Influence of Model Resolution on Wind Energy Simulations over Tibetan Plateau Using CMIP6 HighResMIP
Abstract
:1. Introduction
2. Data and Methods
2.1. Observations and HighResMIP Simulations
2.2. Methods
3. Results and Discussion
4. Summary and Conclusions
- In comparison with observations across the entire TP, CMIP6 models demonstrated a certain capability to simulate the climatological probability distribution of SWS. However, it is noteworthy that half of these GCMs, specifically CNRM-CERFACS, EC-Earth-Consortium, ECMWF, MOHC, and AS-RCEC, obviously underestimated the observed SWS. Conversely, the remaining GCMs tend to overestimate the SWS.
- Compared with the wind speed, the GCMs had larger biases in reproducing the other wind energy resources, such as WPD and EWH. In contrast, the biases in the MME were relatively smaller than most individual models and realistically simulated against observational data. Regarding the interannual variability, both the HR and LR models failed to capture the interannual variation in the WPD over the TP.
- More than half of the HR GCMs had a reduced bias relative to the corresponding LR GCMs. Most HR models exhibited good performance in simulating wind energy resources over the TP in terms of spatial patterns and temporal variability. However, the overall performance of the HR GCMs varied among models, which suggests that solely improving the horizontal resolution is not sufficient to solve the uncertainties and deficiencies in the simulation of wind energy completely over complex terrain.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hoogwijk, M.; de Vries, B.; Turkenburg, W.C. Assessment of the global and regional geographical, technical and economic potential of onshore wind energy. Energy Econ. 2004, 26, 889–919. [Google Scholar] [CrossRef]
- Eurek, K.; Sullivan, P.; Gleason, M.; Hettinger, D.; Heimiller, D.; Lopez, A. An improved global wind resource estimate for integrated assessment models. Energy Econ. 2017, 64, 552–567. [Google Scholar] [CrossRef]
- Wu, J.; Shi, Y.; Xu, Y. Evaluation and Projection of Surface Wind Speed Over China Based on CMIP6 GCMs. J. Geophys. Res. Atmos. 2020, 125, e2020JD033611. [Google Scholar] [CrossRef]
- Da, Z.; Xiliang, Z.; Jiankun, H.; Qimin, C. Offshore wind energy development in China: Current status and future perspective. Renew. Sustain. Energy Rev. 2011, 15, 4673–4684. [Google Scholar] [CrossRef]
- Wang, Q.; Qiu, H.-N. Situation and outlook of solar energy utilization in Tibet, China. Renew. Sustain. Energy Rev. 2009, 13, 2181–2186. [Google Scholar] [CrossRef]
- Wu, J.; Xiao, J.; Hou, J.; Lyu, X. Development potential assessment for wind and photovoltaic power energy resources in the main desert-gobi-wilderness areas of China. Energies 2023, 16, 4559. [Google Scholar] [CrossRef]
- Gao, Y.; Ma, S.; Wang, T.; Wang, T.; Gong, Y.; Peng, F.; Tsunekawa, A. Assessing the wind energy potential of China in considering its variability/intermittency. Energy Convers. Manag. 2020, 226, 113580. [Google Scholar] [CrossRef]
- You, Q.; Fraedrich, K.; Min, J.; Kang, S.; Zhu, X.; Pepin, N.; Zhang, L. Observed surface wind speed in the Tibetan Plateau since 1980 and its physical causes. Int. J. Clim. 2013, 34, 1873–1882. [Google Scholar] [CrossRef]
- Guo, X.; Wang, L.; Tian, L.; Li, X. Elevation-dependent reductions in wind speed over and around the Tibetan Plateau. Int. J. Clim. 2016, 37, 1117–1126. [Google Scholar] [CrossRef]
- Zhu, X.; Wei, Z.; Dong, W.; Wen, X.; Zheng, Z.; Chen, G.; Liu, Y. Projected temperature and precipitation changes on the Tibetan Plateau: Results from dynamical downscaling and CCSM4. Theor. Appl. Climatol. 2019, 138, 861–875. [Google Scholar] [CrossRef]
- Li, D.; Feng, J.; Dosio, A.; Qi, J.; Xu, Z.; Yin, B. Historical evaluation and future projections of 100-m wind energy potentials over CORDEX-East Asia. J. Geophys. Res. Atmos. 2020, 125, e2020JD032874. [Google Scholar] [CrossRef]
