Assessing the Relationship between Urban Heat Islands and Local Climate Zones during a Winter Period in the Coastal City of Balneário Camboriú/SC, Brazil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Area Characterization
2.2. Points and Instruments Used for Collection
2.3. Analysis of the Magnitude of UHIs and UCIs
3. Results
3.1. The LCZs in Balneário Camboriú
3.2. Ta Data from Collection Points
3.3. Magnitudes of UHI and UCI in Balneário Camboriú
3.4. Relation of LCZs, Average Ta and Day and Night Magnitudes of the UHI/UCI at Each Point
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tan, P.Y.; Hamid, A.R.B.A. Urban ecological research in Singapore and its relevance to the advancement of urban ecology and sustainability. Landsc. Urban Plan. 2014, 125, 271–289. [Google Scholar] [CrossRef]
- Oke, T.R. Boundary Layer Climates; Routledge: London, UK, 1987. [Google Scholar]
- Gagliano, A.; Nocera, F.; Aneli, S. Computational Fluid Dynamics Analysis for Evaluating the Urban Heat Island Effects. Energy Procedia 2017, 134, 508–517. [Google Scholar] [CrossRef]
- Wu, X.; Wang, G.; Yao, R.; Wang, L.; Yu, D.; Gui, X. Investigating Surface Urban Heat Islands in South America Based on MODIS Data from 2003–2016. Remote Sens. 2019, 11, 1212. [Google Scholar] [CrossRef]
- Niu, L.; Tang, R.; Jiang, Y.; Zhou, X. Spatiotemporal Patterns and Drivers of the Surface Urban Heat Island in 36 Major Cities in China: A Comparison of Two Different Methods for Delineating Rural Areas. Sustainability 2020, 12, 478. [Google Scholar] [CrossRef]
- Quan, J. Multi-Temporal Effects of Urban Forms and Functions on Urban Heat Islands Based on Local Climate Zone Classification. Int. J. Environ. Res. Public. Health 2019, 16, 2140. [Google Scholar] [CrossRef] [PubMed]
- Amorim, M.C.C.T. Daily evolution of urban heat islands in a Brazilian tropical continental climate during dry and rainy periods. Urban Clim. 2020, 34, 100715. [Google Scholar] [CrossRef]
- Li, Y.; Yang, T.; Zhao, G.; Ma, C.; Yan, Y.; Xu, Y.; Wang, Y.; Wang, L. A systematic review of studies involving canopy layer urban heat island: Monitoring and associated factors. Ecol. Indic. 2024, 158, 111424. [Google Scholar] [CrossRef]
- Mandelmilch, M.; Ferenz, M.; Mandelmilch, N.; Potchter, O. Urban Spatial Patterns and Heat Exposure in the Mediterranean City of Tel Aviv. Atmosphere 2020, 11, 963. [Google Scholar] [CrossRef]
- Arnfield, A.J. Two decades of urban climate research: A review of turbulence, exchanges of energy and water, and the urban heat island. Int. J. Climatol. J. R. Meteorol. Soc. 2003, 23, 1–26. [Google Scholar] [CrossRef]
- Gago, E.J.; Roldan, J.; Pacheco-Torres, R.; Ordóñez, J. The city and urban heat islands: A review of strategies to mitigate adverse effects. Renew. Sustain. Energy Rev. 2013, 25, 749–758. [Google Scholar] [CrossRef]
- Cakmakli, A.B.; Rashed-Ali, H. A Climate-Based Critical Analysis of Urban Heat Island Assessment Methods and Mitigation Strategies. J. Green Build. 2022, 17, 129–149. [Google Scholar] [CrossRef]
- Rech, B.; Moreira, R.N.; Mello, T.A.G.; Klouček, T.; Komárek, J. Assessment of daytime and nighttime surface urban heat islands across local climate zones—A case study in Florianópolis, Brazil. Urban Clim. 2024, 55, 101954. [Google Scholar] [CrossRef]
