Integrating Ensemble Weather Predictions in a Hydrologic-Hydraulic Modelling System for Fine-Resolution Flood Forecasting: The Case of Skala Bridge at Evrotas River, Greece
Abstract
:1. Introduction
2. Study Area, Models and Methods
2.1. Study Area
2.2. Overview of the Ensemble Hydrometeorological System
2.3. Meteorological Model Setup
2.4. Hydrological Model Setup
2.5. Hydraulic–Hydrodynamic Model Setup
2.6. Remore Sensing Analysis
3. Results and Discussion
3.1. Brief Analysis of the Evrotas Flash Flood on 26 January 2023
3.2. Probabilistic Forecasting of Precipitation and Discharge at Evrotas River Basin
3.3. Probabilistic Forecasting of Water Level at Skala’s Bridge
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Blöschl, G.; Hall, J.; Viglione, A.; Perdigão, R.A.P.; Parajka, J.; Merz, B.; Lun, D.; Arheimer, B.; Aronica, G.T.; Bilibashi, A.; et al. Changing Climate Both Increases and Decreases European River Floods. Nature 2019, 573, 108–111. [Google Scholar] [CrossRef] [PubMed]
- Berghuijs, W.R.; Aalbers, E.E.; Larsen, J.R.; Trancoso, R.; Woods, R.A. Recent Changes in Extreme Floods across Multiple Continents. Environ. Res. Lett. 2017, 12, 114035. [Google Scholar] [CrossRef]
- Sanders, B.F.; Schubert, J.E.; Kahl, D.T.; Mach, K.J.; Brady, D.; AghaKouchak, A.; Forman, F.; Matthew, R.A.; Ulibarri, N.; Davis, S.J. Large and Inequitable Flood Risks in Los Angeles, California. Nat. Sustain. 2023, 6, 47–57. [Google Scholar] [CrossRef]
- Johnson, K.A.; Wing, O.E.J.; Bates, P.D.; Fargione, J.; Kroeger, T.; Larson, W.D.; Sampson, C.C.; Smith, A.M. A Benefit–Cost Analysis of Floodplain Land Acquisition for US Flood Damage Reduction. Nat. Sustain. 2020, 3, 56–62. [Google Scholar] [CrossRef]
- Cloke, H.L.; Pappenberger, F. Ensemble Flood Forecasting: A Review. J. Hydrol. 2009, 375, 613–626. [Google Scholar] [CrossRef]
- Maidment, D.R. Conceptual Framework for the National Flood Interoperability Experiment. J. Am. Water Resour. Assoc. 2017, 53, 245–257. [Google Scholar] [CrossRef]
- Giannaros, C.; Galanaki, E.; Kotroni, V.; Lagouvardos, K.; Oikonomou, C.; Haralambous, H.; Giannaros, T.M. Pre-Operational Application of a WRF-Hydro-Based Fluvial Flood Forecasting System in the Southeast Mediterranean. Forecasting 2021, 3, 437–446. [Google Scholar] [CrossRef]
- Ahmad, T.; Pandey, A.; Kumar, A. Evaluating Urban Growth and Its Implication on Flood Hazard and Vulnerability in Srinagar City, Kashmir Valley, Using Geoinformatics. Arab. J. Geosci. 2019, 12, 308. [Google Scholar] [CrossRef]
- Alamanos, A.; Linnane, S. Systems Resilience to Floods: A Categorisation of Approaches. In Proceedings of the 24th EGU General Assembly, Vienna, Austria, 23–27 May 2022. [Google Scholar]
- Papaioannou, G.; Alamanos, A.; Maris, F. Evaluating Post-Fire Erosion and Flood Protection Techniques: A Narrative Review of Applications. GeoHazards 2023, 4, 380–405. [Google Scholar] [CrossRef]
- Flageollet, J.-C. Landslide Hazard—A Conceptual Approach in Risk Viewpoint. In Floods and Landslides: Integrated Risk Assessment; Casale, R., Margottini, C., Eds.; Environmental Science; Springer: Berlin, Germany, 1999; pp. 3–18. ISBN 978-3-642-58609-5. [Google Scholar]
