Climatology and Changes in Temperature Seasonality in the Arabian Peninsula
Abstract
:1. Introduction
2. Data and Methods
2.1. Study Area and Data
2.2. Definition of Seasons
- Applying the agglomerative hierarchical clustering algorithm;
- Cutting the resulting tree into k clusters;
- Computing the centroid/center of each cluster;
- Applying the k-means clustering algorithm using the computed centroids (step 3) as the initial centroids/centers.
2.3. Seasonal Indices and Trend Analysis
3. Results and Discussion
3.1. Evaluation of Clustering
3.2. Seasons’ Climatology
3.3. Seasonal Temperature
3.4. Trends
4. Summary and Conclusions
Supplementary Materials
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Allen, M.J.; Sheridan, S.C. Evaluating changes in season length, onset, and end dates across the United States (1948–2012). Int. J. Clim. 2016, 36, 1268–1277. [Google Scholar]
- Wang, J.; Guan, Y.; Wu, L.; Guan, X.; Cai, W.; Huang, J.; Dong, W.; Zhang, B. Changing Lengths of the Four Seasons by Global Warming. Geophys. Res. Lett. 2021, 48, e2020GL091753. [Google Scholar] [CrossRef]
- Christidis, N.; Stott, P.A.; Brown, S.; Karoly, D.J.; Caesar, J. Human Contribution to the Lengthening of the Growing Season during 1950–1999. J. Clim. 2007, 20, 5441–5454. [Google Scholar] [CrossRef]
- Franchini, M.; Mannucci, P.M. Impact on human health of climate changes. Eur. J. Intern. Med. 2015, 26, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Lee, E.; Im, A.; Oh, J.; Song, M.; Choi, Y.; Choi, D. Improved seasonal definition and projected future seasons in South Korea. Meteorol. Appl. 2022, 29, e2110. [Google Scholar] [CrossRef]
- Cheng, S.; Kalkstein, L.S. Determination of climatological seasons for the East Coast of the U.S. using an air mass-based classification. Clim. Res. 1997, 8, 107–116. [Google Scholar] [CrossRef]
- Alpert, P.; Osetinsky, I.; Ziv, B.; Shafir, H. A new seasons definition based on classified daily synoptic systems: An example for the eastern Mediterranean. Int. J. Clim. 2004, 24, 1013–1021. [Google Scholar] [CrossRef]
- Dong, W.; Jiang, Y.; Yang, S. Response of the starting dates and the lengths of seasons in Mainland China to global warming. Clim. Chang. 2010, 99, 81–91. [Google Scholar] [CrossRef]
- Hekmatzadeh, A.A.; Kaboli, S.; Torabi Haghighi, A. New indices for assessing changes in seasons and in timing characteristics of air temperature. Theor. Appl. Clim. 2020, 140, 1247–1261. [Google Scholar] [CrossRef]
- Yan, Z.; Xia, J.; Qian, C.; Zhou, W. Changes in seasonal cycle and extremes in China during the period 1960–2008. Adv. Atmos. Sci. 2011, 28, 269–283. [Google Scholar] [CrossRef]
- Kotsias, G.; Lolis, C.J.; Hatzianastassiou, N.; Lionello, P.; Bartzokas, A. An objective definition of seasons for the Mediterranean region. Int. J. Clim. 2020, 41, E1889–E1905. [Google Scholar] [CrossRef]
- Park, B.J.; Kim, Y.H.; Min, S.K.; Lim, E.P. Anthropogenic and Natural Contributions to the Lengthening of the Summer Season in the Northern Hemisphere. J. Clim. 2018, 31, 6803–6819. [Google Scholar] [CrossRef]
- Almazroui, M.; Islam, M.N.; Saeed, S.; Saeed, F.; Ismail, M. Future Changes in Climate over the Arabian Peninsula based on CMIP6 Multimodel Simulations. Earth Syst. Environ. 2020, 4, 611–630. [Google Scholar] [CrossRef]
