Characterization of the Energy Balance of Wheat Grown under Irrigation in the Hot, Arid Environment of Sudan
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Experiments
2.2. Data Collection and Processing
2.2.1. Micrometeorological Data
2.2.2. Calculations of Latent and Sensible Heat Fluxes
2.2.3. Meteorological Data
2.2.4. NDVI
2.3. Statistical Analysis
3. Results
3.1. Crop Growth
3.2. Evaporative Cooling Effect
3.3. Seasonal Changes in Micrometeorological Parameters
3.4. Energy Balance
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Foley, J.A.; DeFries, R.; Asner, G.P.; Barford, C.; Bonan, G.; Carpenter, S.R.; Chapin, F.S.; Coe, M.T.; Daily, G.C.; Gibbs, H.K.; et al. Global Consequences of Land Use. Science 2005, 309, 570–574. [Google Scholar] [CrossRef]
- Ferris, R.; Ellis, R.H.; Wheeler, T.R.; Hadley, P. Effect of High Temperature Stress at Anthesis on Grain Yield and Biomass of Field-Grown Crops of Wheat. Ann. Bot. 1998, 82, 631–639. [Google Scholar] [CrossRef]
- Hussain, H.A.; Men, S.; Hussain, S.; Chen, Y.; Ali, S.; Zhang, S.; Zhang, K.; Li, Y.; Xu, Q.; Liao, C.; et al. Interactive Effects of Drought and Heat Stresses on Morpho-Physiological Attributes, Yield, Nutrient Uptake and Oxidative Status in Maize Hybrids. Sci. Rep. 2019, 9, 3890. [Google Scholar] [CrossRef]
- Ray, D.K.; Gerber, J.S.; MacDonald, G.K.; West, P.C. Climate Variation Explains a Third of Global Crop Yield Variability. Nat. Commun. 2015, 6, 5989. [Google Scholar] [CrossRef]
- Asseng, S.; Ewert, F.; Martre, P.; Rötter, R.P.; Lobell, D.B.; Cammarano, D.; Kimball, B.A.; Ottman, M.J.; Wall, G.W.; White, J.W.; et al. Rising Temperatures Reduce Global Wheat Production. Nat. Clim. Chang. 2015, 5, 143–147. [Google Scholar] [CrossRef]
- Asseng, S.; Cammarano, D.; Basso, B.; Chung, U.; Alderman, P.D.; Sonder, K.; Reynolds, M.P.; Lobell, D.B. Hot Spots of Wheat Yield Decline with Rising Temperatures. Glob. Chang. Biol. 2017, 23, 2464–2472. [Google Scholar] [CrossRef]
- Wheeler, T.; von Braun, J. Climate Change Impacts on Global Food Security. Science 2013, 341, 508–513. [Google Scholar] [CrossRef]
- Musa, A.I.I.; Tsubo, M.; Ali-Babiker, I.E.A.; Iizumi, T.; Kurosaki, Y.; Ibaraki, Y.; El-Hag, F.M.A.; Tahir, I.S.A.; Tsujimoto, H. Relationship of Irrigated Wheat Yield with Temperature in Hot Environments of Sudan. Theor. Appl. Climatol. 2021, 145, 1113–1125. [Google Scholar] [CrossRef]
- Ghafarian, F.; Wieland, R.; Nendel, C. Estimating the Evaporative Cooling Effect of Irrigation within and above Soybean Canopy. Water 2022, 14, 319. [Google Scholar] [CrossRef]
- Thiery, W.; Davin, E.L.; Lawrence, D.M.; Hirsch, A.L.; Hauser, M.; Seneviratne, S.I. Present-Day Irrigation Mitigates Heat Extremes. J. Geophys. Res. Atmos. 2017, 122, 1403–1422. [Google Scholar] [CrossRef]
- Luchiari, A., Jr.; Riha, S.J.; Gomide, R.L. Energy Balance in Irrigated Wheat in the Cerrados Region of Central Brazil. Sci. Agric. 1997, 54, 78–88. [Google Scholar] [CrossRef]