- Kouwen, N. WATFLOOD: A Micro-Computer Based Flood Forecasting System Based on Real-Time Weather Radar. Can. Water Resour. J. 1988, 13, 62–77. [Google Scholar] [CrossRef]
- Bogardi, J.J.; Kundzewicz, Z.W. Risk, Reliability, Uncertainty, and Robustness of Water Resource Systems; Cambridge University Press: Cambridge, UK, 2002; ISBN 978-1-139-43224-5. [Google Scholar]
- Rossa, A.; Liechti, K.; Zappa, M.; Bruen, M.; Germann, U.; Haase, G.; Keil, C.; Krahe, P. The COST 731 Action: A Review on Uncertainty Propagation in Advanced Hydro-Meteorological Forecast Systems. Atmos. Res. 2011, 100, 150–167. [Google Scholar] [CrossRef]
- Alamanos, A.; Linnane, S. Drought Monitoring, Precipitation Statistics, and Water Balance with Freely Available Remote Sensing Data: Examples, Advances, and Limitations. In Proceedings of the Irish National Hydrology Conference 2021, Athlone, Ireland, 16 November 2021; pp. 1–13. [Google Scholar]
- Alamanos, A. Water Resources Planning under Climate and Economic Changes in Skiathos Island, Aegean. Water Infrastruct. Ecosyst. Soc. 2021, 70, 1085–1093. [Google Scholar] [CrossRef]
- Adams, T.E. Chapter 10—Flood Forecasting in the United States NOAA/National Weather Service. In Flood Forecasting; Adams, T.E., Pagano, T.C., Eds.; Academic Press: Boston, MA, USA, 2016; pp. 249–310. ISBN 978-0-12-801884-2. [Google Scholar]
- Wu, W.; Emerton, R.; Duan, Q.; Wood, A.W.; Wetterhall, F.; Robertson, D.E. Ensemble Flood Forecasting: Current Status and Future Opportunities. WIREs Water 2020, 7, e1432. [Google Scholar] [CrossRef]
- Alamanos, A. Sustainable Water Resources Management under Water-Scarce and Limited-Data Conditions. Cent. Asian J. Water Res. 2021, 7, 1–19. [Google Scholar] [CrossRef]
- Hansen, J.W.; Dinku, T.; Robertson, A.W.; Cousin, R.; Trzaska, S.; Mason, S.J. Flexible Forecast Presentation Overcomes Longstanding Obstacles to Using Probabilistic Seasonal Forecasts. Front. Clim. 2022, 4, 908661. [Google Scholar] [CrossRef]
- Han, S.; Coulibaly, P. Probabilistic Flood Forecasting Using Hydrologic Uncertainty Processor with Ensemble Weather Forecasts. J. Hydrometeorol. 2019, 20, 1379–1398. [Google Scholar] [CrossRef]
- Todini, E. Flood Forecasting and Decision Making in the New Millennium. Where Are We? Water Resour. Manag. 2017, 31, 3111–3129. [Google Scholar] [CrossRef]
- Krajewski, W.F.; Ceynar, D.; Demir, I.; Goska, R.; Kruger, A.; Langel, C.; Mantilla, R.; Niemeier, J.; Quintero, F.; Seo, B.-C.; et al. Real-Time Flood Forecasting and Information System for the State of Iowa. Bull. Am. Meteorol. Soc. 2017, 98, 539–554. [Google Scholar] [CrossRef]
- Marty, R.; Zin, I.; Obled, C. Sensitivity of Hydrological Ensemble Forecasts to Different Sources and Temporal Resolutions of Probabilistic Quantitative Precipitation Forecasts: Flash Flood Case Studies in the Cévennes-Vivarais Region (Southern France). Hydrol. Process. 2013, 27, 33–44. [Google Scholar] [CrossRef]
- Goodarzi, L.; Banihabib, M.E.; Roozbahani, A. A Decision-Making Model for Flood Warning System Based on Ensemble Forecasts. J. Hydrol. 2019, 573, 207–219. [Google Scholar] [CrossRef]
