Impact of City-Wide Diesel Generator Use on Air Quality in Quito, Ecuador, during a Nationwide Electricity Crisis
Abstract
:1. Introduction
2. Methodology
2.1. Study Site
2.2. Pollution Data Collection and Analysis
3. Results and Discussion
3.1. Daily Average Time Series Analysis
3.2. Diurnal Trend Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Significance 2016 vs. 2023 (t-test): | |||||||||
WS | T | SR | Rain | RH | NO2 | SO2 | CO | O3 | PM2.5 |
0.73271411 | 0.121224242 | 0.4034471 | 0.2229383 | 0.000150323 | 1.25301 × 10−8 | 0.019513412 | 2.11457 × 10−16 | 0.004798785 | 7.40495 × 10−15 |
Significance 2017 vs. 2023 (t-test): | |||||||||
WS | T | SR | Rain | RH | NO2 | SO2 | CO | O3 | PM2.5 |
0.901658963 | 9.2875 × 10−6 | 0.6216069 | 0.0116656 | 0.058501619 | 0.009352845 | 1.26583 × 10−5 | 2.08887 × 10−18 | 0.963067392 | 1.55299 × 10−12 |
Significance 2018 vs. 2023 (t-test): | |||||||||
WS | T | SR | Rain | RH | NO2 | SO2 | CO | O3 | PM2.5 |
0.081686061 | 1.05939 × 10−6 | 0.4727719 | 0.5809547 | 0.068301132 | 0.000265125 | 4.11366 × 10−6 | 4.16475 × 10−17 | 5.83605 × 10−5 | 8.48342 × 10−13 |
Significance 2019 vs. 2023 (t-test): | |||||||||
WS | T | SR | Rain | RH | NO2 | SO2 | CO | O3 | PM2.5 |
0.065993722 | 5.06822 × 10−12 | 0.9667778 | 0.0674505 | 2.50945 × 10−10 | 1.3087 × 10−5 | 1.54764 × 10−7 | 1.45916 × 10−12 | 0.288449622 | 5.48409 × 10−9 |
Significance 2020 vs. 2023 (t-test): | |||||||||
WS | T | SR | Rain | RH | NO2 | SO2 | CO | O3 | PM2.5 |
0.179093131 | 9.19675 × 10−18 | 0.131328 | 0.8188844 | 8.81362 × 10−7 | 7.5871 × 10−5 | 0.00068069 | 2.75758 × 10−11 | 0.000131646 | 1.76364 × 10−18 |
Significance 2021 vs. 2023 (t-test): | |||||||||
WS | T | SR | Rain | RH | NO2 | SO2 | CO | O3 | PM2.5 |
0.000457447 | 2.42922 × 10−13 | 0.0033442 | 0.044246 | 3.46931 × 10−12 | 4.39527 × 10−5 | 1.75428 × 10−7 | 9.34735 × 10−9 | 0.095808079 | 0.008426095 |
Significance 2022 vs. 2023 (t-test): | |||||||||
WS | T | SR | Rain | RH | NO2 | SO2 | CO | O3 | PM2.5 |
0.384330499 | 1.40348 × 10−15 | 0.0216292 | 0.0003671 | 0.037371245 | 0.01213938 | 0.000196215 | 5.5538 × 10−17 | 4.36336 × 10−6 | 3.63129 × 10−23 |
Scheme 2018. vs. 2024 (t-test):. | |||||||||
WS | T | SR | Rain | RH | NO2 | SO2 | CO | O3 | PM2.5 |
0.001973114 | 0.782767444 | 0.402305 | 0.004434197 | 3.52757 × 10−5 | 7.78859 × 10−11 | 1.64874 × 10−9 | 2.29182 × 10−14 | 8.54807 × 10−8 | 0.7107841 |
Significance 2019 vs. 2024 (t-test): | |||||||||
WS | T | SR | Rain | RH | NO2 | SO2 | CO | O3 | PM2.5 |
0.000354938 | 0.886634182 | 0.792312 | 0.007665521 | 0.000418526 | 2.84269 × 10−12 | 5.88657 × 10−11 | 9.41587 × 10−11 | 7.98113 × 10−6 | 0.107326151 |
