Relationships between Aerosols and Marine Clouds during the “Godzilla” Dust Storm: Perspective of Satellite and Reanalysis Products
Abstract
:1. Introduction
2. Materials and Methods
2.1. Satellite Observations and Reanalysis
2.2. Anomalous Conditions
2.3. Principal Components Analysis (PCA)
3. Results and Discussion
3.1. Climatology and Dust Outbreak
3.2. Westward Transport of Warming and Convective Systems
3.3. PCA Results and AOD-CF Relationships
3.4. Evolution of Aerosols and Clouds during the Extreme Dust Storm
3.5. Vertical Characteristics of SAL Using CALIOP Observations
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Intergovernmental Panel on Climate Change. Climate Change 2021—The Physical Science Basis; Intergovernmental Panel on Climate Change: Geneva, Switzerland, 2023. [Google Scholar]
- Hinds, W.C. Aerosol Technology Properties, Behavior, and Measurement of Airborne Particles; John Wiley & Sons: Hoboken, NJ, USA, 1999; Volume 14. [Google Scholar]
- Kinne, S.; Schulz, M.; Textor, C.; Guibert, S.; Balkanski, Y.; Bauer, S.E.; Berntsen, T.; Berglen, T.F.; Boucher, O.; Chin, M.; et al. An AeroCom Initial Assessment—Optical Properties in Aerosol Component Modules of Global Models. Atmos. Chem. Phys. 2006, 6, 1815–1834. [Google Scholar] [CrossRef]
- Auth Sokolik, I.N.; Toon, O.B. Direct Radiative Forcing by Anthropogenic Airborne Mineral Aerosols. Nature 1996, 381, 681–683. [Google Scholar] [CrossRef]
- Tegen, I.; Lacis, A.A.; Fung, I. The Influence on Climate Forcing of Mineral Aerosols from Disturbed Soils. Nature 1996, 380, 419–422. [Google Scholar] [CrossRef]
- Lau, K.M.; Kim, K.M. Cooling of the Atlantic by Saharan Dust. Geophys. Res. Lett. 2007, 34. [Google Scholar] [CrossRef]
- Twohy, C.H.; Kreidenweis, S.M.; Eidhammer, T.; Browell, E.V.; Heymsfield, A.J.; Bansemer, A.R.; Anderson, B.E.; Chen, G.; Ismail, S.; DeMott, P.J.; et al. Saharan Dust Particles Nucleate Droplets in Eastern Atlantic Clouds. Geophys. Res. Lett. 2009, 36. [Google Scholar] [CrossRef]
- Weinzierl, B.; Ansmann, A.; Prospero, J.M.; Althausen, D.; Benker, N.; Chouza, F.; Dollner, M.; Farrell, D.; Fomba, W.K.; Freudenthaler, V.; et al. The Saharan Aerosol Long-Range Transport and Aerosol-Cloud-Interaction Experiment: Overview and Selected Highlights. Bull. Am. Meteorol. Soc. 2017, 98, 1427–1451. [Google Scholar] [CrossRef]
- Haarig, M.; Walser, A.; Ansmann, A.; Dollner, M.; Althausen, D.; Sauer, D.; Farrell, D.; Weinzierl, B. Profiles of Cloud Condensation Nuclei, Dust Mass Concentration, and Ice-Nucleating-Particle-Relevant Aerosol Properties in the Saharan Air Layer over Barbados from Polarization Lidar and Airborne in Situ Measurements. Atmos. Chem. Phys. 2019, 19, 13773–13788. [Google Scholar] [CrossRef]
- Twomey, S. Atmospheric Aerosols; Elsevier Scientific Publishing Co.: New York, NY, USA, 1977. [Google Scholar]
- Twomey, S.A.; Piepgrass, M.; Wolfe, T.L. An Assessment of the Impact of Pollution on Global Cloud Albedo. Tellus B Chem. Phys. Meteorol. 1984, 36, 356–366. [Google Scholar] [CrossRef]
- Albrecht, B.A. Aerosols, Cloud Microphysics, and Fractional Cloudiness. Science 1989, 245, 1227–1230. [Google Scholar] [CrossRef]
- Rosenfeld, D.; Rudich, Y.; Lahav, R. Desert Dust Suppressing Precipitation: A Possible Desertification Feedback Loop. Proc. Natl. Acad. Sci. USA 2001, 98, 5975–5980. [Google Scholar] [CrossRef]
- Min, Q.L.; Li, R.; Lin, B.; Joseph, E.; Wang, S.; Hu, Y.; Morris, V.; Chang, F. Evidence of Mineral Dust Altering Cloud Microphysics and Precipitation. Atmos. Chem. Phys. 2009, 9, 3223–3231. [Google Scholar] [CrossRef]
