Effect of the Method Detection Limit on the Health Risk Assessment of Ambient Hazardous Air Pollutants in an Urban Industrial Complex Area
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Ambient Air-Monitoring Station
- (1)
- In total, 71 VOCs (22 paraffins, 13 olefins, 13 carbonyls, 12 aromatics, 5 esters and ethers, and 6 other compounds) and 12 PM-bounded heavy metals were evaluated. The TO-15 and TO-17 (based on GC-FID analysis) [35,36,37] methods were used to monitor the VOC concentration every hour; thus, 24 data points per day and 8760 data points per year were collected;
- (2)
- In total, 52 HAP species were sampled every six days using the TO-15 method. The PM-bounded trace elements (nickel, arsenic, cadmium, magnesium, barium, and lead) were also measured every six days using the PM10 sampler (Tisch TE-6070 PM10 High Volume Air Sampler, OH, USA). The content of Cr(VI) in the total suspended particulate (TSP) was determined using the American society for testing and material (ASTM) [38] method. Benzo[a]pyrene (BaP) was sampled every 6 days and determined using the TO-13A [39] method.
- (1)
- (2)
- Carbonyl compounds from impinger samples were analyzed using the EPA compendium method TO-5 [40];
- (3)
- Trace metals (As. Pb, Mn, Cd, and Ni in PM10) from filters were analyzed using the EPA compendium method IO-3.5/federal equivalency methods (FEM) EQL-0512-201 or EQL-0512-202;
- (4)
- Hexavalent chromium from sodium bicarbonate-coated filters (Cr(VI) in TSP) were analyzed using ASTM D7614 [38].
2.3. Data Screening
- (1)
- (2)
- Every preprocessed measurement was compared to the risk screening value with which it is associated. When the concentration was greater than the risk screening threshold, the incident was referred to as “failed the screen.”;
- (3)
- For each applicable pollutant, the number of failed screening procedures was tallied;
- (4)
- For each applicable pollutant, the percentage contribution of the failed screens to the overall number of the failed screens (program-wide) was calculated;
- (5)
- Pollutants of interest were defined as those that contributed to the top 95%of the overall number of failed screenings.
2.4. Emission Calculation
3. Results and Discussion
3.1. Method of Detection Limit (MDL) for Risk Assessment (Analytical Method)
3.2. Effect of the Number of Samples on Screening Species and the Effect of Data Integration and Data Weighting on Risk Assessment
3.3. Hazardous Air Pollutants (HAPs) in Ambient Concentrations
3.3.1. Elements in Particulate Matter (PM)
3.3.2. Organic Species in Ambient Conditions
3.3.3. Temporal Distribution
3.3.4. Spatial Distribution
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- USEPA. United States Environmental Protection Agency 2015–2016. National Monitoring Programs Annual Report (UATMP, NATTS, and CSATAM); EPA Contract No. EP-D-14-030; USEPA: Washington, DC, USA, 2018. [Google Scholar]
- WHO—Word Health Organization Regional Office for Europe; OECD. Economic Cost of the Health Impact of Air Pollution in Europe: Clean Air, Health and Wealth; WHO Regional Office for Europe: Copenhagen, Denmark, 2015. [Google Scholar]
- Environmental Protection Agency. What are Hazardous Air Pollutants? 2020. Available online: https://www.epa.gov/haps/what-are-hazardous-air-pollutants (accessed on 6 January 2020).
- United States Environmental Protection Agency. Volatile Organic Compounds Impact on Indoor Air Quality. 2017. Available online: https://www.epa.gov/indoor-air-quality-iaq/volatile-organic-compounds-impact-indoor-air-quality#Health_Effects (accessed on 15 May 2021).
- Robichaud, A. An overview of selected emerging outdoor airborne pollutants and air quality issues: The need to reduce uncertainty about environmental and human impacts. J. Air Waste Manag. Assoc. 2020, 70, 341–378. [Google Scholar] [CrossRef] [PubMed]
- IARC. International Agency for Research on Cancer. Monographs on the Identification of Carcinogenic Hazards to Humans. 2019. Available online: https://monographs.iarc.fr/list-of-classifications-volumes/ (accessed on 20 May 2019).
- The Government of the Hong Kong. Environmental Protection Department. Hong Kong Air Pollutant Emission Inventory—Volatile Organic Compounds. Available online: https://www.epd.gov.hk/epd/english/environmentinhk/air/data/emission_inve.html (accessed on 16 May 2021).