Significance 2020 vs. 2024 (t-test): | |||||||||
WS | T | SR | Rain | RH | NO2 | SO2 | CO | O3 | PM2.5 |
0.001353019 | 0.000158636 | 0.019122 | 0.086738617 | 2.76089 × 10−6 | 2.8494 × 10−15 | 1.58462 × 10−13 | 1.8069 × 10−14 | 9.55938 × 10−11 | 3.3887 × 10−8 |
Significance 2021 vs. 2024 (t-test): | |||||||||
WS | T | SR | Rain | RH | NO2 | SO2 | CO | O3 | PM2.5 |
0.05728857 | 7.49586 × 10−16 | 0.183563 | 0.095205486 | 0.29661775 | 1.24425 × 10−14 | 2.82848 × 10−11 | 2.5951 × 10−8 | 0.002842942 | 0.000749829 |
Significance 2022 vs. 2024 (t-test): | |||||||||
WS | T | SR | Rain | RH | NO2 | SO2 | CO | O3 | PM2.5 |
6.92666 × 10−7 | 1.57496 × 10−11 | 0.57811 | 0.176987379 | 1.68197 × 10−5 | 1.30335 × 10−13 | 4.97226 × 10−10 | 2.77932 × 10−15 | 2.17824 × 10−7 | 4.6702 × 10−9 |
Significance 2023 vs. 2024 (t-test): | |||||||||
WS | T | SR | Rain | RH | NO2 | SO2 | CO | O3 | PM2.5 |
0.009869577 | 1.16509 × 10−10 | 0.805852 | 0.69507086 | 0.003325807 | 9.77833 × 10−14 | 5.53481 × 10−12 | 6.25711 × 10−18 | 0.098811781 | 4.02886 × 10−11 |
References
- World Meteorological Organization. WMO Confirms That 2023 Smashes Global Temperature Record. Media Releases. 2024. Available online: https://wmo.int/news/media-centre/wmo-confirms-2023-smashes-global-temperature-record (accessed on 5 August 2024).
- Clarke, B.; Barnes, C.; Rodrigues, R.; Zachariah, M.; Stewart, S.; Raju, E.; Baumgart, N.; Heinrich, D.; Libonati, R.; Santos, D. Climate Change, Not El Niño, Main Driver of Extreme Drought in Highly Vulnerable Amazon River Basin; Imperial College: London, UK, 2024. [Google Scholar] [CrossRef]
- USAID. Climate Risk in the Amazon Basin: Climate Risk Profile; Fact Sheet; USAID: Washington, DC, USA, 2024; Available online: https://www.climatelinks.org/sites/default/files/asset/document/S.AmericaRegional_CRP_Final.pdf (accessed on 1 June 2024).
- PAHO/WHO. Air Quality. 2024. Available online: https://www.paho.org/es/temas/calidad-aire (accessed on 1 August 2024).
- Zalakeviciute, R.; Rybarczyk, Y.; López-Villada, J.; Diaz Suarez, M.V. Quantifying decade-long effects of fuel and traffic regulations on urban ambient PM2.5 pollution in a mid-size South American city. Atmos. Pollut. Res. 2017, 9, 66–75. [Google Scholar] [CrossRef]
- Leeuw, C.; González Ortiz, F.; Guerreiro, A. Air Quality in Europe—2017 Report; EPA Publications Office: Washington, DC, USA, 2017. [Google Scholar] [CrossRef]
- WHO. 7 Million Premature Deaths Annually Linked to Air Pollution; Media Centre; WHO: Geneva, Switzerland, 2014; Available online: https://www.who.int/news/item/25-03-2014-7-million-premature-deaths-annually-linked-to-air-pollution (accessed on 7 March 2018).