- Hansen, J.; Sato, M.; Ruedy, R. Radiative Forcing and Climate Response. J. Geophys. Res. Atmos. 1997, 102, 6831–6864. [Google Scholar] [CrossRef]
- Ackerman, A.S.; Toon, O.B.; Stevens, D.E.; Heymsfield, A.J.; Ramanathan, V.; Welton, E.J. Reduction of Tropical Cloudiness by Soot. Science 2000, 288, 1042–1047. [Google Scholar] [CrossRef] [PubMed]
- Johnson, B.T.; Shine, K.P.; Forster, P.M. The Semi-Direct Aerosol Effect: Impact of Absorbing Aerosols on Marine Stratocumulus. Q. J. R. Meteorol. Soc. 2004, 130, 1407–1422. [Google Scholar] [CrossRef]
- Koch, D.; Del Genio, A.D. Black Carbon Semi-Direct Effects on Cloud Cover: Review and Synthesis. Atmos. Chem. Phys. 2010, 10, 7685–7696. [Google Scholar] [CrossRef]
- Perlwitz, J.; Miller, R.L. Cloud Cover Increase with Increasing Aerosol Absorptivity: A Counterexample to the Conventional Semidirect Aerosol Effect. J. Geophys. Res. Atmos. 2010, 115. [Google Scholar] [CrossRef]
- Sakaeda, N.; Wood, R.; Rasch, P.J. Direct and Semidirect Aerosol Effects of Southern African Biomass Burning Aerosol. J. Geophys. Res. Atmos. 2011, 116. [Google Scholar] [CrossRef]
- Gordon, H.; Field, P.R.; Abe, S.J.; Dalvi, M.; Grosvenor, D.P.; Hill, A.A.; Johnson, B.T.; Miltenberger, A.K.; Yoshioka, M.; Carslaw, K.S. Large Simulated Radiative Effects of Smoke in the South-East Atlantic. Atmos. Chem. Phys. 2018, 18, 15261–15289. [Google Scholar] [CrossRef]
- Ding, K.; Huang, X.; Ding, A.; Wang, M.; Su, H.; Kerminen, V.M.; Petäjä, T.; Tan, Z.; Wang, Z.; Zhou, D.; et al. Aerosol-Boundary-Layer-Monsoon Interactions Amplify Semi-Direct Effect of Biomass Smoke on Low Cloud Formation in Southeast Asia. Nat. Commun. 2021, 12, 6416. [Google Scholar] [CrossRef]
- Wilcox, E.M. Stratocumulus Cloud Thickening beneath Layers of Absorbing Smoke Aerosol. Atmos. Chem. Phys. 2010, 10, 11769–11777. [Google Scholar] [CrossRef]
- Adebiyi, A.A.; Zuidema, P. Low Cloud Cover Sensitivity to Biomass-Burning Aerosols and Meteorology over the Southeast Atlantic. J. Clim. 2018, 31, 4329–4346. [Google Scholar] [CrossRef]
- Deaconu, L.T.; Ferlay, N.; Waquet, F.; Peers, F.; Thieuleux, F.; Goloub, P. Satellite Inference of Water Vapour and Above-Cloud Aerosol Combined Effect on Radiative Budget and Cloud-Top Processes in the Southeastern Atlantic Ocean. Atmos. Chem. Phys. 2019, 19, 11613–11634. [Google Scholar] [CrossRef]
- Pu, B.; Jin, Q. A Record-Breaking Trans-Atlantic African Dust Plume Associated with Atmospheric Circulation Extremes in June 2020. Bull. Am. Meteorol. Soc. 2021, 102, E1340–E1356. [Google Scholar] [CrossRef]
- Francis, D.; Fonseca, R.; Nelli, N.; Cuesta, J.; Weston, M.; Evan, A.; Temimi, M. The Atmospheric Drivers of the Major Saharan Dust Storm in June 2020. Geophys. Res. Lett. 2020, 47, e2020GL090102. [Google Scholar] [CrossRef]
- Yu, H.; Tan, Q.; Zhou, L.; Zhou, Y.; Bian, H.; Chin, M.; Ryder, C.L.; Levy, R.C.; Pradhan, Y.; Shi, Y.; et al. Observation and Modeling of the Historic “Godzilla” African Dust Intrusion into the Caribbean Basin and the Southern US in June 2020. Atmos. Chem. Phys. 2021, 21, 12359–12383. [Google Scholar] [CrossRef]
- Levy, R.C.; Mattoo, S.; Munchak, L.A.; Remer, L.A.; Sayer, A.M.; Patadia, F.; Hsu, N.C. The Collection 6 MODIS Aerosol Products over Land and Ocean. Atmos. Meas. Tech. 2013, 6, 2989–3034. [Google Scholar] [CrossRef]