- Ramos, M.-H.; Bartholmes, J.; Thielen-del Pozo, J. Development of Decision Support Products Based on Ensemble Forecasts in the European Flood Alert System. Atmos. Sci. Lett. 2007, 8, 113–119. [Google Scholar] [CrossRef]
- Ming, X.; Liang, Q.; Xia, X.; Li, D.; Fowler, H.J. Real-Time Flood Forecasting Based on a High-Performance 2-D Hydrodynamic Model and Numerical Weather Predictions. Water Resour. Res. 2020, 56, e2019WR025583. [Google Scholar] [CrossRef]
- Richardson, D.; Neal, R.; Dankers, R.; Mylne, K.; Cowling, R.; Clements, H.; Millard, J. Linking Weather Patterns to Regional Extreme Precipitation for Highlighting Potential Flood Events in Medium- to Long-Range Forecasts. Meteorol. Appl. 2020, 27, e1931. [Google Scholar] [CrossRef]
- Nanditha, J.S.; Mishra, V. On the Need of Ensemble Flood Forecast in India. Water Secur. 2021, 12, 100086. [Google Scholar] [CrossRef]
- Gude, V.; Corns, S.; Long, S. Flood Prediction and Uncertainty Estimation Using Deep Learning. Water 2020, 12, 884. [Google Scholar] [CrossRef]
- Alamanos, A.; Papaioannou, G.; Varlas, G.; Markogianni, V.; Papadopoulos, A.; Dimitriou, E. Representation of a Post-Fire Flash-Flood Event Combining Meteorological Simulations, Remote Sensing, and Hydraulic Modeling. Land 2024, 13, 47. [Google Scholar] [CrossRef]
- Galia, T.; Macurová, T.; Vardakas, L.; Škarpich, V.; Matušková, T.; Kalogianni, E. Drivers of Variability in Large Wood Loads along the Fluvial Continuum of a Mediterranean Intermittent River. Earth Surf. Process. Landf. 2020, 45, 2048–2062. [Google Scholar] [CrossRef]
- Matiatos, I.; Papadopoulos, A.; Panagopoulos, Y.; Dimitriou, E. Insights into the Influence of Morphology on the Hydrological Processes of River Catchments Using Stable Isotopes. Hydrol. Sci. J. 2023, 68, 1487–1498. [Google Scholar] [CrossRef]
- Karaouzas, I.; Theodoropoulos, C.; Vardakas, L.; Zogaris, S.; Skoulikidis, N. Theodoropoulos, C.; Vardakas, L.; Zogaris, S.; Skoulikidis, N. The Evrotas River Basin: 10 Years of Ecological Monitoring. In The Rivers of Greece: Evolution, Current Status and Perspectives; Skoulikidis, N., Dimitriou, E., Karaouzas, I., Eds.; The Handbook of Environmental Chemistry; Springer: Berlin, Germany, 2018; pp. 279–326. ISBN 978-3-662-55369-5. [Google Scholar]
- Galia, T.; Škarpich, V.; Vardakas, L.; Dimitriou, E.; Panagopoulos, Y.; Spálovský, V. Spatiotemporal Variations of Large Wood and River Channel Morphology in a Rapidly Degraded Reach of an Intermittent River. Earth Surf. Process. Landf. 2023, 48, 997–1010. [Google Scholar] [CrossRef]
- Tzoraki, O.; Cooper, D.; Kjeldsen, T.; Nikolaidis, N.P.; Gamvroudis, C.; Froebrich, J.; Querner, E.; Gallart, F.; Karalemas, N. Flood Generation and Classification of a Semi-Arid Intermittent Flow Watershed: Evrotas River. Int. J. River Basin Manag. 2013, 11, 77–92. [Google Scholar] [CrossRef]
- Varlas, G.; Papadopoulos, A.; Papaioannou, G.; Dimitriou, E. Evaluating the Forecast Skill of a Hydrometeorological Modelling System in Greece. Atmosphere 2021, 12, 902. [Google Scholar] [CrossRef]
- SKAI News Dangerous Rise of Evrotas River Water Levels. Available online: https://www.skai.gr/news/greece/anevainei-epikindyna-i-stathmi-tou-potamou-eyrota-deite-vinteo (accessed on 17 November 2023).