- CE Delft. Health Impacts and Costs of Diesel Emissions in the EU; CE Delft: Delft, The Netherlands, 2018. [Google Scholar]
- Southern Coast Air Quality Management District (SCAQMD). Multiple Air Toxics Exposure Study IV (MATES IV); Final Report; SCAQMD: Diamond Bar, CA, USA, 2015. [Google Scholar]
- Wang, M.; Qin, W.; Chen, W.; Zhang, L.; Zhang, Y.; Zhang, X.; Xie, X. Seasonal variability of VOCs in Nanjing, Yangtze River delta: Implications for emission sources and photochemistry. Atmos. Environ. 2020, 223, 117254. [Google Scholar] [CrossRef]
- Zhou, X.; Peng, X.; Montazeri, A.; McHale, L.E.; Gaßner, S.; Lyon, D.R.; Yalin, A.P.; Albertson, J.D. Mobile Measurement System for the Rapid and Cost-Effective Surveillance of Methane and Volatile Organic Compound Emissions from Oil and Gas Production Sites. Environ. Sci. Technol. 2020, 55, 581–592. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.H.; Chuang, Y.C.; Hsieh, C.C.; Lee, C.S. VOC characteristics and source apportionment at a PAMS site near an industrial complex in central Taiwan. Atmos. Pollut. Res. 2019, 10, 1060–1074. [Google Scholar] [CrossRef]
- Xuan, L.; Ma, Y.; Xing, Y.; Meng, Q.; Song, J.; Chen, T.; Wang, H.; Wang, P.; Zhang, Y.; Gao, P. Source, temporal variation and health risk of volatile organic compounds (VOCs) from urban traffic in Harbin, China. Environ. Pollut. 2021, 270, 116074. [Google Scholar] [CrossRef]
- Song, M.; Li, X.; Yang, S.; Yu, X.; Zhou, S.; Yang, Y.; Chen, S.; Dong, H.; Liao, K.; Chen, Q.; et al. Spatiotemporal variation, sources, and secondary transformation potential of volatile organic compounds in Xi’an, China. Atmos. Meas. Tech. 2021, 21, 4939–4958. [Google Scholar] [CrossRef]
- Xiong, Y.; Du, K. Source-resolved attribution of ground-level ozone formation potential from VOC emissions in Metropolitan Vancouver, BC. Sci. Total Environ. 2020, 721, 137698. [Google Scholar] [CrossRef]
- USEPA—United States Environmental Protection Agency. Cancer Risk from Outdoor Exposure to Air Toxics; EPA-450/1-90-004a; USEPA: Washington, DC, USA, 1990. [Google Scholar]
- Lyu, X.; Guo, H.; Wang, Y.; Zhang, F.; Nie, K.; Dang, J.; Liang, Z.; Dong, S.; Zeren, Y.; Zhou, B.; et al. Hazardous volatile organic compounds in ambient air of China. Chemosphere 2020, 246, 125731. [Google Scholar] [CrossRef]
- Li, B.; Ho, S.S.H.; Qu, L.; Gong, S.; Ho, K.F.; Zhao, D.; Qi, Y.; Chan, C.S. Temporal and spatial discrepancies of VOCs in an industrial-dominant city in China during summertime. Chemosphere 2021, 264, 128536. [Google Scholar] [CrossRef]
- Tan, Y.; Han, S.; Chen, Y.; Zhang, Z.; Li, H.; Li, W.; Yuan, Q.; Li, X.; Wang, T.; Lee, S.-C. Characteristics and source apportionment of volatile organic compounds (VOCs) at a coastal site in Hong Kong. Sci. Total. Environ. 2021, 777, 146241. [Google Scholar] [CrossRef]
- Cheng, N.; Jing, D.; Zhang, C.; Chen, Z.; Li, W.; Li, S.; Wang, Q. Process-based VOCs source profiles and contributions to ozone formation and carcinogenic risk in a typical chemical synthesis pharmaceutical industry in China. Sci. Total. Environ. 2021, 752, 141899. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Li, M.; Wan, X.; Zhao, X.; Wu, Y.; Liu, X.; Li, X. Important contributions of alkenes and aromatics to VOCs emissions, chemistry and secondary pollutants formation at an industrial site of central eastern China. Atmos. Environ. 2021, 244, 117927. [Google Scholar] [CrossRef]
- Zheng, H.; Kong, S.; Yan, Y.; Chen, N.; Yao, L.; Liu, X.; Wu, F.; Cheng, Y.; Niu, Z.; Zheng, S.; et al. Compositions, sources and health risks of ambient volatile organic compounds (VOCs) at a petrochemical industrial park along the Yangtze River. Sci. Total. Environ. 2020, 703, 135505. [Google Scholar] [CrossRef] [PubMed]
- Alias, N.F.; Khan, M.F.; Sairi, N.A.; Zain, S.M.; Suradi, H.; Rahim, H.A.; Banerjee, T.; Bari, M.A.; Othman, M.; Latif, M.T. Characteristics, emission sources, and risk factors of heavy metals in PM2.5 from Southern Malaysia. ACS Earth Space Chem 2020, 4, 1309–1323. [Google Scholar] [CrossRef]
- Li, F.; Yan, J.; Wei, Y.; Zeng, J.; Wang, X.; Chen, X.; Zhang, C.; Li, W.; Chen, M.; Lü, G. PM2.5-bound heavy metals from the major cities in China: Spatiotemporal distribution, fuzzy exposure assessment and health risk management. J. Clean. Prod. 2021, 286, 124967. [Google Scholar] [CrossRef]