- Ackerman, S.A.; Holz, R.E.; Frey, R.; Eloranta, E.W.; Maddux, B.C.; McGill, M. Cloud Detection with MODIS. Part II: Validation. J. Atmos. Ocean Technol. 2008, 25, 1073–1086. [Google Scholar] [CrossRef]
- Remer, L.A.; Kaufman, Y.J.; Tanré, D.; Mattoo, S.; Chu, D.A.; Martins, J.V.; Li, R.R.; Ichoku, C.; Levy, R.C.; Kleidman, R.G.; et al. The MODIS Aerosol Algorithm, Products, and Validation. J. Atmos. Sci. 2005, 62, 947–973. [Google Scholar] [CrossRef]
- Remer, L.A.; Levy, R.C.; Mattoo, S.; Tanré, D.; Gupta, P.; Shi, Y.; Sawyer, V.; Munchak, L.A.; Zhou, Y.; Kim, M.; et al. The Dark Target Algorithm for Observing the Global Aerosol System: Past, Present, and Future. Remote Sens. 2020, 12, 2900. [Google Scholar] [CrossRef]
- Winker, D.M.; Vaughan, M.A.; Omar, A.; Hu, Y.; Powell, K.A.; Liu, Z.; Hunt, W.H.; Young, S.A. Overview of the CALIPSO Mission and CALIOP Data Processing Algorithms. J. Atmos. Ocean Technol. 2009, 26, 2310–2323. [Google Scholar] [CrossRef]
- Liu, Z.; Vaughan, M.; Winker, D.; Kittaka, C.; Getzewich, B.; Kuehn, R.; Omar, A.; Powell, K.; Trepte, C.; Hostetler, C. The CALIPSO Lidar Cloud and Aerosol Discrimination: Version 2 Algorithm and Initial Assessment of Performance. J. Atmos. Ocean Technol. 2009, 26, 1198–1213. [Google Scholar] [CrossRef]
- Gelaro, R.; McCarty, W.; Suárez, M.J.; Todling, R.; Molod, A.; Takacs, L.; Randles, C.A.; Darmenov, A.; Bosilovich, M.G.; Reichle, R.; et al. The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2). J. Clim. 2017, 30, 5419–5454. [Google Scholar] [CrossRef] [PubMed]
- Kawamura, R. A Rotated EOF Analysis of Global Sea Surface Temperature Variability with Interannual and Interdecadal Scales. J. Phys. Oceanogr. 1994, 24, 707–715. [Google Scholar] [CrossRef]
- Meyers, G. Variation of Indonesian Throughflow and the El Niño-Southern Oscillation. J. Geophys. Res. Oceans 1996, 101, 12255–12263. [Google Scholar] [CrossRef]
- Wang, B.; An, S. Il A Method for Detecting Season-Dependent Modes of Climate Variability: S-EOF Analysis. Geophys. Res. Lett. 2005, 32. [Google Scholar] [CrossRef]
- Kessler, W.S. EOF Representations of the Madden-Julian and Its Connection with ENSO. J. Clim. 2001, 14, 3055–3061. [Google Scholar] [CrossRef]
- Wheeler, M.C.; Hendon, H.H. An All-Season Real-Time Multivariate MJO Index: Development of an Index for Monitoring and Prediction. Mon. Weather. Rev. 2004, 132, 1552–1574. [Google Scholar] [CrossRef]
- Slonosky, V.C.; Jones, P.D.; Davies, T.D. Variability of the Surface Atmospheric Circulation over Europe, 1774–1995. Int. J. Climatol. 2000, 20, 1875–1897. [Google Scholar] [CrossRef]
- Hurrell, J.W.; Deser, C. North Atlantic Climate Variability: The Role of the North Atlantic Oscillation. J. Mar. Syst. 2010, 79, 231–244. [Google Scholar] [CrossRef]
- Chew, B.N.; Campbell, J.R.; Salinas, S.V.; Chang, C.W.; Reid, J.S.; Welton, E.J.; Holben, B.N.; Liew, S.C. Aerosol Particle Vertical Distributions and Optical Properties over Singapore. Atmos. Environ. 2013, 79, 599–613. [Google Scholar] [CrossRef]
- Reid, J.S.; Kuehn, R.E.; Holz, R.E.; Eloranta, E.W.; Kaku, K.C.; Kuang, S.; Newchurch, M.J.; Thompson, A.M.; Trepte, C.R.; Zhang, J.; et al. Ground-Based High Spectral Resolution Lidar Observation of Aerosol Vertical Distribution in the Summertime Southeast United States. J. Geophys. Res. Atmos. 2017, 122, 2970–3004. [Google Scholar] [CrossRef]
- Lu, Z.; Wang, J.; Chen, X.; Zeng, J.; Wang, Y.; Xu, X.; Christian, K.E.; Yorks, J.E.; Nowottnick, E.P.; Reid, J.S.; et al. First Mapping of Monthly and Diurnal Climatology of Saharan Dust Layer Height Over the Atlantic Ocean From EPIC/DSCOVR in Deep Space. Geophys. Res. Lett. 2023, 50, e2022GL102552. [Google Scholar] [CrossRef]