- The TOC Storms in Lakonia: Floods, Damages and Closed Roads in Evrotas Municipality. Available online: https://www.thetoc.gr/koinwnia/article/sto-eleos-tis-kakokairias-i-lakonia-plimmures-adiabatoi-dromoi-kai-zimies-ston-dimo-eurota-eikones/ (accessed on 17 November 2023).
- Skamarock, C.; Klemp, B.; Dudhia, J.; Gill, O.; Barker, D.; Duda, G.; Huang, X.; Wang, W.; Powers, G. A Description of the Advanced Research WRF Version 3. NCAR Tech. Note 2008, 475, 113. [Google Scholar] [CrossRef]
- Gochis, D.; Yu, W.; Yates, D. WRF-Hydro Technical Description and User’s Guide; The NCAR WRF-Hydro Technical Description and User’s Guide; NCAR: Boulder, CO, USA, 2015; p. 120. [Google Scholar]
- Hydrologic Engineering Center (HEC) River Analysis Systems—HEC-RAS, version 6.3.1; U.S. Army Corps of Engineers: Washington, DC, USA, 2022.
- Skamarock, C.; Klemp, B.; Dudhia, J.; Gill, O.; Liu, Z.; Berner, J.; Wang, W.; Powers, G.; Duda, G.; Barker, D.; et al. A Description of the Advanced Research WRF Model Version 4.3; No. NCAR/TN-556+STR; NSF: Alexandria, VI, USA, 2021. [Google Scholar] [CrossRef]
- Danielson, J.; Gesch, D. Global Multi-Resolution Terrain Elevation Data 2010 (GMTED2010); 211AD; USGS: Reston, VA, USA, 2011; p. 34. [Google Scholar]
- Myneni, R.B.; Hoffman, S.; Knyazikhin, Y.; Privette, J.L.; Glassy, J.; Tian, Y.; Wang, Y.; Song, X.; Zhang, Y.; Smith, G.R.; et al. Global Products of Vegetation Leaf Area and Fraction Absorbed PAR from Year One of MODIS Data. Remote Sens. Environ. 2002, 83, 214–231. [Google Scholar] [CrossRef]
- Friedl, M.A.; Sulla-Menashe, D.; Tan, B.; Schneider, A.; Ramankutty, N.; Sibley, A.; Huang, X. MODIS Collection 5 Global Land Cover: Algorithm Refinements and Characterization of New Datasets. Remote Sens. Environ. 2010, 114, 168–182. [Google Scholar] [CrossRef]
- Jiménez, P.A.; Dudhia, J.; González-Rouco, J.F.; Navarro, J.; Montávez, J.P.; García-Bustamante, E. A Revised Scheme for the WRF Surface Layer Formulation. Mon. Weather. Rev. 2012, 140, 898–918. [Google Scholar] [CrossRef]
- Nakanishi, M.; Niino, H. Development of an Improved Turbulence Closure Model for the Atmospheric Boundary Layer. J. Meteorol. Soc. Jpn. Ser. II 2009, 87, 895–912. [Google Scholar] [CrossRef]
- Tewari, M.; Boulder, C.; Chen, F.; Wang, W.; Dudhia, J.; LeMone, M.; Mitchell, K.; Ek, M.; Gayno, G.; Wegiel, J.; et al. Implementation and Verification of the Unified Noah Land Surface Model in the WRF Model. In Proceedings of the 20th Conference on Weather Analysis and Forecasting/16th Conference on Numerical Weather Prediction, Seattle, DC, USA, 12–16 January 2004. Volume Formerly Paper Number 17.5. [Google Scholar]
- Iacono, M.J.; Delamere, J.S.; Mlawer, E.J.; Shephard, M.W.; Clough, S.A.; Collins, W.D. Radiative Forcing by Long-Lived Greenhouse Gases: Calculations with the AER Radiative Transfer Models. J. Geophys. Res. Atmos. 2008, 113, D13. [Google Scholar] [CrossRef]
- Chen, S.-H.; Sun, W.-Y. A One-Dimensional Time Dependent Cloud Model. J. Meteorol. Soc. Jpn. Ser. II 2002, 80, 99–118. [Google Scholar] [CrossRef]
- Grell, G.A.; Freitas, S.R. A Scale and Aerosol Aware Stochastic Convective Parameterization for Weather and Air Quality Modeling. Atmos. Chem. Phys. 2014, 14, 5233–5250. [Google Scholar] [CrossRef]