- Krüger, E.; Drach, P.; Emmanuel, R. Atmospheric Impacts on Daytime Urban Heat Island. Air Soil Water Res. 2018, 11, 1178622118810201. [Google Scholar] [CrossRef]
- Jurus, P.; Resler, J.; Derbek, P.; Krc, P.; Belda, M.; Benesova, N.; Vlcek, O.; Srbova, D.; Eben, K.; Hrubes, P. High resolution modelling of anthropogenic heat from traffic in urban canopy: A sensitivity study. In Proceedings of the 2016 Smart Cities Symposium Prague (SCSP), Prague, Czech Republic, 26–27 May 2016; p. 7501031. [Google Scholar] [CrossRef]
- Zhang, Q.; Wu, Z.; Guo, G. The cooling effect of water landscape in high-density urban built-up area a case study of the center urban district of Guangzhou. In Proceedings of the 2nd International Conference on Frontiers of Sensors Technologies (ICFST), Shenzhen, China, 14–16 April 2017; pp. 394–400. [Google Scholar] [CrossRef]
- Stewart, I.D.; Oke, T.R. Local climate zones for urban temperature studies. Bull. Am. Meteorol. Soc. 2012, 93, 1879–1900. [Google Scholar] [CrossRef]
- Demuzere, M.; Kittner, J.; Bechtel, B. LCZ Generator: A Web Application to Create Local Climate Zone Maps. Front. Environ. 2012, 9, 637455. [Google Scholar] [CrossRef]
- Dimitrov, S.; Popov, A.; Iliev, M. An Application of the LCZ Approach in Surface Urban Heat Island Mapping in Sofia, Bulgaria. Atmosphere 2021, 12, 1370. [Google Scholar] [CrossRef]
- Anjos, M.; Lopes, A. Urban Heat Island and Park Cool Island Intensities in the Coastal City of Aracaju, North-Eastern Brazil. Sustainability 2017, 9, 1379. [Google Scholar] [CrossRef]
- Wollmann, C.A.; Gobo, J.P.A.; Chiquetto, J.P.; Shooshtarian, S.; Rotili Junior, D.H. Balneário Camboriú: The “Brazilian Dubai” and the Greatest Verticalization Process in the Southern Hemisphere. Bulletin of International Association for Urban Climate. 2020. Available online: http://www.urban-climate.org/wp-content/uploads/newsletter/IAUC078.pdf (accessed on 15 July 2022).
- Alvares, C.A.; Stape, J.L.; Sentelhas, P.C.; Gonçalves, J.L.M.; Sparovek, G. Köppen’s climate classification map for Brazil. Meteorol. Z. 2014, 22, 711–728. [Google Scholar] [CrossRef] [PubMed]
- Wollmann, C.A.; Hoppe, I.L.; Gobo, J.P.A.; Simioni, J.P.D.; Costa, I.T.; Baratto, J.; Shooshtarian, S. Thermo-Hygrometric Variability on Waterfronts in Negative Radiation Balance: A Case Study of Balneário Camboriú/SC, Brazil. Atmosphere 2021, 12, 1453. [Google Scholar] [CrossRef]
- Hoppe, I.L.; Wollmann, C.A.; Buss, A.S.; Gobo, J.P.A.; Shooshtarian, S. Local Climate Zones, Sky View Factor and magnitude of daytime / nighttime urban heat islands in Balneário Camboriú, Sc, Brazil. Climate 2022, 10, 197. [Google Scholar] [CrossRef]
- IBGE Cidades@: Censo 2022. Available online: https://cidades.ibge.gov.br/brasil/sc/balneario-camboriu/panorama (accessed on 16 December 2023).
- Hoppe, I.L.; Wollmann, C.; Baratto, J. Performance de um novo modelo de abrigo meteorológico de baixo custo. Caminhos Geogr. 2022, 23, 71–84. [Google Scholar] [CrossRef]
- Garcia, F.F. Manual de Climatologia Aplicada: Clima Medio Ambiente Planificacion; Síntesis: Madrid, Spain, 1996; p. 285. [Google Scholar]
- Sheridan, S. Spatial Synoptic Classification 2024, 3. Available online: https://sheridan.geog.kent.edu/ssc/files/FLN.3.html (accessed on 25 July 2024).
