Assessments of Use of Blended Radar–Numerical Weather Prediction Product in Short-Range Warning of Intense Rainstorms in Localized Systems (SWIRLS) for Quantitative Precipitation Forecast of Tropical Cyclone Landfall on Vietnam’s Coast
Abstract
:1. Introduction
2. The Numerical Weather Prediction System at NCHMF and Short-Range Warning of Intense Rainstorms in Localized Systems
2.1. The Numerical Weather Prediction System at NCHMF
2.2. Short-Range Warning of Intense Rainstorms in Localized Systems (SWIRLS)
- (1)
- Preparing individual radar data in the universal format (UF): This research used data at the 2 km Constant Altitude Plan Projection Indicator (CAPPI) level; the domain is within the radius of influence of 250 km, which then be used to generate a grid of 500 × 500 pixels.
- (2)
- Generating the main grids with a 3 km horizontal resolution and then composing all individual radar stations by picking the maximum values of radar data at each grid point (in case of an overlap covering two or more radar stations).
- (3)
- Applying the Real-Time Optical Flow by Variational Methods for Echoes of Radar (ROVER) for each radar station to calculate the motion fields: (i) the radar reflectivity data are converted to the gray level [54], and (ii) the variational optical flow technique [55] is used to calculate 2D motion vectors.
- (4)
- Based on the 2D motion vectors, the extrapolation or forecast of radar echoes is calculated using the semi-Lagrangian advection scheme.
- (5)
- Before blending the nowcast data and NWP data, based on the quantile mapping (QM) method, the bias correction is processed using a transfer function that maps quantiles of equivalent reflectivity converted from the NWP output to those of the radar data.
- (6)
- The blending procedure () for the extrapolation product from SWIRLS () and NWP data () is given by a hyperbolic tangent curve weight function of the forecasting time ():
- (7)
- Finally, the Marshall–Palmer relationship, Z = aRb, is used to revert the echo reflectivity (Z) to the rainfall rate (R, unit mm/h). In this research, the values for the a and b parameters were 200 and 1.6, respectively [56].
3. Forecasting Verification: Observational Data, Verification Methods, and Experiments
3.1. Precipitation Observation Data
3.2. Radar Data
3.3. Validation Methods
3.4. Experiments
4. Results and Discussions
4.1. Nowcast Performances
4.2. NWP Performances
4.3. Blended Product Performances
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Endo, N.; Matsumoto, J.; Lwin, T. Trends in precipitation extremes over Southeast Asia. SOLA 2009, 5, 168–171. [Google Scholar] [CrossRef] [Green Version]
- Goh, A.Z.C.; Chan, J.C.L. Interannual and interdecadal variations of tropical cyclone activity in the South China Sea. Int. J. Climatol. 2010, 30, 827–843. [Google Scholar] [CrossRef]
- Zhan, R.; Wang, Y.; Ying, M. Seasonal forecasts of tropical cyclone activity over the western north pacific. Wea. Trop. Cyclone Res. Rev. 2012, 1, 307–324. [Google Scholar] [CrossRef]
- Tibay, J.; Cruz, F.; Tangang, F.; Juneng, L.; Ngo-Duc, T.; Phan-Van, T.; Santisirisomboon, J.; Singhruck, P.; Gunawan, D.; Aldrian, E.; et al. Climatological characterization of tropical cyclones detected in the regional climate simulations over the CORDEX-SEA domain. Int. J. Climatol. 2021, 41, 4236–4252. [Google Scholar] [CrossRef]
- Pham-Thanh, H.; Ngo-Duc, T.; Matsumoto, J.; Phan-Van, T.; Vo-Van, H. Rainfall trends in Vietnam and their associations with tropical cyclones during 1979–2019. Sci. Online Lett. Atmos. 2020, 16, 169–174. [Google Scholar] [CrossRef]
- Chen, T.C.; Tsay, J.D.; Yen, M.C.; Matsumoto, J. Interannual variation of the late fall rainfall in central Vietnam. J. Clim. 2012, 25, 392–413. [Google Scholar] [CrossRef]
- Japan International Cooperation Agency. Data Collection Survey on Strategy Development of Disaster Risk Reduction and Management in the Socialist Republic of Vietnam; Japan International Cooperation Agency: Tokyo, Japan, 2018; Available online: https://openjicareport.jica.go.jp/pdf/12323879.pdf (accessed on 17 July 2023).