- Statheropoulos, M.; Vassiliadis, N.; Pappa, A. Principal Component and Canonical Correlation Analysis for Examining Air Pollution and Meteorological Data. Atmos. Environ. 1998, 32, 1087–1095. [Google Scholar] [CrossRef]
- Pandey, B.; Agrawal, M.; Singh, S. Assessment of Air Pollution around Coal Mining Area: Emphasizing on Spatial Distributions, Seasonal Variations and Heavy Metals, Using Cluster and Principal Component Analysis. Atmos. Pollut. Res. 2014, 5, 79–86. [Google Scholar] [CrossRef]
- Hosseinpour, F.; Wilcox, E.M. Aerosol Interactions with African/Atlantic Climate Dynamics. Environ. Res. Lett. 2014, 9, 075004. [Google Scholar] [CrossRef]
- Hosseinpour, F.E.; Wilcox, E.M. A New Look into the Impacts of Dust Radiative Forcing on the Energetics of Tropical Easterly Waves. EGUsphere 2023, 2023, 1–48. [Google Scholar] [CrossRef]
- Kiladis, G.N.; Thorncroft, C.D.; Hall, N.M.J. Three-Dimensional Structure and Dynamics of African Easterly Waves. Part I: Observations. J. Atmos. Sci. 2006, 63, 2212–2230. [Google Scholar] [CrossRef]
- Qiu, Y.; Zhao, C.; Guo, J.; Li, J. 8-Year Ground-Based Observational Analysis about the Seasonal Variation of the Aerosol-Cloud Droplet Effective Radius Relationship at SGP Site. Atmos. Environ. 2017, 164, 139–146. [Google Scholar] [CrossRef]
- Spyrou, C.; Kallos, G.; Mitsakou, C.; Athanasiadis, P.; Kalogeri, C.; Iacono, M.J. Modeling the Radiative Effects of Desert Dust on Weather and Regional Climate. Atmos. Chem. Phys. 2013, 13, 5489–5504. [Google Scholar] [CrossRef]
- Costantino, L.; Bréon, F.M. Aerosol Indirect Effect on Warm Clouds over South-East Atlantic, from Co-Located MODIS and CALIPSO Observations. Atmos. Chem. Phys. 2013, 13, 69–88. [Google Scholar] [CrossRef]
- Lau, K.M.; Kim, K.M.; Sud, Y.C.; Walker, G.K. A GCM Study of the Response of the Atmospheric Water Cycle of West Africa and the Atlantic to Saharan Dust Radiative Forcing. Ann. Geophys. 2009, 27, 4023–4037. [Google Scholar] [CrossRef]
Region | G | F | E | D | C | B | A | ||||
Lat (N) | 10–25 | 10–25 | 10–25 | 10–25 | 10–25 | 10–25 | 10–25 | ||||
Lon (W) | 85–75 | 75–65 | 65–55 | 55–45 | 45–35 | 35–25 | 25–15 | ||||
State | 1 | 2 | 3 | 4 | |||||||
Time range | 14 June 2020 ↓ 16 June 2020 | 17 June 2020 ↓ 19 June 2020 | 20 June 2020 ↓ 22 June 2020 | 23 June 2020 ↓ 25 June 2020 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, C.-H.; Hosseinpour, F. Relationships between Aerosols and Marine Clouds during the “Godzilla” Dust Storm: Perspective of Satellite and Reanalysis Products. Atmosphere 2024, 15, 13. https://doi.org/10.3390/atmos15010013
Chang C-H, Hosseinpour F. Relationships between Aerosols and Marine Clouds during the “Godzilla” Dust Storm: Perspective of Satellite and Reanalysis Products. Atmosphere. 2024; 15(1):13. https://doi.org/10.3390/atmos15010013
Chicago/Turabian StyleChang, Cheng-Hsiang, and Farnaz Hosseinpour. 2024. "Relationships between Aerosols and Marine Clouds during the “Godzilla” Dust Storm: Perspective of Satellite and Reanalysis Products" Atmosphere 15, no. 1: 13. https://doi.org/10.3390/atmos15010013
APA StyleChang, C. -H., & Hosseinpour, F. (2024). Relationships between Aerosols and Marine Clouds during the “Godzilla” Dust Storm: Perspective of Satellite and Reanalysis Products. Atmosphere, 15(1), 13. https://doi.org/10.3390/atmos15010013