- Zhou, X.; Strezov, V.; Jiang, Y.; Yang, X.; Kan, T.; Evans, T. Contamination identification, source apportionment and health risk assessment of trace elements at different fractions of atmospheric particles at iron and steelmaking areas in China. PLoS ONE 2020, 15, e0230983. [Google Scholar] [CrossRef]
- Men, C.; Wang, Y.; Liu, R.; Wang, Q.; Miao, Y.; Jiao, L.; Shoaib, M.; Shen, Z. Temporal variations of levels and sources of health risk associated with heavy metals in road dust in Beijing from May 2016 to April 2018. Chemosphere 2021, 270, 129434. [Google Scholar] [CrossRef]
- Ramírez, O.; de la Campa AM, S.; Sánchez-Rodas, D.; de la Rosa, J.D. Hazardous trace elements in thoracic fraction of airborne particulate matter: Assessment of temporal variations, sources, and health risks in a megacity. Sci. Total Environ. 2020, 710, 136344. [Google Scholar] [CrossRef]
- Kolakkandi, V.; Sharma, B.; Rana, A.; Dey, S.; Rawat, P.; Sarkar, S. Spatially resolved distribution, sources and health risks of heavy metals in size-fractionated road dust from 57 sites across megacity Kolkata, India. Sci. Total. Environ. 2020, 705, 135805. [Google Scholar] [CrossRef]
- Xu, J.; White, A.J.; Niehoff, N.M.; O’Brien, K.M.; Sandler, D.P. Airborne metals exposure and risk of hypertension in the Sister Study. Environ. Res. 2020, 191, 110144. [Google Scholar] [CrossRef]
- Schiavo, B.; Meza-Figueroa, D.; Vizuete-Jaramillo, E.; Robles-Morua, A.; Angulo-Molina, A.; Reyes-Castro, P.A.; Inguaggiato, C.; Gonzalez-Grijalva, B.; Pedroza-Montero, M. Oxidative potential of metal-polluted urban dust as a potential environmental stressor for chronic diseases. Environ. Geochem. Health 2023, 45, 3229–3250. [Google Scholar] [CrossRef]
- Das, A.; Habib, G.; Perumal, V.; Kumar, A. Estimating seasonal variations of realistic exposure doses and risks to organs due to ambient particulate matter-bound metals of Delhi. Chemosphere 2020, 260, 127451. [Google Scholar] [CrossRef]
- Hao, Y.; Luo, B.; Simayi, M.; Zhang, W.; Jiang, Y.; He, J.; Xie, S. Spatiotemporal patterns of PM2.5 elemental composition over China and associated health risks. Environ. Pollut. 2020, 265, 114910. [Google Scholar] [CrossRef] [PubMed]
- Parvizimehr, A.; Baghani, A.N.; Hoseini, M.; Sorooshian, A.; Cuevas-Robles, A.; Fararouei, M.; Dehghani, M.; Delikhoon, M.; Barkhordari, A.; Shahsavani, S.; et al. On the nature of heavy metals in PM10 for an urban desert city in the Middle East: Shiraz, Iran. Microchem. J. 2020, 154, 104596. [Google Scholar] [CrossRef]
- Xie, J.-J.; Yuan, C.-G.; Xie, J.; Niu, X.-D.; Zhang, X.-R.; Zhang, K.-G.; Xu, P.-Y.; Ma, X.-Y.; Lv, X.-B. Comparison of arsenic fractions and health risks in PM2.5 before and after coal-gas replacement. Environ. Pollut. 2020, 259, 113881. [Google Scholar] [CrossRef] [PubMed]
- USEPA—United States Environmental Protection Agency. Compendium Method TO-15 for the Determination of Volatile Organic Compounds (VOCs) in Air Collected in Specially Prepared Canisters and Analyzed by Gas Chromatography/Mass Spectrometry (GC/MS); United States Environmental Protection Agency: Washington, DC, USA, 1999. [Google Scholar]
- USEPA—United States Environmental Protection Agency. Determination of Volatile Organic Compounds (VOCs) in Air Collected in Specially Prepared Canisters and Analyzed by Gas Chromatography-Mass Spectrometry (GC-MS); Method TO-15A; United States Environmental Protection Agency: Washington, DC, USA, 2019. [Google Scholar]
- USEPA—United States Environmental Protection Agency. Compendium Method TO-17 for the Determination of Volatile Organic Compounds (VOCs) in Air Using Active Sampling onto Sorbent Tubes; United States Environmental Protection Agency: Washington, DC, USA, 1999. [Google Scholar]
- ASTM D7614; Standard Test Method for Determination of Total Suspended Particulate (TSP) Hexavalent Chromium in Ambient Air Analyzed by Ion Chromatography (IC) and Spectrophotometric Measurements. ASTM: West Conshohocken, PA, USA. Available online: https://www.astm.org/d7614-20.html (accessed on 5 October 2020).