- Luu, L.N.; Scussolini, P.; Kew, S.; Philip, S.; Hariadi, M.H.; Vautard, R.; Van Mai, K.; Van Vu, T.; Truong, K.B.; Otto, F.; et al. Attribution of typhoon-induced torrential precipitation in Central Vietnam, October 2020. Clim. Chang. 2021, 169, 24. [Google Scholar] [CrossRef]
- Luu, C.; Ha, H.; Duy, Q.B.; Dung, L.; Khuc, D.; Vu, H.; Nguyen, D. Flash flood and landslide susceptibility analysis for a mountainous roadway in Vietnam using spatial modeling. Quat. Sci. Adv. 2023, 11, 100083. [Google Scholar] [CrossRef]
- Pham, N.T.T.; Vu, H.H. Characteristics of Tropical Cyclone Precipitating System along Central Coastal Region of Vietnam by TRMM and GSMAP Data. In APAC 2019, Proceedings of the 10th International Conference on Asian and Pacific Coasts, Hanoi, Vietnam, 25–28 September 2019; Trung Viet, N., Xiping, D., Thanh Tung, T., Eds.; Springer: Singapore, 2020; pp. 87–91. [Google Scholar] [CrossRef]
- Huang, X.; He, L.; Zhao, H.; Huang, Y. Characteristics of tropical cyclones generated in South China Sea and their landfalls over China and Vietnam. Nat. Hazards 2017, 88, 1043–1057. [Google Scholar] [CrossRef]
- Cheung, K.K.W.; Huang, L.-R.; Lee, C.-S. Characteristics of rainfall during tropical cyclone periods in Taiwan. Nat. Hazards Earth Syst. Sci. 2008, 8, 1463–1474. [Google Scholar] [CrossRef]
- Cuo, L.; Pagano, T.C.; Wang, Q.J. A review of quantitative precipitation forecasts and their use in short-to medium-range streamflow forecasting. J. Hydrometeorol. 2011, 12, 713–728. [Google Scholar] [CrossRef]
- Chen, L.S.; Li, Y.; Cheng, Z.Q. An overview of research and forecasting on rainfall associated with landfalling tropical cyclones. Adv. Atmos. Sci. 2010, 27, 967–976. [Google Scholar] [CrossRef]
- Bauer, H.S.; Schwitalla, T.; Wulfmeyer, V.; Bakhshaii, A.; Ehret, U.; Neuper, M.; Caumont, O. Quantitative precipitation estimation based on high-resolution numerical weather prediction and data assimilation with WRF–a performance test. Tellus A Dyn. Meteorol. Oceanogr. 2015, 67, 25047. [Google Scholar] [CrossRef]
- Wang, C.C.; Chang, C.S.; Wang, Y.W.; Huang, C.C.; Wang, S.C.; Chen, Y.S.; Tsuboki, K.; Huang, S.Y.; Chen, S.H.; Chiu, H.; et al. Evaluating quantitative precipitation forecasts using the 2.5 km CReSS model for typhoons in Taiwan: An update through the 2015 season. Atmosphere 2021, 12, 1501. [Google Scholar] [CrossRef]
- Xue, M.; Kong, F.; Thomas, K.W.; Gao, J.; Wang, Y.; Brewster, K.; Droegemeier, K.K. Prediction of Convective Storms at Convection-Resolving 1 km Resolution over Continental United States with Radar Data Assimilation: An Example Case of 26 May 2008 and Precipitation Forecasts from Spring 2009. Adv. Meteorol. 2013, 2013, 259052. [Google Scholar] [CrossRef] [Green Version]
- Tallapragada, V.; Kieu, C.; Trahan, S.; Liu, Q.; Wang, W.; Zhang, Z.; Tong, M.; Zhang, B.; Zhu, L.; Strahl, B. Forecasting tropical cyclones in the western North Pacific basin using the NCEP operational HWRF model: Model upgrades and evaluation of real-time performance in 2013. Weather Forecast. 2016, 31, 877–894. [Google Scholar] [CrossRef]