- Li, Y.; Guan, K.; Peng, B.; Franz, T.E.; Wardlow, B.; Pan, M. Quantifying Irrigation Cooling Benefits to Maize Yield in the US Midwest. Glob. Chang. Biol. 2020, 26, 3065–3078. [Google Scholar] [CrossRef] [PubMed]
- Sacks, W.J.; Cook, B.I.; Buenning, N.; Levis, S.; Helkowski, J.H. Effects of Global Irrigation on the Near-Surface Climate. Clim. Dyn. 2009, 33, 159–175. [Google Scholar] [CrossRef]
- Bonfils, C.; Lobell, D. Empirical Evidence for a Recent Slowdown in Irrigation-Induced Cooling. Proc. Natl. Acad. Sci. USA 2007, 104, 13582–13587. [Google Scholar] [CrossRef]
- Zhu, P.; Burney, J. Untangling Irrigation Effects on Maize Water and Heat Stress Alleviation Using Satellite Data. Hydrol. Earth Syst. Sci. 2022, 26, 827–840. [Google Scholar] [CrossRef]
- Liu, G.; Wang, W. Irrigation-Induced Crop Growth Enhances Irrigation Cooling Effect Over the North China Plain by Increasing Transpiration. Water Resour. Res. 2023, 59, e2022WR034142. [Google Scholar] [CrossRef]
- Hammerle, A.; Haslwanter, A.; Tappeiner, U.; Cernusca, A.; Wohlfahrt, G. Leaf Area Controls on Energy Partitioning of a Temperate Mountain Grassland. Biogeosciences 2008, 5, 421–431. [Google Scholar] [CrossRef]
- Liu, X.; Xu, J.; Yang, S.; Lv, Y. Surface Energy Partitioning and Evaporative Fraction in a Water-Saving Irrigated Rice Field. Atmosphere 2019, 10, 51. [Google Scholar] [CrossRef]
- Kang, S.; Eltahir, E.A.B. Impact of Irrigation on Regional Climate Over Eastern China. Geophys. Res. Lett. 2019, 46, 5499–5505. [Google Scholar] [CrossRef]
- Kueppers, L.M.; Snyder, M.A.; Sloan, L.C. Irrigation Cooling Effect: Regional Climate Forcing by Land-Use Change. Geophys. Res. Lett. 2007, 34, L03703. [Google Scholar] [CrossRef]
- Ozdogan, M.; Rodell, M.; Beaudoing, H.K.; Toll, D.L. Simulating the Effects of Irrigation over the United States in a Land Surface Model Based on Satellite-Derived Agricultural Data. J. Hydrometeorol. 2010, 11, 171–184. [Google Scholar] [CrossRef]
- Bonan, G. Ecological Climatology: Concepts and Applications, 3rd ed.; Cambridge University Press: Cambridge, UK, 2015; ISBN 978-1-107-61905-0. [Google Scholar]
- Tang, X.; Liu, H.; Yang, L.; Li, L.; Chang, J. Energy Balance, Microclimate, and Crop Evapotranspiration of Winter Wheat (Triticum aestivum L.) under Sprinkler Irrigation. Agriculture 2022, 12, 953. [Google Scholar] [CrossRef]
- Jiang, L.; Ma, E.; Deng, X. Impacts of Irrigation on the Heat Fluxes and Near-Surface Temperature in an Inland Irrigation Area of Northern China. Energies 2014, 7, 1300–1317. [Google Scholar] [CrossRef]
- Vote, C.; Hall, A.; Charlton, P. Carbon Dioxide, Water and Energy Fluxes of Irrigated Broad-Acre Crops in an Australian Semi-Arid Climate Zone. Environ. Earth Sci. 2015, 73, 449–465. [Google Scholar] [CrossRef]
- Siebert, S.; Webber, H.; Zhao, G.; Ewert, F. Heat Stress Is Overestimated in Climate Impact Studies for Irrigated Agriculture. Environ. Res. Lett. 2017, 12, 054023. [Google Scholar] [CrossRef]