- USEPA—United States Environmental Protection Agency. Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air, The Determination of Benzo(a)pyrene (B(a)P) and other Polynuclear Aromatic Hydrocarbons (PAHs) in the Ambient Air Using Gas Chromatographic (GC) and High Performance Liquid Chromatographic (HPLC) Analysis; Method 13; United States Environmental Protection Agency: Washington, DC, USA, 1989. [Google Scholar]
- USEPA—United States Environmental Protection Agency. Compendium Method TO-5, Determination of Aldehydes and Ketones in Ambient Air Using High Performance Liquid Chromatography (HPLC); United States Environmental Protection Agency: Washington, DC, USA, 1984. [Google Scholar]
- ERG—Eastern Research Group, Inc. Support for the EPA National Monitoring Programs (UATMP, NATTS, CSATAM, PAMS, and NMOC Support), Quality Assurance Project Plan, Category 1; Contract No. EP-D-14-030; ERG: Morrisville, NC, USA, 2015. [Google Scholar]
- ERG—Eastern Research Group, Inc. Support for the EPA National Monitoring Programs (UATMP, NATTS, CSATAM, PAMS, and NMOC Support), Quality Assurance Project Plan, Category 1; Contract No. EP-D-14-030; ERG: Morrisville, NC, USA, 2016. [Google Scholar]
- USEPA—United States Environmental Protection Agency. A Preliminary Risk-based Screening Approach for Air Toxics Monitoring Data Sets; version 2; EPA-904-B-06-001; USEPA: Atlanta, GA, USA, 2010. Available online: nepis.epa.gov/Exe/ZyPURL.cgi?Dockey=P1009A7C (accessed on 7 May 2022).
- Taiwan Environmental Protection Agency (TEPA). Taiwan Air Pollutants Emission Data System. 2021. Available online: https://teds.epa.gov.tw/Introduction.aspx (accessed on 26 August 2021).
- USEPA—United States Environmental Protection Agency. Compendium Method TO-11A, Determination of Formaldehyde in Ambient Air Using Adsorbent Cartridge Followed by High Performance Liquid Chromatography (HPLC); USEPA: Washington, DC, USA, 1999. [Google Scholar]
- Tejada, S.B. Evaluation of silica gel cartridges coated in situ with acidified 2, 4-Dinitrophenylhydrazine for sampling aldehydes and ketones in air. Int. J. Environ. Anal. Chem. 1986, 26, 167–185. [Google Scholar] [CrossRef]
- Ferrari, C.P.; Durand-Jolibois, R.; Carlier, P.; Jacob, V.; Roche, A.; Foster, P.; Fresnet, P. Comparison between two carbonyl measurement methods in the atmosphere. Analysis 1999, 27, 45–53. [Google Scholar] [CrossRef]
- Liu, N.; Jin, X.; Feng, C.; Wang, Z.; Wu, F.; Johnson, A.C.; Xiao, H.; Hollert, H.; Giesy, J.P. Ecological risk assessment of fifty pharmaceuticals and personal care products (PPCPs) in Chinese surface waters: A proposed multiple-level system. Environ. Int. 2020, 136, 105454. [Google Scholar] [CrossRef]