- Ek, M.B.; Mitchell, K.E.; Lin, Y.; Rogers, E.; Grunmann, P.; Koren, V.; Gayno, G.; Tarpley, J.D. Implementation of Noah Land Surface Model Advances in the National Centers for Environmental Prediction Operational Mesoscale Eta Model. J. Geophys. Res. Atmos. 2003, 108, D22. [Google Scholar] [CrossRef]
- Julien, P.Y.; Saghafian, B.; Ogden, F.L. Raster-Based Hydrologic Modeling of Spatially-Varied Surface Runoff1. J. Am. Water Resour. Assoc. 1995, 31, 523–536. [Google Scholar] [CrossRef]
- Ogden, F. CASC2D Reference Manual; University of Connecticut: Storrs, CT, USA, 1997. [Google Scholar]
- Garbrecht, J.; Brunner, G. Hydrologic Channel-Flow Routing for Compound Sections. J. Hydraul. Eng. 1991, 117, 629–642. [Google Scholar] [CrossRef]
- Jarvis, A.; Guevara, E.; Reuter, H.I.; Nelson, A.D. Hole-Filled SRTM for the Globe: Version 4: Data Grid; University of Twente: Enschede, The Netherlands, 2008. [Google Scholar]
- Lehner, B.; Verdin, K.; Jarvis, A. New Global Hydrography Derived from Spaceborne Elevation Data. EOS Trans. Am. Geophys. Union 2008, 89, 93–94. [Google Scholar] [CrossRef]
- HydroSHEDS. Available online: https://www.hydrosheds.org/ (accessed on 17 November 2023).
- Strahler, A.N. Hypsometric (area-altitude) analysis of erosional topography. GSA Bull. 1952, 63, 1117–1142. [Google Scholar] [CrossRef]
- Varlas, G.; Anagnostou, M.N.; Spyrou, C.; Papadopoulos, A.; Kalogiros, J.; Mentzafou, A.; Michaelides, S.; Baltas, E.; Karymbalis, E.; Katsafados, P. A Multi-Platform Hydrometeorological Analysis of the Flash Flood Event of 15 November 2017 in Attica, Greece. Remote Sens. 2019, 11, 45. [Google Scholar] [CrossRef]
- Papaioannou, G.; Varlas, G.; Papadopoulos, A.; Loukas, A.; Katsafados, P.; Dimitriou, E. Investigating Sea-State Effects on Flash Flood Hydrograph and Inundation Forecasting. Hydrol. Process. 2021, 35, e14151. [Google Scholar] [CrossRef]
- Papaioannou, G.; Varlas, G.; Terti, G.; Papadopoulos, A.; Loukas, A.; Panagopoulos, Y.; Dimitriou, E. Flood Inundation Mapping at Ungauged Basins Using Coupled Hydrometeorological–Hydraulic Modelling: The Catastrophic Case of the 2006 Flash Flood in Volos City, Greece. Water 2019, 11, 2328. [Google Scholar] [CrossRef]
- Spyrou, C.; Varlas, G.; Pappa, A.; Mentzafou, A.; Katsafados, P.; Papadopoulos, A.; Anagnostou, M.N.; Kalogiros, J. Implementation of a Nowcasting Hydrometeorological System for Studying Flash Flood Events: The Case of Mandra, Greece. Remote Sens. 2020, 12, 2784. [Google Scholar] [CrossRef]
- Camera, C.; Bruggeman, A.; Zittis, G.; Sofokleous, I.; Arnault, J. Simulation of Extreme Rainfall and Streamflow Events in Small Mediterranean Watersheds with a One-Way-Coupled Atmospheric–Hydrologic Modelling System. Nat. Hazards Earth Syst. Sci. 2020, 20, 2791–2810. [Google Scholar] [CrossRef]
- Senatore, A.; Furnari, L.; Mendicino, G. Impact of High-Resolution Sea Surface Temperature Representation on the Forecast of Small Mediterranean Catchments’ Hydrological Responses to Heavy Precipitation. Hydrol. Earth Syst. Sci. 2020, 24, 269–291. [Google Scholar] [CrossRef]