- Gardner, A.S.; Maclean, I.M.D.; Gaston, K.J.; Bütikofer, L. Forecasting Future Crop Suitability with Microclimate Data. Agric. Syst. 2021, 190, 103084. [Google Scholar] [CrossRef]
- Bowen, I.S. The Ratio of Heat Losses by Conduction and by Evaporation from Any Water Surface. Phys. Rev. 1926, 27, 779–787. [Google Scholar] [CrossRef]
- Mohammed, A.A.A.; Tsubo, M.; Ma, S.; Kurosaki, Y.; Ibaraki, Y.; Tahir, I.S.A.; Gorafi, Y.S.A.; Idris, A.A.M.; Tsujimoto, H. Micrometeorological Comparison of Canopy Temperature between Two Wheat Cultivars Grown under Irrigation in a Hot Environment in Sudan. Agronomy 2023, 13, 3032. [Google Scholar] [CrossRef]
- Rajaram, S.; Van Ginkel, M.; Fischer, R. CIMMYT’s Wheat Breeding Mega-Environments (ME). In Proceedings of the 8th International Wheat Genetic Symposium, Beijing, China, 19–24 July 1993. [Google Scholar]
- Tahir, I.S.A.; Mustafa, H.; Elbashier, E. Agronomic Performance, Stability and Rust Resistance of Bread Wheat Genotypes under Optimum and Late Sowing Environments in Sudan: A Proposal for the Release of Four Bread Wheat Varieties. In Proceedings of the National Variety Release Committee, Khartoum, Sudan, 2 April 2018. [Google Scholar]
- Elbashir, A.A.E.; Gorafi, Y.S.A.; Tahir, I.S.A.; Elhashimi, A.M.A.; Abdalla, M.G.A.; Tsujimoto, H. Genetic Variation in Heat Tolerance-Related Traits in a Population of Wheat Multiple Synthetic Derivatives. Breed. Sci. 2017, 67, 483–492. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration-Guidelines for Computing Crop Water Requirements; FAO Irrigation and Drainage Paper 56; FAO: Rome, Italy, 1998. [Google Scholar]
- Kozak, A.; Kozak, R.A. Notes on Regression through the Origin. For. Chron. 1995, 71, 326–330. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Core Team: Vienna, Austria, 2023. [Google Scholar]
- Raun, W.R.; Solie, J.B.; Johnson, G.V.; Stone, M.L.; Lukina, E.V.; Thomason, W.E.; Schepers, J.S. In-Season Prediction of Potential Grain Yield in Winter Wheat Using Canopy Reflectance. Agron. J. 2001, 93, 131–138. [Google Scholar] [CrossRef]
- Babar, M.A.; Reynolds, M.P.; van Ginkel, M.; Klatt, A.R.; Raun, W.R.; Stone, M.L. Spectral Reflectance Indices as a Potential Indirect Selection Criteria for Wheat Yield under Irrigation. Crop. Sci. 2006, 46, 578–588. [Google Scholar] [CrossRef]
- Hazratkulova, S.; Sharma, R.C.; Alikulov, S.; Islomov, S.; Yuldashev, T.; Ziyaev, Z.; Khalikulov, Z.; Ziyadullaev, Z.; Turok, J. Analysis of Genotypic Variation for Normalized Difference Vegetation Index and Its Relationship with Grain Yield in Winter Wheat under Terminal Heat Stress. Plant Breed. 2012, 131, 716–721. [Google Scholar] [CrossRef]
- Cabrera-Bosquet, L.; Molero, G.; Stellacci, A.M.; Bort, J.; Nogués, S.; Araus, J.L. NDVI as a Potential Tool for Predicting Biomass, Plant Nitrogen Content and Growth in Wheat Genotypes Subjected to Different Water and Nitrogen Conditions. Cereal Res. Commun. 2011, 39, 147–159. [Google Scholar] [CrossRef]