- United States Environmental Protection Agency. Criteria Air Pollutants. 2021. Available online: https://www.epa.gov/criteria-air-pollutants (accessed on 3 April 2021).
- Ritchie, H.; Rosado, P.; Roser, M. Emissions by Sector: Where Do Greenhouse Gases Come from? OurWorldInData.org. 2024. Available online: https://ourworldindata.org/emissions-by-sector (accessed on 5 August 2024).
- NASA. Extreme Weather and Climate Change; Extreme Weather; NASA: Washington, DC, USA, 2024. Available online: https://climate.nasa.gov/extreme-weather/ (accessed on 1 August 2024).
- Terrapon-Pfaff, J.C.; Ortiz, W.; Viebahn, P.; Kynast, E.; Flörke, M. Water Demand Scenarios for Electricity Generation at the Global and Regional Levels. Water 2020, 12, 2482. [Google Scholar] [CrossRef]
- Ahmed, W.K.; Abed, T.A.; Salam, A.Q.; Reza, K.S.; Mahdiy, M.T.; Chaichan, M.T. Environmental impact of using generators in the university of technology in Baghdad, Iraq. J. Therm. Eng. 2020, 6, 272–281. [Google Scholar] [CrossRef]
- Fakinle, B.S.; Okedere, O.B.; Adebanjo, S.A.; Adesanmi, A.J.; Sonibare, J.A. Air quality impact of carbon monoxide emission from diesel engine electric power generators. Environ. Qual. Manag. 2019, 28, 97–102. [Google Scholar] [CrossRef]
- Awofeso, N. Generator Diesel Exhaust: A Major Hazard to Health and the Environment in Nigeria. Am. J. Respir. Crit. Care Med. 2011, 183, 1437. [Google Scholar] [CrossRef] [PubMed]
- Giwa, S.O.; Nwaokocha, C.N.; Adeyemi, H.O. Noise and emission characterization of off-grid diesel-powered generators in Nigeria. Manag. Environ. Qual. An Int. J. 2019, 30, 783–802. [Google Scholar] [CrossRef]
- Shakya, S.R.; Bajracharya, I.; Vaidya, R.A.; Bhave, P.; Sharma, A.; Rupakheti, M.; Bajracharya, T.R. Estimation of air pollutant emissions from captive diesel generators and its mitigation potential through microgrid and solar energy. Energy Rep. 2022, 8, 3251–3262. Available online: https://www.sciencedirect.com/science/article/pii/S2352484722003316 (accessed on 1 August 2024). [CrossRef]
- Gilmore, E.A.; Lave, L.B.; Adams, P.J. The Costs, Air Quality, and Human Health Effects of Meeting Peak Electricity Demand with Installed Backup Generators. Environ. Sci. Technol. 2006, 40, 6887–6893. [Google Scholar] [CrossRef] [PubMed]
- Gilmore, E.A.; Adams, P.J.; Lave, L.B. Using backup generators for meeting peak electricity demand: A sensitivity analysis on emission controls, location, and health endpoints. J. Air Waste Manag. Assoc. 2010, 60, 523–531. [Google Scholar] [CrossRef] [PubMed]
- Holladay, J.S.; Soloway, S. The Environmental Impacts of Fuel Switching Electricity Generators. Energy J. 2016, 37, 187–213. Available online: http://www.jstor.org/stable/44075500 (accessed on 5 August 2024). [CrossRef]
- Tong, Z.; Zhang, K.M. The near-source impacts of diesel backup generators in urban environments. Atmos. Environ. 2015, 109, 262–271. [Google Scholar] [CrossRef]
- Lam, N.L.; Wallach, E.; Hsu, C.-W.; Purohit, P.; Klimont, Z.; Jacoboson, A.; Alstone, P. The Dirty Footprint of the Broken Grid: The Impacts of Fossil Fuel Back-Up Generators in Developing Countries. 2019. Available online: https://www.ifc.org/en/insights-reports/2010/dirty-footprint-of-broken-grid (accessed on 5 August 2024).