- Kalstein, L.S.; Barthel, C.D.; Greene, J.S.; Nichols, M.C. A new spatial synoptic classification: Apllication to air mass analysis. Int. J. Climatol. 1996, 16, 983–1004. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, S.; Tian, Z.; Luo, Y.; Deng, J.; Fan, J. Differences in urban heat island and its driving factors between central and new urban areas of Wuhan, China. Environ. Sci. Pollut. Res. 2023, 30, 58362–58377. [Google Scholar] [CrossRef] [PubMed]
- Anjos, M.; Lopes, A.; Lucena, A.J.; Mendonça, F. Sea breeze front and outdoor thermal comfort during summer in northeastern Brazil. Atmosphere 2020, 11, 1013. [Google Scholar] [CrossRef]
- Mayer, H.; Matzarakis, A.; Iziomon, M.G. Spatio-temporal variability of moisture conditions within the urban canopy layer. Theor. Appl. Climatol. 2003, 76, 165–179. [Google Scholar] [CrossRef]
- Liu, Y.; Li, Q.; Yang, L.; Mu, K.; Zhang, M.; Liu, J. Urban heat island effects of various urban morphologies under regional climate conditions. Sci. Total Environ. 2020, 743, 140589. [Google Scholar] [CrossRef]
- Boccalatte, A.; Fossa, M.; Gaillard, L.; Menezo, C. Microclimate and urban morphology effects on building energy demand in different European cities. Energy Build. 2020, 224, 110129. [Google Scholar] [CrossRef]
- Yuan, C.; Adelia, A.S.; Mei, S.; He, W.; Li, X.X.; Norford, L. Mitigating intensity of urban heat island by better understanding on urban morphology and anthropogenic heat dispersion. Build. Environ. 2020, 176, 106876. [Google Scholar] [CrossRef]
- Ghorbany, S.; Hu, M.; Yao, S.; Wang, C. Towards a sustainable urban future: A comprehensive review of urban heat island research technologies and machine learning approaches. Sustainability 2024, 16, 4609. [Google Scholar] [CrossRef]
Magnitude (°C) | Intensity | Category |
---|---|---|
>6.0 | Very strong | UHI |
4.0 to 6.0 | Strong | |
2.0 to 4.0 | Moderate | |
0.0 to 2.0 | Weak | |
−2.0 to 0.0 | Weak | UCI |
−4.0 to −2.0 | Moderate | |
−6.0 to −4.0 | Strong | |
<−6.0 | Very strong |
P00 | P01 | P02 | P03 | P04 | P05 | P06 | P07 | P08 | P09 | P10 | |
---|---|---|---|---|---|---|---|---|---|---|---|
Average Ta (°C) | 16.1 | 15.9 | 16.6 | 16.6 | 16.8 | 16.6 | 16.5 | 17.0 | 16.5 | 17.2 | 16.4 |
Maximum Ta (°C) | 23.6 | 23.3 | 24.9 | 22.3 | 24.5 | 22.6 | 23.9 | 24.6 | 22.9 | 28.8 | 22.7 |
Minimum Ta (°C) | 8.9 | 7.8 | 8.5 | 9.5 | 8.8 | 8.9 | 9.0 | 8.6 | 8.9 | 8.2 | 8.7 |
Amplitude Ta (°C) | 14.7 | 15.5 | 16.4 | 12.8 | 15.7 | 13.7 | 14.9 | 16.0 | 14.0 | 20.6 | 14.0 |
Day | Synoptic Classification | Weather Description |
---|---|---|
01/06 | Moist polar | Dry moderate—The air conditions are calm, with low humidity, creating a dry and pleaseant atmosphere. Usually seen in certain regions where zonal airflow prevails. Occurs when a continental polar air mass moves far form its original location and undergoes significant changes. |
02/06 | Moist moderate | |
03/06 | Dry moderate | |
04/06 | Dry moderate | Dry polar—Is often linked with the classic continental polar air mass over the mid and upper latitudes, but it can develop in various atmospheric scenarios, usually when cold air moves in and there are chances for radiational cooling. It is commonly connected with the coldest temperatures recorded in a specific location for that time of the year, along with clear, dry weather. |
05/06 | Moist moderate | |
06/06 | Moist moderate | |
