Modeling of Nonlinear SOEC Parameter System Based on Data-Driven Method
Abstract
:1. Introduction
- Model identification was performed using SOEC data, which facilitates the development of the controller.
- The data-driven SOEC-based model achieved a 93% accuracy and 98% mean value.
2. SOEC on the Plane of the Parameter System and ARX Model Structure
2.1. Structure of ARX Model
2.2. Structure of NLARX Model
3. Methodology
4. Simulation Process and Experiment Results
4.1. Generating Datasets
4.2. Projected Outcomes from the NLARX Model
5. Discussion and Analysis
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xiao, F.; Wu, X.; Xia, Y. Development of energy saving and rapid temperature control technology for intelligent greenhouses. IEEE Access 2021, 9, 29677–29685. [Google Scholar]
- Xie, H.; Zhao, Z.; Liu, T.; Wu, Y.; Lan, C.; Jiang, W.; Zhu, L.; Wang, Y.; Yang, D.; Shao, Z. A membrane-based seawater electrolyser for hydrogen generation. Nature 2022, 612, 673–678. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.; Zhu, Y.; Feng, Y.; Yang, J.; Xia, C. A prompt decarbonization pathway for shipping: Green hydrogen, ammonia, and methanol production and utilization in marine engines. Atmosphere 2023, 14, 584. [Google Scholar] [CrossRef]
- Zekenova, A.; Nazhipkyzy, M.; Li, W.; Kalybayeva, A.; Zhumanova, G.; Zubova, O. Advances of Biowaste-Derived Porous Carbon and Carbon–Manganese Dioxide Composite in Supercapacitors: A Review. Inorganics 2022, 10, 160. [Google Scholar] [CrossRef]
- Gong, M.; Zhang, X.; Chen, M.; Ren, Y. Proton Exchange Membrane Fuel Cell as an Alternative to the Internal Combustion Engine for Emission Reduction: A Review on the Effect of Gas Flow Channel Structures. Atmosphere 2023, 14, 439. [Google Scholar] [CrossRef]
- Javed, H.; Sabato, A.G.; Mansourkiaei, M.; Ferrero, D.; Santarelli, M.; Herbrig, K.; Walter, C.; Smeacetto, F. Glass-ceramic sealants for SOEC: Thermal characterization and electrical resistivity in dual atmosphere. Energies 2020, 13, 3682. [Google Scholar] [CrossRef]
- Ma, R.; Gao, F.; Breaz, E.; Huangfu, Y.; Briois, P. Multidimensional reversible solid oxide fuel cell modeling for embedded applications. IEEE Trans. Energy Convers. 2017, 33, 692–701. [Google Scholar] [CrossRef]
- Wu, X.; Li, Y.; Gao, Z.; Xu, Y.; Peng, J.; Xia, Z.; Hu, L.; Hu, J.; Wang, Z.; Li, X. Robust Control of RSOC/Li-ion Battery Hybrid System Based on Modeling and Active Disturbance Rejection Technology. Atmosphere 2023, 14, 947. [Google Scholar] [CrossRef]
- Zhao, J.; Lin, Z.; Zhou, M. Three-Dimensional Modeling and Performance Study of High Temperature Solid Oxide Electrolysis Cell with Metal Foam. Sustainability 2022, 14, 7064. [Google Scholar] [CrossRef]
- Koiwa, K.; Cui, L.; Zanma, T.; Liu, K.-Z.; Tamura, J. A coordinated control method for integrated system of wind farm and hydrogen production: Kinetic energy and virtual discharge controls. IEEE Access 2022, 10, 28283–28294. [Google Scholar] [CrossRef]
- Wu, X.-L.; Xu, Y.-W.; Zhao, D.-Q.; Zhong, X.-B.; Li, D.; Jiang, J.; Deng, Z.; Fu, X.; Li, X. Extended-range electric vehicle-oriented thermoelectric surge control of a solid oxide fuel cell system. Appl. Energy 2020, 263, 114628. [Google Scholar] [CrossRef]
- Pawar, P.; Kumar, A.; Ballav, R. A Review on Experimental Studies in Electrochemical Discharge Machining. In Hybrid Micromachining and Microfabrication Technologies: Principles, Varieties and Applications; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2023; pp. 17–100. [Google Scholar]
- Qin, Y.; Sun, L.; Hua, Q.; Liu, P. A fuzzy adaptive PID controller design for fuel cell power plant. Sustainability 2018, 10, 2438. [Google Scholar] [CrossRef]