- Deng, H.; Hua, W.; Fan, G. Evaluation and projection of near-surface wind speed over China based on CMIP6 models. Atmosphere 2021, 12, 1062. [Google Scholar] [CrossRef]
- Zhang, S.; Li, X. Large scale wind power integration in China: Analysis from a policy perspective. Renew. Sustain. Energy Rev. 2012, 16, 1110–1115. [Google Scholar] [CrossRef]
- Mohan, S.; Bhaskaran, P.K. Evaluation of CMIP5 climate model projections for surface wind speed over the Indian Ocean region. Clim. Dyn. 2019, 53, 5415–5435. [Google Scholar] [CrossRef]
- Akinsanola, A.A.; Ogunjobi, K.O.; Abolude, A.T.; Salack, S. Projected changes in wind speed and wind energy potential over West Africa in CMIP6 models. Environ. Res. Lett. 2021, 16, 044033. [Google Scholar] [CrossRef]
- Olaofe, Z.O. Review of energy systems deployment and development of offshore wind energy resource map at the coastal regions of Africa. Energy 2018, 161, 1096–1114. [Google Scholar] [CrossRef]
- Carvalho, D.; Rocha, A.; Gómez-Gesteira, M.; Santos, C.S. Potential impacts of climate change on European wind energy resource under the CMIP5 future climate projections. Renew. Energy 2017, 101, 29–40. [Google Scholar] [CrossRef]
- Mahajan, S.; Evans, K.J.; Branstetter, M.L.; Tang, Q. Model resolution sensitivity of the simulation of North Atlantic Oscillation teleconnections to precipitation extremes. J. Geophys. Res. Atmos. 2018, 123, 11392–11409. [Google Scholar] [CrossRef]
- Kumar, D.; Mishra, V.; Ganguly, A.R. Evaluating wind extremes in CMIP5 climate models. Clim. Dyn. 2014, 45, 441–453. [Google Scholar] [CrossRef]
- Reyers, M.; Moemken, J.; Pinto, J.G. Future changes of wind energy potentials over Europe in a large CMIP5 multi-model ensemble. Int. J. Clim. 2015, 36, 783–796. [Google Scholar] [CrossRef]
- Costoya, X.; Rocha, A.; Carvalho, D. Using bias-correction to improve future projections of offshore wind energy resource: A case study on the Iberian Peninsula. Appl. Energy 2020, 262, 114562. [Google Scholar] [CrossRef]
- Li, L.-L.; Li, J.; Yu, R.-C. Evaluation of CMIP6 HighResMIP models in simulating precipitation over Central Asia. Adv. Clim. Chang. Res. 2022, 13, 1–13. [Google Scholar]
- Legates, D.R.; McCabe, G.J., Jr. Evaluating the use of “goodness-of-fit” measures in hydrologic and hydroclimatic model validation. Water Resour. Res. 1999, 35, 233–241. [Google Scholar] [CrossRef]
- Jafari, S.; Sommer, T.; Chokani, N.; Abhari, R.S. Wind resource assessment using a mesoscale model: The effect of horizontal resolution. In Turbo Expo: Power for Land, Sea, and Air; American Society of Mechanical Engineers: New York, NY, USA, 2012; Volume 44724, pp. 987–995. [Google Scholar]
- Tolentino, J.T.; Rejuso, M.V.; Inocencio, L.C.; Ang, M.R.C.; Bagtasa, G. Effect of horizontal and vertical resolution for wind resource assessment in Metro Manila, Philippines using Weather Research and Forecasting (WRF) model. In Earth Resources and Environmental Remote Sensing/GIS Applications VII; International Society for Optics and Photonics: Bellingham, WA, USA, 2016; Volume 10005, pp. 351–366. [Google Scholar]
- Haarsma, R.J.; Roberts, M.J.; Vidale, P.L.; Senior, C.A.; Bellucci, A.; Bao, Q.; Chang, P.; Corti, S.; Fučkar, N.S.; Guemas, V.; et al. High resolution model intercomparison project (HighResMIP v1.0) for CMIP6. Geosci. Model Dev. 2016, 9, 4185–4208. [Google Scholar] [CrossRef]
- Roberts, M.J.; Jackson, L.C.; Roberts, C.D.; Meccia, V.; Docquier, D.; Koenigk, T.; Ortega, P.; Moreno-Chamarro, E.; Bellucci, A.; Coward, A.; et al. Sensitivity of the Atlantic meridional overturning circulation to model resolution in CMIP6 HighResMIP simulations and implications for future changes. J. Adv. Model. Earth Syst. 2020, 12, e2019MS002014. [Google Scholar] [CrossRef]