- Almazroui, M.; Khalid, M.S.; Islam, M.N.; Saeed, S. Seasonal and regional changes in temperature projections over the Arabian Peninsula based on the CMIP5 multi-model ensemble dataset. Atmos. Res. 2020, 239, 104913. [Google Scholar] [CrossRef]
- Singh, P.K.; Chudasama, H. Pathways for climate change adaptations in arid and semi-arid regions. J. Clean. Prod. 2021, 284, 124744. [Google Scholar] [CrossRef]
- Ajjur, S.B.; Al-Ghamdi, S.G. Seventy-year disruption of seasons characteristics in the Arabian Peninsula. Int. J. Clim. 2021, 41, 5920–5937. [Google Scholar] [CrossRef]
- Ali, A.H. Wind Regime of the Arabian Gulf. In The Gulf War and the Environment, 1st ed.; Taylor & Francis Group: Abingdon, UK, 1994; pp. 31–48. [Google Scholar]
- Alkolibi, F.M.A. Mid-Tropospheric Geopotential Height Patterns as Related to Temperature and Precipitation in Saudi Arabia. Ph.D. Thesis, ETD Collection for University of Nebraska, Lincoln, NE, USA, 1995; pp. 1–188. [Google Scholar]
- Rashid, I.U.; Almazroui, M.; Saeed, S.; Atif, R.M. Analysis of extreme summer temperatures in Saudi Arabia and the association with large-scale atmospheric circulation. Atmos. Res. 2020, 231, 104659. [Google Scholar] [CrossRef]
- Wang, X.L. Penalized Maximal F Test for Detecting Undocumented Mean Shift without Trend Change. J. Atmos. Ocean. Technol. 2008, 25, 368–384. [Google Scholar] [CrossRef]
- Wang, X.L. Accounting for Autocorrelation in Detecting Mean Shifts in Climate Data Series Using the Penalized Maximal t or F Test. J. Appl. Meteorol. Clim. 2008, 47, 2423–2444. [Google Scholar] [CrossRef]
- Chen, B.; Tai, P.C.; Harrison, R.; Pan, Y. Novel hybrid hierarchical-K-means clustering method (H-K-means) for microarray analysis. In Proceedings of the 2005 IEEE Computational Systems Bioinformatics—Workshops (CSBW’05), Stanford, CA, USA, 8–12 August 2005; pp. 105–108. [Google Scholar]
- Yue, S.; Pilon, P.; Phinney, B.; Cavadias, G. The influence of autocorrelation on the ability to detect trend in hydrological series. Hydrol. Process. 2002, 16, 1807–1829. [Google Scholar] [CrossRef]
- Dwyer, J.G.; Biasutti, M.; Sobel, A.H. Projected Changes in the Seasonal Cycle of Surface Temperature. J. Clim. 2012, 25, 6359–6374. [Google Scholar] [CrossRef]
- Alsaaran, N.A.; Alghamdi, A.S. Precipitation climatology and spatiotemporal trends over the Arabian Peninsula. Theor. Appl. Clim. 2022, 147, 1133–1149. [Google Scholar] [CrossRef]
- Almazroui, M.; Nazrul Islam, M.; Athar, H.; Jones, P.D.; Rahman, M.A. Recent climate change in the Arabian Peninsula: Annual rainfall and temperature analysis of Saudi Arabia for 1978–2009. Int. J. Clim. 2012, 32, 953–966. [Google Scholar] [CrossRef]
- Patlakas, P.; Stathopoulos, C.; Flocas, H.; Kalogeri, C.; Kallos, G. Regional Climatic Features of the Arabian Peninsula. Atmosphere 2019, 10, 220. [Google Scholar] [CrossRef]
- Almazroui, M. Changes in Temperature Trends and Extremes over Saudi Arabia for the Period 1978–2019. Adv. Meteorol. 2020, 2020, 8828421. [Google Scholar] [CrossRef]
- Pfaffel, O. FeatureImpCluster: Feature Importance for Partitional Clustering. 2021. Available online: cran.r-project.org/ (accessed on 4 October 2023).