- Liu, H.; Clausen, L.R.; Wang, L.; Chen, M. A robust design of heat exchanger network for high temperature electrolysis systems. In Computer Aided Chemical Engineering; Elsevier: Amsterdam, The Netherlands, 2022; Volume 49, pp. 739–744. [Google Scholar]
- Choi, J.; Shin, Y.; Choi, M.; Park, W.-K.; Lee, I.-W. Robust control of a microgrid energy storage system using various approaches. IEEE Trans. Smart Grid 2018, 10, 2702–2712. [Google Scholar] [CrossRef]
- Wu, X.; Gao, D. Optimal robust control strategy of a solid oxide fuel cell system. J. Power Sources 2018, 374, 225–236. [Google Scholar] [CrossRef]
- Cai, Q.; Adjiman, C.S.; Brandon, N.P. Optimal control strategies for hydrogen production when coupling solid oxide electrolysers with intermittent renewable energies. J. Power Sources 2014, 268, 212–224. [Google Scholar] [CrossRef]
- Bianchi, F.R.; Baldinelli, A.; Barelli, L.; Cinti, G.; Audasso, E.; Bosio, B. Multiscale modeling for reversible solid oxide cell operation. Energies 2020, 13, 5058. [Google Scholar] [CrossRef]
- Ba, S.; Xia, D.; Gibbons, E.M. Model identification and strategy application for Solid Oxide Fuel Cell using Rotor Hopfield Neural Network based on a novel optimization method. Int. J. Hydrogen Energy 2020, 45, 27694–27704. [Google Scholar] [CrossRef]
- Grondin, D.; Deseure, J.; Ozil, P.; Chabriat, J.-P.; Grondin-Perez, B.; Brisse, A. Solid oxide electrolysis cell 3D simulation using artificial neural network for cathodic process description. Chem. Eng. Res. Des. 2013, 91, 134–140. [Google Scholar] [CrossRef]
- Han, J.; Wang, X.; Yan, L.; Dahlak, A. Modelling the performance of an SOEC by optimization of neural network with MPSO algorithm. Int. J. Hydrogen Energy 2019, 44, 27947–27957. [Google Scholar] [CrossRef]
- El Hasadi, Y.M.F.; Padding, J.T. Solving fluid flow problems using semi-supervised symbolic regression on sparse data. AIP Adv. 2019, 9, 115218. [Google Scholar] [CrossRef]
- Brunton, S.L.; Proctor, J.L.; Kutz, J.N. Discovering governing equations from data by sparse identification of nonlinear dynamical systems. Proc. Natl. Acad. Sci. USA 2016, 113, 3932–3937. [Google Scholar] [CrossRef] [PubMed]
- Anitha, M.; Prusty, S.B. System Identification and Analysis of Temperature Control System. In Proceedings of the 2023 International Conference on Advances in Electronics, Communication, Computing and Intelligent Information Systems (ICAECIS), Bangalore, India, 19–21 April 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 622–626. [Google Scholar]
- Xia, Z.; Zhao, D.; Li, Y.; Deng, Z.; Kupecki, J.; Fu, X.; Li, X. Control-oriented dynamic process optimization of solid oxide electrolysis cell system with the gas characteristic regarding oxygen electrode delamination. Appl. Energy 2023, 332, 120490. [Google Scholar] [CrossRef]
- Chi, Y.; Qiu, Y.; Lin, J.; Song, Y.; Hu, Q.; Li, W.; Mu, S. Online identification of a link function degradation model for solid oxide fuel cells under varying-load operation. Int. J. Hydrogen Energy 2022, 47, 2622–2646. [Google Scholar] [CrossRef]
- Chi, Y.; Qiu, Y.; Lin, J.; Song, Y.; Li, W.; Hu, Q.; Mu, S.; Liu, M. A robust surrogate model of a solid oxide cell based on an adaptive polynomial approximation method. Int. J. Hydrogen Energy 2020, 45, 32949–32971. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, C.R.; Wang, Y.; Yang, Z.; Du, Q.; Jiao, K. Assessment of CO2 enrichment mechanism in integrated coal gasification fuel cell combined cycle system with carbon capture. Front. Energy Res. 2023, 10, 1017829. [Google Scholar] [CrossRef]
- Shao, Y.; Li, Y.; Fu, Z.; Li, J.; Zhu, Q. Numerical Investigation on the Performance of IT-SOEC with Double-Layer Composite Electrode. Energies 2023, 16, 2525. [Google Scholar] [CrossRef]