- Brook, R.D.; Rajagopalan, S.; Pope, C.A., 3rd; Brook, J.R.; Bhatnagar, A.; Diez-Roux, A.V.; Holguin, F.; Hong, Y.; Luepker, R.V.; Mittleman, M.A.; et al. Particulate matter air pollution and cardiovascular disease: An update to the scientific statement from the American Heart Association. Circulation 2010, 121, 2331–2378. [Google Scholar] [CrossRef] [PubMed]
- Lee, B.-J.; Kim, B.; Lee, K. Air pollution exposure and cardiovascular disease. Toxicol. Res. 2014, 30, 71–75. [Google Scholar] [CrossRef] [PubMed]
- Xing, Y.-F.; Xu, Y.-H.; Shi, M.-H.; Lian, Y.-X. The impact of PM2.5 on the human respiratory system. J. Thorac. Dis. 2016, 8, E69–E74. [Google Scholar] [CrossRef] [PubMed]
- UNECE. Air Pollution and Health|UNECE; Air Pollution; UNECE: Geneva, Switzerland, 2022; Available online: https://unece.org/air-pollution-and-health (accessed on 17 September 2022).
- EMASEO. Municipio del Distrito Metropolitano de Quito: Plan de Desarrollo 2012–2022; EMASEO: Quito, Ecuador, 2011; Available online: http://www.epmrq.gob.ec/images/lotaip/planes/PLAN_METROPOLITANO_DE_DESARROLLO.pdf (accessed on 1 September 2023).
- Quito Cómo Vamos. Información Sobre DEMOGRAFÍA. Quito, Ecuador 2023. Available online: https://quitocomovamos.org/wp-content/uploads/2024/02/01Factsheet_Demografia.pdf (accessed on 5 August 2024).
- World Population Review. Quito Population 2024; World Population Review: Geneva, Switzerland, 2024; Available online: https://worldpopulationreview.com/world-cities/quito-population (accessed on 5 August 2024).
- Zalakeviciute, R.; López-Villada, J.; Rybarczyk, Y. Contrasted effects of relative humidity and precipitation on urban PM2.5 pollution in high elevation urban areas. Sustainability 2018, 10, 2064. [Google Scholar] [CrossRef]
- Sánchez-Balseca, J.; Pérez-Foguet, A. Spatio-temporal air pollution modelling using a compositional approach. Heliyon 2020, 6, e04794. [Google Scholar] [CrossRef] [PubMed]
- Sicard, P.; Paoletti, E.; Agathokleous, E.; Araminienė, V.; Proietti, C.; Coulibaly, F.; De Marco, A. Ozone weekend effect in cities: Deep insights for urban air pollution control. Environ. Res. 2020, 191, 110193. [Google Scholar] [CrossRef] [PubMed]
- Cazorla, M. Air quality over a populated andean region: Insights from measurements of ozone, NO, and boundary layer depths. Atmos. Pollut. Res. 2016, 7, 66–74. [Google Scholar] [CrossRef]
- Coates, J.; Mar, K.A.; Ojha, N.; Butler, T.M. The influence of temperature on ozone production under varying NO2 conditions—A modelling study. Atmos. Chem. Phys. 2016, 16, 11601–11615. [Google Scholar] [CrossRef]
- Instituto Nacional de Estadísticas y Censos (INEC). Boletín Estadístico del INEC. 2023. Available online: https://www.ecuadorencifras.gob.ec/documentos/web-inec/Estadisticas_Economicas/IPT-IH-IR/2021/Enero-2021/BOLETIN_TECNICO_IPT_IH_IR_2021_01.pdf (accessed on 2 August 2024).