- Marti, J.; Bort, J.; Slafer, G.A.; Araus, J.L. Can Wheat Yield Be Assessed by Early Measurements of Normalized Difference Vegetation Index? Ann. Appl. Biol. 2007, 150, 253–257. [Google Scholar] [CrossRef]
- Zaveri, E.; Lobell, D.B. The Role of Irrigation in Changing Wheat Yields and Heat Sensitivity in India. Nat. Commun. 2019, 10, 4144. [Google Scholar] [CrossRef]
- Liu, H.-J.; Kang, Y. Regulating Field Microclimate Using Sprinkler Misting under Hot-Dry Windy Conditions. Biosyst. Eng. 2006, 95, 349–358. [Google Scholar] [CrossRef]
- Cavero, J.; Medina, E.T.; Puig, M.; Martínez-Cob, A. Sprinkler Irrigation Changes Maize Canopy Microclimate and Crop Water Status, Transpiration, and Temperature. Agron. J. 2009, 101, 854–864. [Google Scholar] [CrossRef]
- Flerchinger, G.N.; Pierson, F.B. Modeling Plant Canopy Effects on Variability of Soil Temperature and Water. Agric. For. Meteorol. 1991, 56, 227–246. [Google Scholar] [CrossRef]
- Taha, H.; Akbari, H.; Rosenfeld, A. Heat Island and Oasis Effects of Vegetative Canopies: Micro-Meteorological Field-Measurements. Theor. Appl. Clim. 1991, 44, 123–138. [Google Scholar] [CrossRef]
- Kai, K.; Matsuda, M.; Sato, R. Oasis Effect Observed at Zhangye Oasis in the Hexi Corridor, China. J. Meteorol. Soc. Japan. Ser. II 1997, 75, 1171–1178. [Google Scholar] [CrossRef]
- Kotzen, B. An Investigation of Shade under Six Different Tree Species of the Negev Desert towards Their Potential Use for Enhancing Micro-Climatic Conditions in Landscape Architectural Development. J. Arid Environ. 2003, 55, 231–274. [Google Scholar] [CrossRef]
- Robitu, M.; Musy, M.; Inard, C.; Groleau, D. Modeling the Influence of Vegetation and Water Pond on Urban Microclimate. Sol. Energy 2006, 80, 435–447. [Google Scholar] [CrossRef]
- Hagishima, A.; Narita, K.; Tanimoto, J. Field Experiment on Transpiration from Isolated Urban Plants. Hydrol. Process. 2007, 21, 1217–1222. [Google Scholar] [CrossRef]
- Potchter, O.; Goldman, D.; Kadish, D.; Iluz, D. The Oasis Effect in an Extremely Hot and Arid Climate: The Case of Southern Israel. J. Arid Environ. 2008, 72, 1721–1733. [Google Scholar] [CrossRef]
- Manteghi, G.; Limit, H.; Remaz, D. Water Bodies an Urban Microclimate: A Review. Mod. Appl. Sci. 2015, 9, p1. [Google Scholar] [CrossRef]
- Xiong, Y.; Zhao, S.; Yin, J.; Li, C.; Qiu, G. Effects of Evapotranspiration on Regional Land Surface Temperature in an Arid Oasis Based on Thermal Remote Sensing. IEEE Geosci. Remote Sens. Lett. 2016, 13, 1885–1889. [Google Scholar] [CrossRef]
- Yuan, G.; Zhang, L.; Liang, J.; Cao, X.; Liu, H.; Yang, Z. Understanding the Partitioning of the Available Energy over the Semi-Arid Areas of the Loess Plateau, China. Atmosphere 2017, 8, 87. [Google Scholar] [CrossRef]
- Tolk, J.A.; Evett, S.R.; Howell, T.A. Advection Influences on Evapotranspiration of Alfalfa in a Semiarid Climate. Agron. J. 2006, 98, 1646–1654. [Google Scholar] [CrossRef]