- Kotsuki, S.; Kurosawa, K.; Otsuka, S.; Terasaki, K.; Miyoshi, T. Global precipitation forecasts by merging extrapolation-based nowcast and numerical weather prediction with locally optimized weights. Weather Forecast. 2019, 34, 701–714. [Google Scholar] [CrossRef]
- Rinehart, R.E.; Garvey, E.T. Three-dimensional storm motion detection by conventional weather radar. Nature 1978, 273, 287–289. [Google Scholar] [CrossRef]
- Li, L.; Schmid, W.; Joss, J. Nowcasting of motion and growth of precipitation with radar over a complex orography. J. Appl. Meteorol. Climatol. 1995, 34, 1286–1300. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, M.; Xia, W.; Cui, Z.; Yang, H. Estimation of weather radar echo motion field and its application to precipitation nowcasting. Acta Meteorol. Sin. 2006, 64, 631–646. [Google Scholar] [CrossRef]
- Wang, G.; Wong, W.; Liu, L.; Wang, H. Application of multi-scale tracking radar echoes scheme in quantitative precipitation nowcasting. Adv. Atmos. Sci. 2013, 30, 448–460. [Google Scholar] [CrossRef]
- Mecklenburg, S.; Joss, J.; Schmid, W.; Mecklenburg, S.; Joss, J.; Schmid, W. Improving the nowcasting of precipitation in an Alpine region with an enhanced radar echo tracking algorithm. J. Hydrol. 2000, 239, 46–68. [Google Scholar] [CrossRef]
- Liang, Q.; Feng, Y.; Deng, W.; Hu, S.; Huang, Y.; Zeng, Q.; Chen, Z. A composite approach of radar echo extrapolation based on TREC vectors in combination with model-predicted winds. Adv. Atmos. Sci. 2010, 27, 1119–1130. [Google Scholar] [CrossRef]
- Mueller, C.; Saxen, T.; Roberts, R.; Wilson, J.; Betancourt, T.; Dettling, S.; Oien, N.; Yee, J. NCAR Auto-Nowcast System. Weather Forecast. 2003, 18, 545–561. [Google Scholar] [CrossRef]
- Golding, B.; Nimrod, W. A system for generating automated very short range forecasts. Meteorol. Appl. 1998, 5, 1–16. [Google Scholar] [CrossRef]
- Yeung, L.H.; Wong, W.K.; Chan, P.K.; Lai, E.S. Applications of the Hong Kong Observatory nowcasting system SWIRLS-2 in support of the 2008 Beijing Olympic Games. In Proceedings of the WMO Symposium on Nowcasting, Whistler, BC, Canada, 30 August–4 September 2009; p. 9. [Google Scholar]
- Hatsuzuka, D.; Kato, R.; Shimizu, S.; Shimose, K. Verification of Forecasted Three-Hour Accumulated Precipitation Associated with “Senjo-Kousuitai” from Very-Short-Range Forecasting Operated by the JMAVerification of Forecasted Three-Hour Accumulated Precipitation Associated with “Senjo-Kousuitai” from Very-Short-Range Forecasting Operated by the JMA. J. Meteorol. Soc. Japan. 2022, 100, 995–1005. [Google Scholar] [CrossRef]
- Japan Meteorological Agency. Forecasting Technology Training Textbook; Japan Meteorological Agency: Tokyo, Japan, 2019; Volume 24, pp. 146–153. Available online: https://www.jma.go.jp/jma/kishou/books/yohkens/24/chapter7.pdf(In Japanese). (accessed on 15 June 2023). (In Japanese)
- Li, P.W.; Wong, W.K.; Cheung, P.; Yeung, H.Y. An overview of nowcasting development, applications, and services in the Hong Kong Observatory. J. Meteorol. Res. 2014, 28, 859–876. [Google Scholar] [CrossRef]