- Yucel, I.; Onen, A.; Yilmaz, K.K.; Gochis, D.J. Calibration and Evaluation of a Flood Forecasting System: Utility of Numerical Weather Prediction Model, Data Assimilation and Satellite-Based Rainfall. J. Hydrol. 2015, 523, 49–66. [Google Scholar] [CrossRef]
- Ozkaya, A.; Akyurek, Z. WRF-Hydro Model Application in a Data-Scarce, Small and Topographically Steep Catchment in Samsun, Turkey. Arab. J. Sci. Eng. 2020, 45, 3781–3798. [Google Scholar] [CrossRef]
- Khanam, M.; Sofia, G.; Koukoula, M.; Lazin, R.; Nikolopoulos, E.I.; Shen, X.; Anagnostou, E.N. Impact of Compound Flood Event on Coastal Critical Infrastructures Considering Current and Future Climate. Nat. Hazards Earth Syst. Sci. 2021, 21, 587–605. [Google Scholar] [CrossRef]
- Urzică, A.; Mihu-Pintilie, A.; Stoleriu, C.C.; Cîmpianu, C.I.; Huţanu, E.; Pricop, C.I.; Grozavu, A. Using 2D HEC-RAS Modeling and Embankment Dam Break Scenario for Assessing the Flood Control Capacity of a Multi-Reservoir System (NE Romania). Water 2021, 13, 57. [Google Scholar] [CrossRef]
- Psomiadis, E.; Tomanis, L.; Kavvadias, A.; Soulis, K.X.; Charizopoulos, N.; Michas, S. Potential Dam Breach Analysis and Flood Wave Risk Assessment Using HEC-RAS and Remote Sensing Data: A Multicriteria Approach. Water 2021, 13, 364. [Google Scholar] [CrossRef]
- Papaioannou, G.; Vasiliades, L.; Loukas, A.; Alamanos, A.; Efstratiadis, A.; Koukouvinos, A.; Tsoukalas, I.; Kossieris, P. A Flood Inundation Modeling Approach for Urban and Rural Areas in Lake and Large-Scale River Basins. Water 2021, 13, 1264. [Google Scholar] [CrossRef]
- Muthusamy, M.; Casado, M.R.; Butler, D.; Leinster, P. Understanding the Effects of Digital Elevation Model Resolution in Urban Fluvial Flood Modelling. J. Hydrol. 2021, 596, 126088. [Google Scholar] [CrossRef]
- Wang, W.; Yang, X.; Yao, T. Evaluation of ASTER GDEM and SRTM and Their Suitability in Hydraulic Modelling of a Glacial Lake Outburst Flood in Southeast Tibet. Hydrol. Process. 2012, 26, 213–225. [Google Scholar] [CrossRef]
- Senatore, A.; Mendicino, G.; Gochis, D.J.; Yu, W.; Yates, D.N.; Kunstmann, H. Fully Coupled Atmosphere-Hydrology Simulations for the Central Mediterranean: Impact of Enhanced Hydrological Parameterization for Short and Long Time Scales. J. Adv. Model. Earth Syst. 2015, 7, 1693–1715. [Google Scholar] [CrossRef]
- Lim, N.J.; Brandt, S.A. Flood Map Boundary Sensitivity Due to Combined Effects of DEM Resolution and Roughness in Relation to Model Performance. Geomat. Nat. Hazards Risk 2019, 10, 1613–1647. [Google Scholar] [CrossRef]
- Water Special Secretariat, Ministry of Environment and Energy (SSW-MEE). Flood Risk Management Plans of Eastern Peloponnese River Basin District. Flood Risk Maps; Water Special Secretariat, Ministry of Environment and Energy (SSW-MEE): Athens, Greece, 2018. [Google Scholar]
- Laconialive.gr. Skala’s Bridge “Disappeared.” Laconialive.gr—H ενημερωτική ιστοσελίδα της Λακωνίας, Νέα και ειδήσεις; Laconialive: Sparta, Greece, 2016; Available online: https://laconialive.gr/%CE%B5%CE%BE%CE%B1%CF%86%CE%B1%CE%BD%CE%AF%CF%83%CF%84%CE%B7%CE%BA%CE%B5-%CE%B7-%CE%B3%CE%AD%CF%86%CF%85%CF%81%CE%B1-%CF%84%CE%B7%CF%82-%CF%83%CE%BA%CE%AC%CE%BB%CE%B1%CF%82/ (accessed on 17 November 2023).
