 2013 SSW revealed by a meteor radar chain. Geophys. Res. Lett. 2017, 44, 9142–9150. [Google Scholar] [CrossRef]
- Limpasuvan, V.; Orsolini, Y.J.; Chandran, A.; Garcia, R.R.; Smith, A.K. On the composite response of the MLT to major sudden stratospheric warming events with elevated stratopause. J. Geophys. Res. Atmos. 2016, 121, 4518–4537. [Google Scholar] [CrossRef]
- Smith, A.K. The origin of stationary planetary waves in the upper mesosphere. J. Atmos. Sci. 2003, 60, 3033–3041. [Google Scholar] [CrossRef]
- Marsh, D.R.; Mills, M.J.; Kinnison, D.E.; Lamarque, J.F.; Calvo, N.; Polvani, L.M. Climate change from 1850 to 2005 simulated in CESM1(WACCM). J. Clim. 2013, 26, 7372–7391. [Google Scholar] [CrossRef]
- Sato, K.; Nomoto, M. Gravity Wave–Induced Anomalous Potential Vorticity Gradient Generating Planetary Waves in the Winter Mesosphere. J. Atmos. Sci. 2015, 72, 3609–3624. [Google Scholar] [CrossRef]
- Yu, Y.; Wan, W.; Ren, Z.; Xiong, B.; Zhang, Y.; Hu, L.; Ning, B.; Liu, L. Seasonal variations of MLT tides revealed by a meteor radar chain based on Hough mode decomposition. J. Geophys. Res. Space Phys. 2015, 120, 7030–7048. [Google Scholar] [CrossRef]
Year | Onset Date |
---|---|
2009 | 21 January |
2010 | 22 January |
2012 | 13 January |
2013 | 5 January |
2018 | 25 December |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mirzaamin, T.; Orsolini, Y.J.; Espy, P.J.; Rhodes, C.T. SuperDARN Radar Wind Observations of Eastward-Propagating Planetary Waves. Atmosphere 2024, 15, 1333. https://doi.org/10.3390/atmos15111333
Mirzaamin T, Orsolini YJ, Espy PJ, Rhodes CT. SuperDARN Radar Wind Observations of Eastward-Propagating Planetary Waves. Atmosphere. 2024; 15(11):1333. https://doi.org/10.3390/atmos15111333
Chicago/Turabian StyleMirzaamin, Tina, Yvan J. Orsolini, Patrick J. Espy, and Christian T. Rhodes. 2024. "SuperDARN Radar Wind Observations of Eastward-Propagating Planetary Waves" Atmosphere 15, no. 11: 1333. https://doi.org/10.3390/atmos15111333
APA StyleMirzaamin, T., Orsolini, Y. J., Espy, P. J., & Rhodes, C. T. (2024). SuperDARN Radar Wind Observations of Eastward-Propagating Planetary Waves. Atmosphere, 15(11), 1333. https://doi.org/10.3390/atmos15111333