- European Communities; Office for Official Publications of the European Communities. Ambient air pollution by As, Cd and Ni Compounds; Working Group on Arsenic, Cadmium and Nickel Compounds: Luxembourg, 2001. [Google Scholar]
- Liu, X.; Ouyang, W.; Shu, Y.; Tian, Y.; Feng, Y.; Zhang, T.; Chen, W. Incorporating bioaccessibility into health risk assessment of heavy metals in particulate matter originated from different sources of atmospheric pollution. Environ. Pollut. 2019, 254, 113113. [Google Scholar] [CrossRef]
- Tago, H.; Kimura, H.; Kozawa, K.; Fujie, K. Formaldehyde Concentrations in Ambient Air in Urban and Rural Areas in Gunma Prefecture, Japan. Water Air Soil Pollut. 2005, 163, 269–280. [Google Scholar] [CrossRef]
- Lin, Y.C.; Schwab, J.J.; Demerjian, K.L.; Bae, M.-S.; Chen, W.-N.; Sun, Y.; Zhang, Q.; Hung, H.-M.; Perry, J. Summertime formaldehyde observations in New York City: Ambient levels, sources and its contribution to HOx radicals. J. Geophys. Res. Atmos. 2012, 117, D08305. [Google Scholar] [CrossRef]
- Leuchner, M.; Ghasemifard, H.; Lu¨pke, M.; Ries, L.; Schunk, C.; Menzel, A. Seasonal and Diurnal Variation of Formaldehyde and its Meteorological Drivers at the GAW Site Zugspitze. Aerosol Air Qual. Res. 2016, 16, 801–815. [Google Scholar] [CrossRef]
- Su, W.; Liu, C.; Hu, Q.; Zhao, S.; Sun, Y.; Wang, W.; Zhu, Y.; Liu, J.; Kim, J. Primary and secondary sources of ambient formaldehyde in the Yangtze River Delta based on Ozone Mapping and Profiler Suite (OMPS) observations. Atmos. Meas. Tech. 2019, 19, 6717–6736. [Google Scholar] [CrossRef]
- Yuan, C.-S.; Cheng, W.-H.; Huang, H.-Y. Spatiotemporal distribution characteristics and potential sources of VOCs at an industrial harbor city in southern Taiwan: Three-year VOCs monitoring data analysis. J. Environ. Manag. 2022, 303, 114259. [Google Scholar] [CrossRef]
- Dumanoglu, Y.; Kara, M.; Altiok, H.; Odabasi, M.; Elbir, T.; Bayram, A. Spatial and seasonal variation and source apportionment of volatile organic compounds (VOCs) in a heavily industrialized region. Atmos. Environ. 2014, 98, 168–178. [Google Scholar] [CrossRef]
- Xiong, Y.; Bari, A.; Xing, Z.; Du, K. Ambient volatile organic compounds (VOCs) in two coastal cities in western Canada: Spatiotemporal variation, source apportionment, and health risk assessment. Sci. Total. Environ. 2020, 706, 135970. [Google Scholar] [CrossRef]
Compounds | Unit | Unit Risk Estimate (URE) | USEPA NMP * | Linhai Industrial Park | |||
---|---|---|---|---|---|---|---|
1/2MDL-2015 | 1/2MDL-2016 | 1/2MDL-2017 | 1/2MDL-2018 | 1/2MDL-2019 | |||
Benzene | 1/ppb | 2.49 × 10−5 | 4.86 × 10−7 | 2.61 × 10−7 | 2.24 × 10−6 | 9.96 × 10−7 | 1.74 × 10−6 |