- Güvel, S.; Ali Akgül, M.; Aksu, H. Flood Inundation Maps Using Sentinel-2: A Case Study in Berdan Plain. Water Supply 2022, 22, 4098–4108. [Google Scholar] [CrossRef]
- Copernicus. The Sentinels Scientific Data Hub. Available online: https://scihub.copernicus.eu/maintenance.html#/home (accessed on 2 February 2023).
- Xu, H. Modification of Normalised Difference Water Index (NDWI) to Enhance Open Water Features in Remotely Sensed Imagery. Int. J. Remote Sens. 2006, 27, 3025–3033. [Google Scholar] [CrossRef]
- Notospress. Evrotas Floods. Available online: https://www.notospress.gr/peloponnisos/story/85679/plimmyra-eyrota-megalo-ypsos-vroxis-ena-texniko-ergo-poy-den-egine-kai-mia-meleti-poy-anaklithike (accessed on 17 November 2023).
- wetter3.de. Available online: https://www1.wetter3.de/ (accessed on 17 November 2023).
Stream Order | Manning | CBW (m) | CSS |
---|---|---|---|
1 | 0.15 | 2 | 1.0 |
2 | 0.12 | 5 | 0.6 |
3 | 0.10 | 10 | 0.3 |
4 | 0.09 | 20 | 0.18 |
5 | 0.06 | 30 | 0.05 |
6 | 0.04 | 50 | 0.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Varlas, G.; Papadopoulos, A.; Papaioannou, G.; Markogianni, V.; Alamanos, A.; Dimitriou, E. Integrating Ensemble Weather Predictions in a Hydrologic-Hydraulic Modelling System for Fine-Resolution Flood Forecasting: The Case of Skala Bridge at Evrotas River, Greece. Atmosphere 2024, 15, 120. https://doi.org/10.3390/atmos15010120
Varlas G, Papadopoulos A, Papaioannou G, Markogianni V, Alamanos A, Dimitriou E. Integrating Ensemble Weather Predictions in a Hydrologic-Hydraulic Modelling System for Fine-Resolution Flood Forecasting: The Case of Skala Bridge at Evrotas River, Greece. Atmosphere. 2024; 15(1):120. https://doi.org/10.3390/atmos15010120
Chicago/Turabian StyleVarlas, George, Anastasios Papadopoulos, George Papaioannou, Vassiliki Markogianni, Angelos Alamanos, and Elias Dimitriou. 2024. "Integrating Ensemble Weather Predictions in a Hydrologic-Hydraulic Modelling System for Fine-Resolution Flood Forecasting: The Case of Skala Bridge at Evrotas River, Greece" Atmosphere 15, no. 1: 120. https://doi.org/10.3390/atmos15010120
APA StyleVarlas, G., Papadopoulos, A., Papaioannou, G., Markogianni, V., Alamanos, A., & Dimitriou, E. (2024). Integrating Ensemble Weather Predictions in a Hydrologic-Hydraulic Modelling System for Fine-Resolution Flood Forecasting: The Case of Skala Bridge at Evrotas River, Greece. Atmosphere, 15(1), 120. https://doi.org/10.3390/atmos15010120