- Ridwan, W.M.; Sapitang, M.; Aziz, A.; Kushiar, K.F.; Ahmed, A.N.; El-Shafie, A. Rainfall forecasting model using machine learning methods: Case study Terengganu, Malaysia. Ain Shams Eng. J. 2021, 12, 1651–1663. [Google Scholar] [CrossRef]
- Mohamadi, S.; Sheikh, K.Z.; Ehteram, M.; Ahmed, A.N.; El-Shafie, A. Rainfall prediction using multiple inclusive models and large climate indices. Environ. Sci. Pollut. Res. Int. 2022, 29, 85312–85349. [Google Scholar] [CrossRef] [PubMed]
- Salaeh, N.; Ditthakit, P.; Pinthong, S.; Hasan, M.A.; Islam, S.; Mohammadi, B.; Linh, N.T.T. Long-Short Term Memory Technique for Monthly Rainfall Prediction in Thale Sap Songkhla River Basin, Thailand. Symmetry 2022, 14, 1599. [Google Scholar] [CrossRef]
- Shi, X.; Chen, Z.; Wang, H.; Yeung, D.Y.; Wong, W.K.; Woo, W.C. Convolutional LSTM network: A machine learning approach for precipitation nowcasting. Adv. Neural Inf. Process. Syst. 2015, 28, 802–810. [Google Scholar]
- Shi, E.; Li, Q.; Gu, D.; Zhao, Z. A method of weather radar echo extrapolation based on convolutional neural networks. In MultiMedia Modeling, Proceedings of the 24th International Conference, MMM 2018, Bangkok, Thailand, 5–7 February 2018; Springer: Berlin/Heidelberg, Germany, 2018; pp. 16–28. [Google Scholar] [CrossRef]
- Akbari Asanjan, A.; Yang, T.; Hsu, K.; Sorooshian, S.; Lin, J.; Peng, Q. Short-term precipitation forecast based on the PERSIANN system and LSTM recurrent neural networks. J. Geophys. Res. Atmos. 2018, 123, 12543–12563. [Google Scholar] [CrossRef]
- Kim, D.-K.; Suezawa, T.; Mega, T.; Kikuchi, H.; Yoshikawa, E.; Baron, P.; Ushio, T. Improving precipitation nowcasting using a three-dimensional convolutional neural network model from Multi Parameter Phased Array Weather Radar observations. Atmos. Res. 2021, 262, 105774. [Google Scholar] [CrossRef]
- Liu, J.; Xu, L.; Chen, N. A spatiotemporal deep learning model ST-LSTM-SA for hourly rainfall forecasting using radar echo images. J. Hydrol. 2022, 609, 127748. [Google Scholar] [CrossRef]
- Zhang, W.; Han, L.; Sun, J.; Guo, H.; Dai, J. Application of multi-channel 3D-cube successive convolution network for convective storm nowcasting. In Proceedings of the 2019 IEEE International Conference on Big Data (Big Data), Los Angeles, CA, USA, 9–12 December 2019; pp. 1705–1710. [Google Scholar] [CrossRef] [Green Version]
- Zheng, K.; Liu, Y.; Zhang, J.; Luo, C.; Tang, S.; Ruan, H.; Tan, Q.; Yi, Y.; Ran, X. A generative adversarial model for radar echo extrapolation based on convolutional recurrent units. Geosci. Model Dev. Discuss. 2022, 15, 1467–1475. [Google Scholar] [CrossRef]
- Choi, Y.; Cha, K.; Back, M.; Choi, H.; Jeon, T. RAIN-F: A fusion dataset for rainfall prediction using convolutional neural network. In Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, 11–16 July 2021; pp. 7145–7148. [Google Scholar] [CrossRef]
- World Meteorological Organization. Guidelines on High-Resolution Numerical Weather Prediction (WMO-No. 1311); World Meteorological Organization: Geneva, Switzerland, 2023; Available online: https://library.wmo.int/doc_num.php?explnum_id=11654 (accessed on 17 July 2023).