Ethylbenzene | 1/ppb | 1.85 × 10−5 | 1.76 × 10−7 | 1.76 × 10−7 | 1.57 × 10−6 | 8.33 × 10−7 | 8.33 × 10−7 |
Acetaldehyde | 1/ppb | 3.96 × 10−6 | 1.19 × 10−8 | 1.19 × 10−8 | 3.96 × 10−5 | 3.96 × 10−5 | 1.98 × 10−5 |
Formaldehyde | 1/ppb | 1.59 × 10−5 | 9.54 × 10−8 | 7.95 × 10−8 | 1.59 × 10−4 | 1.59 × 10−4 | 1.59 × 10−4 |
1,1,2,2-Tetrachloroethane | 1/ppb | 3.97 × 10−4 | 3.57 × 10−6 | 5.96 × 10−6 | 7.15 × 10−5 | 5.96 × 10−5 | 5.16 × 10−5 |
1,1,2-Trichloroethane | 1/ppb | 8.71 × 10−5 | 7.40 × 10−7 | 8.71 × 10−7 | 1.48 × 10−5 | 1.26 × 10−5 | 1.26 × 10−5 |
1,1-Dichloroethane | 1/ppb | 6.46 × 10−6 | 4.85 × 10−8 | 4.20 × 10−8 | 1.36 × 10−6 | 1.00 × 10−6 | 9.04 × 10−7 |
1,2-Dichloroethane | 1/ppb | 1.05 × 10−4 | 6.83 × 10−7 | 6.83 × 10−7 | 2.05 × 10−5 | 1.68 × 10−5 | 1.42 × 10−5 |
1,2-Dibromoethane | 1/ppb | 4.60 × 10−3 | 3.91 × 10−5 | 4.83 × 10−5 | 7.36 × 10−4 | 5.98 × 10−4 | 5.98 × 10−4 |
trans-1,3-Dichloropropene | 1/ppb | 1.81 × 10−5 | 1.90 × 10−7 | 2.44 × 10−7 | 2.81 × 10−6 | 1.99 × 10−6 | 1.99 × 10−6 |
cis-1,3-Dichloropropene | 1/ppb | 1.81 × 10−5 | 1.54 × 10−7 | 1.81 × 10−7 | 2.81 × 10−6 | 2.17 × 10−6 | 2.08 × 10−6 |
Carbon Tetrachloride | 1/ppb | 3.77 × 10−5 | 1.89 × 10−7 | 3.20 × 10−7 | 7.35 × 10−6 | 6.22 × 10−6 | 5.66 × 10−6 |
Chloroform | 1/ppb | 2.30 × 10−5 | 1.84 × 10−7 | 1.38 × 10−7 | 4.60 × 10−6 | 3.80 × 10−6 | 3.57 × 10−6 |
Dichloromethane | 1/ppb | 5.55 × 10−8 | 5.27 × 10−10 | 5.83 × 10−10 | 1.17 × 10−8 | 9.16 × 10−9 | 8.05 × 10−9 |
p-Dichlorobenzene | 1/ppb | 6.60 × 10−5 | 8.58 × 10−7 | 7.59 × 10−7 | 1.12 × 10−5 | 8.25 × 10−6 | 8.25 × 10−6 |
Trichloroethylene | 1/ppb | 2.57 × 10−5 | 2.18 × 10−7 | 2.18 × 10−7 | 4.37 × 10−6 | 3.86 × 10−6 | 3.98 × 10−6 |
Tetrachloroethylene | 1/ppb | 1.76 × 10−6 | 1.23 × 10−8 | 1.41 × 10−8 | 2.90 × 10−7 | 2.73 × 10−7 | 3.17 × 10−7 |
Vinyl chloride | 1/ppb | 2.24 × 10−5 | 8.96 × 10−8 | 3.58 × 10−7 | 4.59 × 10−6 | 3.14 × 10−6 | 2.80 × 10−6 |
1,3-Butadiene | 1/ppb | 6.62 × 10−5 | 4.63 × 10−7 | 8.61 × 10−7 | 1.39 × 10−5 | 9.27 × 10−6 | 8.61 × 10−6 |
Acrylonitrile | 1/ppb | 1.47 × 10−4 | 1.25 × 10−6 | 2.21 × 10−6 | 3.38 × 10−5 | 2.13 × 10−5 | 1.91 × 10−5 |
Hexachloro-1,3-Butadiene | 1/ppb | 2.34 × 10−4 | 3.98 × 10−6 | 4.91 × 10−6 | 4.45 × 10−5 | 3.16 × 10−5 | 3.16 × 10−5 |
Benzo[a]pyrene | 1/ng/m3 | 1.76 × 10−6 | 1.16 × 10−7 | 5.54 × 10−8 | 6.69 × 10−7 | 6.86 × 10−7 | 7.92 × 10−8 |
As in PM10 | 1/ng/m3 | 4.30 × 10−6 | 1.23 × 10−7 | 2.80 × 10−8 | 1.29 × 10−7 | 1.08 × 10−7 | 1.29 × 10−7 |
Be in PM10 | 1/ng/m3 | 2.40 × 10−6 | 2.04 × 10−8 | 1.20 × 10−9 | 2.40 × 10−8 | 2.40 × 10−8 | 2.40 × 10−8 |
Cd in PM10 | 1/ng/m3 | 1.80 × 10−6 | 5.40 × 10−9 | 5.40 × 10−9 | 2.70 × 10−8 | 2.70 × 10−8 | 4.50 × 10−8 |