- Sokhi, R.S.; Singh, V.; Querol, X.; Finardi, S.; Targino, A.C.; Andrade, M.d.F.; Pavlovic, R.; Garland, R.M.; Massagué, J.; Kong, S.; et al. A global observational analysis to understand changes in air quality during exceptionally low anthropogenic emission conditions. Environ. Int. 2021, 157, 106818. [Google Scholar] [CrossRef] [PubMed]
% change from ‘normal’ | CO | NO2 | SO2 | O3 | PM2.5 |
Blackout Fall 2023 | 1.11 | 12.16 | 83.08 | −9.77 | −6.36 |
Blackout Spring 2024 | 92.68 | 34.58 | 160.83 | −28.66 | 12.98 |
% change from ‘normal’ | RH | T | WS | SR | Rain |
Blackout Fall 2023 | 10.73 | 0.47 | −9.58 | −4.95 | 45.17 |
Blackout Spring 2024 | 20.73 | −3.9 | −31.42 | −24.3 | 182.77 |
NO2 | SO2 | CO | O3 | PM2.5 | Rain | T | SR | WS | RH | |
---|---|---|---|---|---|---|---|---|---|---|
NO2 | 1 * | |||||||||
SO2 | 0.41 * | 1 * | ||||||||
CO | 0.67 * | 0.35 * | 1 * | |||||||
O3 | −0.36 * | 0.02 | −0.43 * | 1 * | ||||||
PM2.5 | 0.30 * | 0.31 * | 0.36 * | 0.12 * | 1 * | |||||
Rain | 0.06 * | −0.05 * | 0.01 | 0 | −0.04 * | 1 * | ||||
T | −0.27 * | 0.10 * | −0.24 * | 0.83 * | 0.18 * | −0.10 * | 1 * | |||
SR | −0.22 * | 0.23 * | −0.15 * | 0.74 * | 0.22 * | −0.12 * | 0.82 * | 1 * | ||
WS | −0.40 * | −0.12 * | −0.36 * | 0.70 * | 0 | −0.02 * | 0.70 * | 0.47 * | 1 * | |
RH | 0.26 * | −0.08 * | 0.26 * | −0.78 * | −0.11 * | 0.19 * | −0.84 * | −0.74 * | −0.72 * | 1 * |
Factors | WS | SR | Rain | RH | NO2 | SO2 | CO | O3 | PM2.5 |
---|---|---|---|---|---|---|---|---|---|
p-value | 0.08 | 0.47 | 0.58 | 0.07 | 0.0003 | 4.1 × 10−6 | 4.2 × 10−17 | 5.8 × 10−5 | 8.4 × 10−13 |
Factors | WS | SR | Rain | RH | NO2 | SO2 | CO | O3 | PM2.5 |
---|---|---|---|---|---|---|---|---|---|
p-value | 0.06 | 0.18 | 0.1 | 0.3 | 1.2 × 10−14 | 2.8 × 10−11 | 2.6 × 10−8 | 0.0028 | 0.0007 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zalakeviciute, R.; Diaz, V.; Rybarczyk, Y. Impact of City-Wide Diesel Generator Use on Air Quality in Quito, Ecuador, during a Nationwide Electricity Crisis. Atmosphere 2024, 15, 1192. https://doi.org/10.3390/atmos15101192
Zalakeviciute R, Diaz V, Rybarczyk Y. Impact of City-Wide Diesel Generator Use on Air Quality in Quito, Ecuador, during a Nationwide Electricity Crisis. Atmosphere. 2024; 15(10):1192. https://doi.org/10.3390/atmos15101192
Chicago/Turabian StyleZalakeviciute, Rasa, Valeria Diaz, and Yves Rybarczyk. 2024. "Impact of City-Wide Diesel Generator Use on Air Quality in Quito, Ecuador, during a Nationwide Electricity Crisis" Atmosphere 15, no. 10: 1192. https://doi.org/10.3390/atmos15101192
APA StyleZalakeviciute, R., Diaz, V., & Rybarczyk, Y. (2024). Impact of City-Wide Diesel Generator Use on Air Quality in Quito, Ecuador, during a Nationwide Electricity Crisis. Atmosphere, 15(10), 1192. https://doi.org/10.3390/atmos15101192