- Skamarock, W.C.; Klemp, J.B.; Dudhia, J.; Gill, D.O.; Barker, D.; Duda, M.G.; Huang, X.Y.; Wang, W.; Powers, J.G. A Description of the Advanced Research WRF Version 3 (No. NCAR/TN-475+STR); University Corporation for Atmospheric Research: Boulder, CO, USA, 2008. [Google Scholar] [CrossRef]
- Descombes, G.; Auligné, T.; Vandenberghe, F.; Barker, D.M.; Barré, J. Generalized background error covariance matrix model (GEN-BE v2.0). Geosci. Model Dev. 2015, 8, 669–696. [Google Scholar] [CrossRef] [Green Version]
- Parrish, D.F.; Derber, J.C. The National Meteorological Center’s spectral statistical-interpolation analysis system. Mon. Weather Rev. 1992, 120, 1747–1763. [Google Scholar] [CrossRef]
- Colle, B.A.; Garvert, M.F.; Wolfe, J.B.; Mass, C.F.; Woods, C.P. The 13–14 December 2001 IMPROVE-2 Event. Part III: Simulated Microphysical Budgets and Sensitivity Studies. J. Atmos. Sci. 2005, 62, 3535–3558. [Google Scholar] [CrossRef]
- Woo, W.C.; Wong, W.K. Operational application of optical flow techniques to radar-based rainfall nowcasting. Atmosphere 2017, 8, 48. [Google Scholar] [CrossRef] [Green Version]
- Yik, D.J.; Sang, Y.W.; Chang, N.K.; Fakaruddin, F.J.; Dindang, A.; Abdullah, M.H. Analysis of the cyclonic vortex and evaluation of the performance of the radar integrated nowcasting system (RaINS) during the heavy rainfall episode which caused flooding in Penang, Malaysia on 5 November 2017. Trop. Cyclone Res. Rev. 2018, 7, 217–229. [Google Scholar]
- Srivastava, K.; Lau, S.; Kong Observatory, H.; Bhardwaj, R.; Singh, B.; Kannan, A.M.; Lau, S.S.Y.; Yeung, H.Y.; Cheng, T.L.; Kannan, A.M.; et al. Use of SWIRLS nowcasting system for quantitative precipitation forecast using Indian DWR data. MAUSAM 2012, 63, 1–16. [Google Scholar] [CrossRef]
- Woo, W.C.; Li, K.K.; Bala, M. An Algorithm to Enhance nowcast of rainfall brought by tropical cyclones through separation of motions. Trop. Cyclone Res. Rev. 2014, 3, 111–121. [Google Scholar] [CrossRef]
- Cheung, P.; Yeung, H.Y. Application of optical-flow technique to significant convection nowcast for terminal areas in Hong Kong. In Proceedings of the 3rd WMO International Symposium on Nowcasting and Very Short-Range Forecasting (WSN12), Rio de Janeiro, Brazil, 6–10 August 2012; p. 10. [Google Scholar]
- Wong, W.K.; Yeung, L.H.; Wang, Y.C.; Chen, M. Towards the blending of NWP with nowcast—Operation experience in B08FDP. In Proceedings of the WMO Symposium on Nowcasting, Whistler, BC, Canada, 30 August–4 September 2009; p. 14. [Google Scholar]
- Germann, U.; Zawadzki, I. Scale-dependence of the predictability of precipitation from continental radar images. Part I: Description of the methodology. Mon. Weather Rev. 2002, 130, 2859–2873. [Google Scholar] [CrossRef]
- Bruhn, A.; Weickert, J.; Feddern, C.; Kohlberger, T.; Schnörr, C. Real-time optic flow computation with variational methods. In Proceedings of the CAIP, Groningen, The Netherlands, 25–27 August 2003; pp. 222–229. [Google Scholar]
- Bennett, J.A.; Fang, D.J.; Boston, R.C. The relationship between N 0 and Λ for Marshall–Palmer type raindrop-size distributions. J. Clim. Appl. Meteorol. 1984, 23, 768–771. [Google Scholar] [CrossRef]
- Saito, K.; Tien, D.D.; Hung, M.K.; Duc, L. Heavy Rainfall Event in Central Viet Nam in December 2018 and QPE/QPF at VNMHA. In Proceedings of the 100th American Meteorological Society Annual Meeting, Boston, MA, USA, 11–16 January 2020; Available online: https://ams.confex.com/ams/2020Annual/webprogram/Paper362941.html (accessed on 15 June 2023).