Ni in PM10 | 1/ng/m3 | 4.80 × 10−7 | 1.37 × 10−7 | 1.15 × 10−7 | 1.34 × 10−8 | 1.44 × 10−8 | 1.68 × 10−8 |
Pb in PM10 | 1/ng/m3 | 1.20 × 10−8 | 6.78 × 10−10 | 9.00 × 10−10 | 4.20 × 10−10 | 4.20 × 10−10 | 4.20 × 10−10 |
Cr(VI) in TSP | 1/ng/m3 | 1.20 × 10−5 | 2.28 × 10−8 | 2.22 × 10−8 | 7.50 × 10−9 | 1.32 × 10−8 | 1.38 × 10−8 |
SUM | --- | --- | 1.25 × 10−4 | 9.19 × 10−5 | 1.18× 10−3 | 9.81 × 10−4 | 9.47 × 10−4 |
Group | A | B | C | D | E |
---|---|---|---|---|---|
Data type | Hourly data | Daily data | Monthly data | Monthly data for all | Every six-day one data for all |
Benzene | 78.10 | 2.26 | 1.60 | 2.38 | 2.06 |
Ethylbenzene | 21.90 | 0.62 | 0.42 | 0.62 | 0.58 |
As | 0.84 | 0.79 | 0.93 | 0.79 | |
Ni | 0.42 | 0.39 | 0.47 | 0.39 | |
Formaldehyde | 81.57 | 77.06 | 73.87 | 76.56 | |
Pb | 0.04 | 0.04 | 0.05 | 0.04 | |
Cr(VI) | 0.24 | 0.22 | 0.26 | 0.22 | |
Cd | 0.13 | 0.12 | 0.18 | 0.12 | |
1,2-Dichloroethane | 13.88 | 13.11 | 13.42 | 13.02 | |
Vinyl chloride | 1.40 | 1.80 | 1.39 | ||
Acetaldehyde | 4.84 | 3.89 | 4.80 | ||
1,3-Butadiene | 2.11 | ||||
Screened Risk (1) | 4.87 × 10−5 | 1.39 × 10−3 | 1.47 × 10−3 | 9.89 × 10−4 | 1.48 × 10−3 |
Total Risk (2) | 1.58 × 10−3 | 1.57 × 10−3 | 1.56 × 10−3 | 1.03 × 10−3 | 1.57 × 10−3 |
Percentage (1/2) (%) | 3.08 | 88.5 | 94.2 | 96.0 | 94.3 |
Compounds | 2017 | 2018 | 2019 | Average (2017–2019) | Summer | Winter |
---|---|---|---|---|---|---|
As in PM10 | 1.46 ± 0.90 | 1.20 ± 0.72 | 1.35 ± 1.16 | 1.34 ± 0.79 | 0.70 ± 0.41 | 1.77 ± 0.75 |
Be in PM10 | 0.02 ± 0.03 | 0.01 ± 0.02 | 0.02 ± 0.04 | 0.01 ± 0.02 | 0.01 ± 0.02 | 0.02 ± 0.04 |
Cd in PM10 | 0.51 ± 0.56 | 0.44 ± 0.49 | 0.43 ± 0.36 | 0.46 ± 0.27 | 0.27 ± 0.51 | 0.66 ± 0.44 |
Ni in PM10 | 7.87 ± 5.50 | 6.96 ± 5.54 | 4.35 ± 2.51 | 6.39 ± 3.16 | 4.11 ± 3.40 | 8.55 ± 5.92 |
Pb in PM10 | 24.08 ± 19.13 | 23.62 ± 32.20 | 22.26 ± 24.56 | 23.32 ± 1.94 | 15.40 ± 15.76 | 32.58 ± 23.54 |
Cr(VI) in TSP | 0.13 ± 0.11 | 0.10 ± 0.14 | 0.13 ± 0.11 | 0.12 ± 0.07 | 0.08 ± 0.11 | 0.17 ± 0.15 |
Compounds | Unit | 2017 | 2018 | 2019 | 2017–2019 | Summer | Winter |
---|---|---|---|---|---|---|---|
Benzene | ppb | 0.69 ± 0.47 | 0.73 ± 0.25 | 0.64 ± 0.24 | 0.69 ± 0.34 | 0.58 ± 0.51 | 0.85 ± 0.23 |
Ethylbenzene | ppb | 0.39± 0.16 | 0.43 ± 0.17 | 0.41 ± 0.15 | 0.41 ± 0.16 | 0.33± 0.14 | 0.51 ± 0.16 |
Acetaldehyde | ppb | 4.38 ± 9.33 | 0.75 ± 2.81 | 5.59± 11.60 | 3.56 ± 5.83 | 4.97± 10.83 | 2.48 ± 7.58 |
Formaldehyde | ppb | 26.98 ± 29.30 | 20.62 ± 26.27 | 25.01 ± 30.33 | 24.12 ± 13.11 | 27.37 ± 25.43 | 20.54 ± 29.28 |
1,1-Dichloroethane | ppb | N.D. | 0.001 ± 0.020 | 0.001 ± 0.013 | 0.000 ± 0.014 | N.D. | N.D. |
1,2-Dibromoethane | ppb | N.D. | N.D. | 0.000 ± 0.006 | 0.000 ± 0.004 | N.D. | N.D. |