- Xin, X.; Wu, T.; Jie, W.; Zhang, J. Impact of higher resolution on precipitation over China in CMIP6 HighResMIP models. Atmosphere 2021, 12, 762. [Google Scholar] [CrossRef]
- Zhang, W.; Villarini, G.; Scoccimarro, E.; Roberts, M.; Vidale, P.L.; Vanniere, B.; Caron, L.P.; Putrasahan, D.; Roberts, C.; Senan, R.; et al. Tropical cyclone precipitation in the HighResMIP atmosphere-only experiments of the PRIMAVERA Project. Clim. Dyn. 2021, 57, 253–273. [Google Scholar] [CrossRef]
- Kim, H.-J.; Wang, B.; Ding, Q. The global monsoon variability simulated by CMIP3 coupled climate models. J. Clim. 2008, 21, 5271–5294. [Google Scholar] [CrossRef]
- Demory, M.-E.; Berthou, S.; Fernández, J.; Sørland, S.L.; Brogli, R.; Roberts, M.J.; Beyerle, U.; Seddon, J.; Haarsma, R.; Schär, C.; et al. European daily precipitation according to EURO-CORDEX regional climate models (RCMs) and high-resolution global climate models (GCMs) from the High-Resolution Model Intercomparison Project (HighResMIP). Geosci. Model Dev. 2020, 13, 5485–5506. [Google Scholar] [CrossRef]
- Wu, J.; Gao, X.J. A gridded daily observation dataset over China region and comparison with the other datasets. Chin. J. Geophys. 2013, 56, 1102–1111. [Google Scholar]
- Zhou, Y.; Wu, W.X.; Liu, G.X. Assessment of onshore wind energy resource and wind-generated electricity potential in Jiangsu, China. Energy Procedia 2011, 5, 418–422. [Google Scholar] [CrossRef]
- Wen, Y.; Kamranzad, B.; Lin, P. Assessment of long-term offshore wind energy potential in the south and southeast coasts of China based on a 55-year dataset. Energy 2021, 224, 120225. [Google Scholar] [CrossRef]
- Taylor, K.E. Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res. Atmos. 2001, 106, 7183–7192. [Google Scholar] [CrossRef]
- Cinner, J.E.; Caldwell, I.R.; Thiault, L.; Ben, J.; Blanchard, J.L.; Coll, M.; Diedrich, A.; Eddy, T.D.; Everett, J.D.; Folberth, C.; et al. Potential impacts of climate change on agriculture and fisheries production in 72 tropical coastal communities. Nat. Commun. 2022, 13, 3530. [Google Scholar] [CrossRef] [PubMed]
Model Name | Institute | Horizontal Resolution Lat × Lon |
---|---|---|
CMCC-CM2-VHR4 | CMCC | 768 × 1152 |
CMCC-CM2-HR4 | 192 × 288 | |
CNRM-CM6-1-HR | CNRM-CERFACS | 360 × 720 |
CNRM-CM6-1 | 128 × 256 | |
EC-Earth3P-HR | EC-Earth-Consortium | 512 × 1024 |
EC-Earth3P | 256 × 512 | |
ECMWF-IFS-HR | ECMWF | 361 × 720 |
ECMWF-IFS-LR | 181 × 360 | |
FGOALS-f3-H | CAS | 720 × 1440 |
FGOALS-f3-L | 180 × 288 | |
HadGEM3-GC31-HM | MOHC | 768 × 1024 |
HadGEM3-GC31-LM | 144 × 192 | |
HiRAM-SIT-HR | AS-RCEC | 768 × 1536 |
HiRAM-SIT-LR | 360 × 720 | |
IPSL-CM6A-ATM-HR | IPSL | 361 × 512 |
IPSL-CM6A-ATM-LR | 143 × 144 | |
MPI-ESM1-2-XR | MPI-M | 384 × 768 |
MPI-ESM1-2-HR | 192 × 384 | |
MRI-AGCM3-2-S | MRI | 960 × 1920 |
MRI-AGCM3-2-H | 320 × 640 | |
NICAM16-8S | MIROC | 640 × 1280 |
NICAM16-7S | 320 × 640 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, J.; Yu, Y.; Zhou, Y.; Qian, S.; Deng, H.; Tao, J.; Hua, W. Influence of Model Resolution on Wind Energy Simulations over Tibetan Plateau Using CMIP6 HighResMIP. Atmosphere 2024, 15, 1323. https://doi.org/10.3390/atmos15111323
Jiang J, Yu Y, Zhou Y, Qian S, Deng H, Tao J, Hua W. Influence of Model Resolution on Wind Energy Simulations over Tibetan Plateau Using CMIP6 HighResMIP. Atmosphere. 2024; 15(11):1323. https://doi.org/10.3390/atmos15111323
Chicago/Turabian StyleJiang, Jianhong, Yongjin Yu, Yang Zhou, Shimeng Qian, Hao Deng, Jianning Tao, and Wei Hua. 2024. "Influence of Model Resolution on Wind Energy Simulations over Tibetan Plateau Using CMIP6 HighResMIP" Atmosphere 15, no. 11: 1323. https://doi.org/10.3390/atmos15111323
APA StyleJiang, J., Yu, Y., Zhou, Y., Qian, S., Deng, H., Tao, J., & Hua, W. (2024). Influence of Model Resolution on Wind Energy Simulations over Tibetan Plateau Using CMIP6 HighResMIP. Atmosphere, 15(11), 1323. https://doi.org/10.3390/atmos15111323