- Eltahir, E.A.B. A Soil Moisture–Rainfall Feedback Mechanism: 1. Theory and Observations. Water Resour. Res. 1998, 34, 765–776. [Google Scholar] [CrossRef]
- Mukherjee, J.; Bal, S.K.; Singh, G.; Bhattacharya, B.K.; Singh, H.; Kaur, P. Surface Energy Fluxes in Wheat (Triticum aestivum L.) under Irrigated Ecosystem. J. Agrometeorol. 2012, 14, 16–20. [Google Scholar] [CrossRef]
- Guan, X.; Huang, J.; Guo, N.; Bi, J.; Wang, G. Variability of Soil Moisture and Its Relationship with Surface Albedo and Soil Thermal Parameters over the Loess Plateau. Adv. Atmos. Sci. 2009, 26, 692–700. [Google Scholar] [CrossRef]
- Tahir, I.S.A.; Nakata, N.; Yamaguchi, T. Responses of Three Wheat Genotypes to High Soil Temperature during Grain Filling. Plant Prod. Sci. 2005, 8, 192–198. [Google Scholar] [CrossRef]
Season | Month | Period of Month | Micrometeorological Station in the Wheat Field (°C) | Dongola Meteorological Station (°C) | Temperature Difference (°C) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Max | Min | Mean | SD | Max | Min | Mean | SD | Max | Min | Mean | |||
2021–2022 | February | Second | 28.5 | 21.7 | 25.4 | 1.9 | 31.8 | 24.4 | 27.9 | 1.9 | 3.3 | 2.7 | 2.5 |
March | First | 34.8 | 22.5 | 29.8 | 4.4 | 36.8 | 30.5 | 35.1 | 1.7 | 2.0 | 8.0 | 5.3 | |
March | Second | 39.2 | 23.7 | 30.0 | 4.0 | 36.5 | 28.6 | 32.5 | 2.3 | −2.7 | 4.9 | 2.5 | |
2022–2023 | January | Second | 32.7 | 24.0 | 27.8 | 2.2 | 28.3 | 21.1 | 25.1 | 2.5 | −4.4 | −2.9 | −2.7 |
February | First | 30.0 | 20.9 | 24.9 | 2.7 | 32.1 | 29.6 | 30.6 | 0.7 | 2.1 | 8.7 | 5.7 | |
February | Second | 30.7 | 22.1 | 27.3 | 2.5 | 30.6 | 23.4 | 28.0 | 2.5 | −0.1 | 1.3 | 0.7 | |
March | First | 35.6 | 27.5 | 31.9 | 2.4 | 36.9 | 34.4 | 35.4 | 0.7 | 1.3 | 6.9 | 3.5 | |
March | Second | 36.2 | 28.6 | 31.8 | 2.3 | 35.4 | 28.2 | 32.3 | 2.5 | −0.8 | 0.4 | 0.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohammed, A.A.A.; Tsubo, M.; Kurosaki, Y.; Ibaraki, Y. Characterization of the Energy Balance of Wheat Grown under Irrigation in the Hot, Arid Environment of Sudan. Atmosphere 2024, 15, 18. https://doi.org/10.3390/atmos15010018
Mohammed AAA, Tsubo M, Kurosaki Y, Ibaraki Y. Characterization of the Energy Balance of Wheat Grown under Irrigation in the Hot, Arid Environment of Sudan. Atmosphere. 2024; 15(1):18. https://doi.org/10.3390/atmos15010018
Chicago/Turabian StyleMohammed, Almutaz Abdelkarim Abdelfattah, Mitsuru Tsubo, Yasunori Kurosaki, and Yasuomi Ibaraki. 2024. "Characterization of the Energy Balance of Wheat Grown under Irrigation in the Hot, Arid Environment of Sudan" Atmosphere 15, no. 1: 18. https://doi.org/10.3390/atmos15010018
APA StyleMohammed, A. A. A., Tsubo, M., Kurosaki, Y., & Ibaraki, Y. (2024). Characterization of the Energy Balance of Wheat Grown under Irrigation in the Hot, Arid Environment of Sudan. Atmosphere, 15(1), 18. https://doi.org/10.3390/atmos15010018