1,2-Dichloroethane | ppb | 0.27 ± 0.65 | 0.31 ± 0.69 | 0.70 ± 1.86 | 0.43 ± 0.50 | 0.61± 2.17 | 0.45 ± 0.52 |
1,1,2-Thichloroethane | ppb | 0.001 ± 0.017 | 0.000 ± 0.000 | 0.000 ± 0.006 | 0.000 ± 0.011 | 0.000 ± 0.000 | 0.001 ± 0.021 |
1,1,2,2-Tetrachloroethane | ppb | 0.001 ± 0.020 | N.D. | N.D. | 0.000 ± 0.012 | 0.001 ± 0.024 | 0.000 ± 0.000 |
Carbon Tetrachloride | ppb | 0.018 ± 0.142 | 0.008 ± 0.077 | 0.001 ± 0.021 | 0.009 ± 0.030 | 0.008 ± 0.089 | 0.012 ± 0.113 |
Chloroform | ppb | 0.018 ± 0.165 | 0.033 ± 0.131 | 0.045 ± 0.134 | 0.032 ± 0.059 | 0.018 ± 0.110 | 0.063 ± 0.209 |
Dichloromethane | ppb | 2.89 ± 5.04 | 1.41 ± 2.52 | 1.47 ± 2.43 | 1.93 ± 2.52 | 1.15 ± 2.47 | 2.01 ± 3.35 |
p-Dichlorobenzene | ppb | N.D. | 0.001 ± 0.020 | N.D. | 0.000 ± 0.012 | 0.001 ± 0.019 | N.D. |
Tetrachloroethylene | ppb | 0.001 ± 0.017 | 0.049 ± 0.482 | N.D. | 0.017 ± 0.162 | N.D. | 0.065 ± 0.566 |
Trichloroethylene | ppb | 0.001 ± 0.017 | N.D. | N.D. | 0.000 ± 0.010 | N.D. | 0.001 ± 0.020 |
Vinyl chloride | ppb | 0.26 ± 2.10 | 0.18 ± 0.53 | 0.25 ± 0.47 | 0.23 ± 0.47 | 0.19 ± 2.39 | 0.35 ± 0.59 |
1,3-Butadiene | ppb | 0.05± 0.20 | 0.11± 0.36 | 0.11 ± 0.25 | 0.09± 0.16 | 0.03 ± 0.16 | 0.17 ± 0.35 |
Acrylonitrile | ppb | 0.06 ± 0.33 | 0.06 ± 0.26 | 0.05 ± 0.17 | 0.05± 0.14 | 0.02 ± 0.22 | 0.12 ± 0.41 |
Hexachloro-1,3-butadiene | ppb | 0.002 ± 0.031 | N.D. | 0.000 ± 0.012 | 0.001 ± 0.019 | 0.002 ± 0.029 | 0.000 ± 0.000 |
Benzo[a]pyrene | ng/m3 | 0.04 ± 0.16 | 0.04± 0.18 | 0.09± 0.19 | 0.06 ± 0.07 | 0.03 ± 0.07 | 0.09 ± 0.17 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsai, J.-H.; Hung, T.-L.; How, V.; Chiang, H.-L. Effect of the Method Detection Limit on the Health Risk Assessment of Ambient Hazardous Air Pollutants in an Urban Industrial Complex Area. Atmosphere 2023, 14, 1426. https://doi.org/10.3390/atmos14091426
Tsai J-H, Hung T-L, How V, Chiang H-L. Effect of the Method Detection Limit on the Health Risk Assessment of Ambient Hazardous Air Pollutants in an Urban Industrial Complex Area. Atmosphere. 2023; 14(9):1426. https://doi.org/10.3390/atmos14091426
Chicago/Turabian StyleTsai, Jiun-Horng, Tzu-Lin Hung, Vivien How, and Hung-Lung Chiang. 2023. "Effect of the Method Detection Limit on the Health Risk Assessment of Ambient Hazardous Air Pollutants in an Urban Industrial Complex Area" Atmosphere 14, no. 9: 1426. https://doi.org/10.3390/atmos14091426
APA StyleTsai, J. -H., Hung, T. -L., How, V., & Chiang, H. -L. (2023). Effect of the Method Detection Limit on the Health Risk Assessment of Ambient Hazardous Air Pollutants in an Urban Industrial Complex Area. Atmosphere, 14(9), 1426. https://doi.org/10.3390/atmos14091426