Region | Southern Peninsula | Northern Peninsula | ||||
---|---|---|---|---|---|---|
SOS | EOS | LOS | SOS | EOS | LOS | |
Spring | 22 February (6.12) | 15 April (6.75) | 52 (3.48) | 28 February (5.74) | 23 April (5.41) | 54 (2.97) |
Summer | 16 April (6.73) | 29-Sep (5.84) | 166 (7.34) | 24 April (5.41) | 6 October (4.10) | 165 (6.86) |
Autumn | 30 September (5.84) | 22 November (4.98) | 53 (5.13) | 7 October (4.10) | 25 November (3.57) | 49 (3.10) |
Winter | 23 November (4.64) | 21 February (6.13) | 90 (8.01) | 26 November (3.55) | 27 February (5.80) | 93 (7.45) |
Region | Southern Peninsula | Northern Peninsula | ||||
---|---|---|---|---|---|---|
Tmean | Tmax | Tmin | Tmean | Tmax | Tmin | |
Spring | 24.10 (3.83) | 30.88 (4.31) | 16.85 (3.94) | 20.53 (4.87) | 27.31 (5.34) | 13.25 (5.03) |
Summer | 31.78 (4.04) | 38.49 (4.67) | 24.27 (3.64) | 31.65 (3.77) | 38.62 (4.00) | 23.5 (3.98) |
Autumn | 25.27 (3.49) | 31.73 (3.83) | 18.17 (3.67) | 22.66 (4.76) | 29.23 (5.23) | 15.75 (4.62) |
Winter | 18.76 (3.47) | 25.14 (3.64) | 12.18 (4.11) | 13.55 (4.58) | 19.75 (4.95) | 7.45 (4.91) |
Region | Southern Peninsula | Northern Peninsula | ||||
---|---|---|---|---|---|---|
SOS | EOS | LOS | SOS | EOS | LOS | |
Spring | −1.8 * | −2.2 * | −0.2 | −3.1 * | −2.8 * | −0.2 |
Summer | −2.2 * | 2.1 * | 4.3 * | −2.8 * | 1.7 * | 4.6 * |
Autumn | 2.1 * | 1.5 * | −0.6 | 1.7 * | 1.1 * | −0.6 |
Winter | 1.4 * | −1.9 * | −3.5 * | 1.0 * | −3.2 * | −4.2 * |
Tmean | Tmax | Tmin | Tmean | Tmax | Tmin | |
Spring | 0.22 * | 0.32 * | 0.07 | 0.20 * | 0.23 * | 0.17 |
Summer | 0.15 * | 0.07 | 0.25 * | 0.27 * | 0.21 * | 0.34 * |
Autumn | 0.05 | −0.04 | 0.17 * | 0.03 | −0.07 | 0.13 |
Winter | 0.17 * | 0.21 * | 0.11 | 0.35 * | 0.38 * | 0.33 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alghamdi, A.S. Climatology and Changes in Temperature Seasonality in the Arabian Peninsula. Atmosphere 2024, 15, 26. https://doi.org/10.3390/atmos15010026
Alghamdi AS. Climatology and Changes in Temperature Seasonality in the Arabian Peninsula. Atmosphere. 2024; 15(1):26. https://doi.org/10.3390/atmos15010026
Chicago/Turabian StyleAlghamdi, Ali S. 2024. "Climatology and Changes in Temperature Seasonality in the Arabian Peninsula" Atmosphere 15, no. 1: 26. https://doi.org/10.3390/atmos15010026
APA StyleAlghamdi, A. S. (2024). Climatology and Changes in Temperature Seasonality in the Arabian Peninsula. Atmosphere, 15(1), 26. https://doi.org/10.3390/atmos15010026