07/06 | Moist moderate | Moist moderate—The weather is significant warmer and more humid than de moist polar. It is commonly found in áreas with overruning air, where the front is closer. Can also occur in coastal regions near mild oceans. May occur when there is a disturbance causing heavy cloud cover, leading to lower daytime temperatures and precipitation. |
08/06 | Moist moderate | |
09/06 | Moist moderate | |
10/06 | Transition | Moist polar—Linked with maritime polar air masses, bring cool, cloudly, and humid conditions with minimal temperature fluctuations. Often lead to precipitation and are formed throught various processes like being transported from a cool ocean, formed due to frontal overruning or modified from a colder air mass near water bodies. |
11/06 | Dry polar | |
12/06 | Transition | |
13/06 | Moist moderate | Transition—Characterized by the change from one type of weather to another, tipically marked by significant shifts in pressure, dew point, and wind througout the day. In regions with mid- and high latitudes this transition is linked to the passage of a front. The weather conditions on transition days generally feature temperatures close to normal, increased winds and a higher chance of precipitation. |
14/06 | Moist moderate |
AVERAGE Ta (°C) | ||||||
---|---|---|---|---|---|---|
Point | LCZ | LCZ Influence | Daily Ta | Night Ta | Daily Magnitude | Night Magnitude |
01 | LCZ 9 | LCZ A and 8 | 17.4 | 14.5 | −0.3 | −0.2 |
02 | LCZ 3 | - | 18.4 | 15.1 | 0.7 | 0.4 |
03 | LCZ 1 | - | 17.5 | 15.7 | −0.1 | 1.0 |
04 | LCZ 1 | LCZ F | 18.1 | 15.5 | 0.5 | 0.8 |
05 | LCZ 3 | LCZ 1 | 17.6 | 15.6 | 0.0 | 0.9 |
06 | LCZ 1 | LCZ A | 17.7 | 15.4 | 0.1 | 0.7 |
07 | LCZ 6 | LCZ A | 18.4 | 15.8 | 0.8 | 1.1 |
08 | LCZ 8 | - | 17.7 | 15.4 | 0.1 | 0.7 |
09 | LCZ 3 | - | 19.3 | 15.2 | 1.6 | 0.5 |
10 | LCZ 3 | - | 17.9 | 15.1 | 0.3 | 0.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva, A.N.d.; Wollmann, C.A.; Iensse, A.C.; Hoppe, I.L.; Baumhardt, O.d.F.; Writzl, L.; Costa, I.T.; Gobo, J.P.A.; Galvani, E.; Matzarakis, A. Assessing the Relationship between Urban Heat Islands and Local Climate Zones during a Winter Period in the Coastal City of Balneário Camboriú/SC, Brazil. Atmosphere 2024, 15, 1171. https://doi.org/10.3390/atmos15101171
Silva ANd, Wollmann CA, Iensse AC, Hoppe IL, Baumhardt OdF, Writzl L, Costa IT, Gobo JPA, Galvani E, Matzarakis A. Assessing the Relationship between Urban Heat Islands and Local Climate Zones during a Winter Period in the Coastal City of Balneário Camboriú/SC, Brazil. Atmosphere. 2024; 15(10):1171. https://doi.org/10.3390/atmos15101171
Chicago/Turabian StyleSilva, Aline Nunes da, Cassio Arthur Wollmann, Amanda Comassetto Iensse, Ismael Luiz Hoppe, Otavio de Freitas Baumhardt, Luana Writzl, Iago Turba Costa, João Paulo Assis Gobo, Emerson Galvani, and Andreas Matzarakis. 2024. "Assessing the Relationship between Urban Heat Islands and Local Climate Zones during a Winter Period in the Coastal City of Balneário Camboriú/SC, Brazil" Atmosphere 15, no. 10: 1171. https://doi.org/10.3390/atmos15101171
APA StyleSilva, A. N. d., Wollmann, C. A., Iensse, A. C., Hoppe, I. L., Baumhardt, O. d. F., Writzl, L., Costa, I. T., Gobo, J. P. A., Galvani, E., & Matzarakis, A. (2024). Assessing the Relationship between Urban Heat Islands and Local Climate Zones during a Winter Period in the Coastal City of Balneário Camboriú/SC, Brazil. Atmosphere, 15(10), 1171. https://doi.org/10.3390/atmos15101171