- Kimpara, C.; Tonouchi, M.; Hoa, B.T.K.; Hung, N.V.; Cuong, N.M.; Akaeda, K. Quantitative Precipitation Estimation by Combining Rain gauge and Meteorological Radar Network in Viet Nam. Vietnam J. Hydrometeorol. 2020, 5, 36–50. [Google Scholar] [CrossRef]
- Wilks, D.S. Statistical Methods in the Atmospheric Sciences, 2nd ed.; Elsevier Academic Press: New York, NY, USA, 2006; 630p, ISBN 9780123850225/9780123850232. [Google Scholar]
- Wang, H.; Yang, J.; Zhu, J.; Ren, L.; Liu, Y.; Li, W.; Chen, C. Estimation of Significant Wave Heights from ASCAT Scatterometer Data via Deep Learning Network. Remote Sens. 2021, 13, 195. [Google Scholar] [CrossRef]
- Tang, J.; Matyas, C. A nowcasting model for tropical cyclone precipitation regions based on the TREC motion vector retrieval with a semi-Lagrangian scheme for Doppler weather radar. Atmosphere 2018, 9, 200. [Google Scholar] [CrossRef] [Green Version]
- Hersbach, H.; Bell, B.; Berrisford, P.; Horányi, A.; Sabater, J.M.; Nicolas, J.; Radu, R.; Schepers, D.; Simmons, A.; Cornel Soci, D.D. Global reanalysis: Goodbye ERA-interim, hello ERA5. ECMWF Newsl. 2019, 159, 17–24. [Google Scholar] [CrossRef]
- Zhang, J.; Howard, K.W.; Langston, C.; Kaney, B.; Qi, Y.; Tang, L.; Grams, H.; Wang, Y.; Cocks, S.; Martinaitis, S.M.; et al. Multi-Radar Multi-Sensor (MRMS) quantitative precipitation estimation: Initial operating capabilities. Bull. Am. Meteorol. Soc. 2016, 97, 621–638. [Google Scholar] [CrossRef]
Tropical Cyclone Name | Forecast Cycles |
---|---|
DIANMU | 00Z, 06Z and 12Z on 23 September 2021 |
NORU | 00Z, 06Z and 12Z on 27 September 2022 |
SONCA | 00Z, 06Z and 12Z on 14 October 2022 |
Thresholds | Forecast Time | DIANMU | NORU | SONCA | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
TS | ETS | POD | FAR | TS | ETS | POD | FAR | TS | ETS | POD | FAR | ||
1 mm | +1 h | 0.32 | 0.20 | 0.68 | 0.62 | 0.38 | 0.27 | 0.79 | 0.57 | 0.43 | 0.28 | 0.75 | 0.49 |
+2 h | 0.31 | 0.17 | 0.66 | 0.64 | 0.37 | 0.24 | 0.81 | 0.60 | 0.44 | 0.28 | 0.81 | 0.51 | |
+3 h | 0.28 | 0.14 | 0.63 | 0.66 | 0.35 | 0.21 | 0.77 | 0.61 | 0.40 | 0.25 | 0.79 | 0.56 | |
5 mm | +1 h | 0.26 | 0.21 | 0.70 | 0.70 | 0.31 | 0.25 | 0.76 | 0.66 | 0.32 | 0.25 | 0.64 | 0.62 |
+2 h | 0.20 | 0.14 | 0.67 | 0.78 | 0.24 | 0.17 | 0.85 | 0.75 | 0.23 | 0.14 | 0.68 | 0.74 | |
+3 h | 0.20 | 0.12 | 0.63 | 0.78 | 0.24 | 0.16 | 0.76 | 0.74 | 0.22 | 0.13 | 0.63 | 0.75 | |
10 mm | +1 h | 0.12 | 0.10 | 0.45 | 0.86 | 0.14 | 0.12 | 0.42 | 0.83 | 0.18 | 0.15 | 0.40 | 0.75 |