- Chi, Y.; Yokoo, K.; Nakajima, H.; Ito, K.; Lin, J.; Song, Y. Optimizing the homogeneity and efficiency of a solid oxide electrolysis cell based on multiphysics simulation and data-driven surrogate model. J. Power Sources 2023, 562, 232760. [Google Scholar] [CrossRef]
- Khan, M.A.; Baig, D.Z.; Ashraf, B.; Ali, H.; Rashid, J.; Kim, J. Dynamic modeling of a nonlinear two-wheeled robot using data-driven approach. Processes 2022, 10, 524. [Google Scholar] [CrossRef]
Parameter | Value | Unit |
---|---|---|
Electrolyte thickness | 12.5 × 10−6 | m |
Air channel width | 2.98 × 10−3 | m |
Fuel channel width | 2.98 × 10−3 | m |
Fuel electrode thickness | 312.5 × 10−6 | m |
Interconnector thickness | 0.2 × 10−3 | m |
Cell length | 0.1 | m |
Active area | 8 × 10−3 | m2 |
Air channel height | 1.0 × 10−3 | m |
Cell width | 0.1 | m |
Fuel channel height | 1.0 × 10−3 | m |
Oxygen electrode thickness | 17.5 × 10−6 | m |
Name of Dataset | Temperature (°C) | Water (L/min) | Power (W) |
---|---|---|---|
1 | 750 | 95~100 | 3800~4200 |
2 | 800 | 20~30 | 900~1000 |
3 | 760 | 20~30 | 720~850 |
4 | 691 | 9.7~10.9 | 456~459 |
5 | 690 | 10.8~10.9 | 456~457 |
6 | 700 | 10.5~10.6 | 420~422 |
7 | 690 | 10.8~10.9 | 456~472 |
8 | 693 | 11.5~12.8 | 472~519 |
9 | 690~692 | 12.5~13.5 | 517~547 |
10 | 691~700 | 13.4~13.8 | 546~620 |
11 | 700~711 | 13.7~14.0 | 619~670 |
12 | 690~700 | 9.7~13.8 | 456~620 |
13 | 711~721 | 13.9~14.0 | 670~683 |
14 | 721~724 | 13.9~14.5 | 681~708 |
15 | 714~732 | 14.4~14.5 | 681~708 |
Name of Dataset | Fitting Accuracy (%) | MSE |
---|---|---|
Dataset 1 | 95.83 | 1.03 × 10−2 |
Dataset 2 | 97.82 | 9.799 × 10−5 |
Dataset 3 | 93.24 | 6.555 × 10−5 |
Dataset 4 | 99.99 | 3.416 × 10−10 |
Dataset 5 | 98.74 | 8.58 × 10−9 |
Dataset 6 | 93.98 | 1.117 × 10−1 |
Dataset 7 | 99.92 | 7.456 × 10−9 |
Dataset 8 | 99.8 | 4.333 × 10−13 |
Dataset 9 | 99.72 | 2.393 × 10−3 |
Dataset 10 | 99.77 | 1.985 × 10−2 |
Dataset 11 | 99.59 | 4.881 × 10−2 |
Dataset 12 | 99.85 | 7.05 × 10−1 |
Dataset 13 | 99.32 | 3.108 × 10−9 |
Dataset 14 | 93.17 | 2.773 × 10−5 |
Dataset 15 | 99.99 | 1.602 × 10−7 |
Name of Dataset | Fitting Accuracy (%) | MSE |
---|---|---|
Dataset 1 | 95.43 | 1.596 × 10−2 |
Dataset 2 | 97.61 | 1.228 × 10−6 |
Dataset 3 | 93.15 | 3.526 × 10−5 |
Dataset 4 | 99.89 | 6.349 × 10−9 |
Dataset 5 | 98.71 | 7.169 × 10−9 |
Dataset 6 | 93.89 | 1.671 × 10−3 |
Dataset 7 | 99.96 | 9.138 × 10−9 |
Dataset 8 | 99.72 | 6.216 × 10−13 |
Dataset 9 | 99.68 | 4.29 × 10−3 |
Dataset 10 | 99.70 | 2.211 × 10−2 |
Dataset 11 | 99.29 | 6.421 × 10−2 |
Dataset 12 | 99.61 | 6.816 × 10−1 |
Dataset 13 | 99.19 | 9.27 × 10−8 |
Dataset 14 | 93.05 | 4.916 × 10−5 |
Dataset 15 | 99.96 | 6.548 × 10−8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hou, D.; Ma, W.; Hu, L.; Huang, Y.; Yu, Y.; Wan, X.; Wu, X.; Li, X. Modeling of Nonlinear SOEC Parameter System Based on Data-Driven Method. Atmosphere 2023, 14, 1432. https://doi.org/10.3390/atmos14091432
Hou D, Ma W, Hu L, Huang Y, Yu Y, Wan X, Wu X, Li X. Modeling of Nonlinear SOEC Parameter System Based on Data-Driven Method. Atmosphere. 2023; 14(9):1432. https://doi.org/10.3390/atmos14091432
Chicago/Turabian StyleHou, Dehao, Wenjun Ma, Lingyan Hu, Yushui Huang, Yunjun Yu, Xiaofeng Wan, Xiaolong Wu, and Xi Li. 2023. "Modeling of Nonlinear SOEC Parameter System Based on Data-Driven Method" Atmosphere 14, no. 9: 1432. https://doi.org/10.3390/atmos14091432
APA StyleHou, D., Ma, W., Hu, L., Huang, Y., Yu, Y., Wan, X., Wu, X., & Li, X. (2023). Modeling of Nonlinear SOEC Parameter System Based on Data-Driven Method. Atmosphere, 14(9), 1432. https://doi.org/10.3390/atmos14091432