+2 h | 0.10 | 0.07 | 0.59 | 0.89 | 0.14 | 0.11 | 0.69 | 0.85 | 0.18 | 0.14 | 0.61 | 0.80 | |
+3 h | 0.11 | 0.07 | 0.54 | 0.88 | 0.17 | 0.12 | 0.62 | 0.81 | 0.18 | 0.12 | 0.57 | 0.80 | |
15 mm | +1 h | 0.06 | 0.05 | 0.25 | 0.92 | 0.12 | 0.11 | 0.30 | 0.84 | 0.15 | 0.14 | 0.33 | 0.77 |
+2 h | 0.07 | 0.05 | 0.47 | 0.93 | 0.10 | 0.08 | 0.56 | 0.89 | 0.17 | 0.14 | 0.54 | 0.80 | |
+3 h | 0.08 | 0.06 | 0.52 | 0.91 | 0.13 | 0.10 | 0.56 | 0.86 | 0.15 | 0.11 | 0.45 | 0.82 | |
20 mm | +1 h | 0.08 | 0.08 | 0.21 | 0.88 | 0.08 | 0.08 | 0.17 | 0.86 | 0.13 | 0.12 | 0.24 | 0.78 |
+2 h | 0.06 | 0.05 | 0.45 | 0.93 | 0.10 | 0.08 | 0.41 | 0.89 | 0.17 | 0.15 | 0.54 | 0.81 | |
+3 h | 0.06 | 0.04 | 0.40 | 0.93 | 0.07 | 0.05 | 0.33 | 0.92 | 0.11 | 0.09 | 0.32 | 0.85 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hung, M.K.; Tien, D.D.; Quan, D.D.; Duc, T.A.; Dung, P.T.P.; Hole, L.R.; Nam, H.G. Assessments of Use of Blended Radar–Numerical Weather Prediction Product in Short-Range Warning of Intense Rainstorms in Localized Systems (SWIRLS) for Quantitative Precipitation Forecast of Tropical Cyclone Landfall on Vietnam’s Coast. Atmosphere 2023, 14, 1201. https://doi.org/10.3390/atmos14081201
Hung MK, Tien DD, Quan DD, Duc TA, Dung PTP, Hole LR, Nam HG. Assessments of Use of Blended Radar–Numerical Weather Prediction Product in Short-Range Warning of Intense Rainstorms in Localized Systems (SWIRLS) for Quantitative Precipitation Forecast of Tropical Cyclone Landfall on Vietnam’s Coast. Atmosphere. 2023; 14(8):1201. https://doi.org/10.3390/atmos14081201
Chicago/Turabian StyleHung, Mai Khanh, Du Duc Tien, Dang Dinh Quan, Tran Anh Duc, Pham Thi Phuong Dung, Lars R. Hole, and Hoang Gia Nam. 2023. "Assessments of Use of Blended Radar–Numerical Weather Prediction Product in Short-Range Warning of Intense Rainstorms in Localized Systems (SWIRLS) for Quantitative Precipitation Forecast of Tropical Cyclone Landfall on Vietnam’s Coast" Atmosphere 14, no. 8: 1201. https://doi.org/10.3390/atmos14081201
APA StyleHung, M. K., Tien, D. D., Quan, D. D., Duc, T. A., Dung, P. T. P., Hole, L. R., & Nam, H. G. (2023). Assessments of Use of Blended Radar–Numerical Weather Prediction Product in Short-Range Warning of Intense Rainstorms in Localized Systems (SWIRLS) for Quantitative Precipitation Forecast of Tropical Cyclone Landfall on Vietnam’s Coast. Atmosphere, 14(8), 1201. https://doi.org/10.3390/atmos14081201