The Commuting Patterns and Health Effects among Urban Residents in Low-Visibility Air Pollution Environments: An Empirical Study of Gaoyou City, China
Abstract
:1. Introduction
2. Data and Methods
2.1. Study Area and Data Source
2.1.1. Study Area
2.1.2. Data Source and Processing
- (1)
- Socio-economic attribute data
- (2)
- Air quality data
2.2. Independent and Dependent Variables
2.3. Statistical Analyses
2.3.1. K-Means Clustering
2.3.2. Standard Deviation Ellipse Analysis
2.3.3. Binomial Logistic Regression Model
3. Results
3.1. The Residents’ Main Daily Commuting Modes in Gaoyou City
3.2. Spatial Characteristics of Commuting Behaviour under Different Air Pollution Environments
3.3. Time Characteristics of Commuting Behavior among the Residents in Different Air Pollution Environments
3.4. The Characteristics of Residents’ Physical and Mental Health Status under Different Commuting Modes
4. Discussion
4.1. The Short-Distance Slow Commuting Mode Had a Significant Positive Impact on Residents’ BMI and Sleep Quality
4.2. Long-Distance Self-Driving Commuting Had a Significant Negative Impact on Residents’ Mental Health
4.3. Long-Distance Commuting Had a Negative Impact on Residents’ Health under High Concentration Air Pollution
4.4. Short-Distance Slow Commuting Had a Significant Impact on Residents’ Mental Health under Moderate Concentration Air Pollution
5. Conclusions
5.1. Key Findings
5.2. Implications
5.3. Limitations and Future Research Directions
Author Contributions
Funding
Institutional Review Board Statement
Conflicts of Interest
References
- Horner, M.W. Spatial dimensions of urban commuting: A review of major issues and their implications for future geographic research. Prof. Geogr. 2004, 56, 160–173. [Google Scholar] [CrossRef]
- Lowe, J.C. Patterns of spatial dispersion in metropolitan commuting. Urban Geogr. 1998, 19, 232–253. [Google Scholar] [CrossRef]
- Sohn, J. Are commuting patterns a good indicator of urban spatial structure? J. Transp. Geogr. 2005, 13, 306–317. [Google Scholar] [CrossRef]
- Fagnani, J. Women’s commuting patterns in the Paris region. Tijdschr. Voor Econ. En Soc. Geogr. 1983, 74, 12–24. [Google Scholar] [CrossRef]
- Simoncic, V.; Pozzar, M.; Enaux, C.; Deguen, S.; Kihal-Talantikite, W. Optimization and Process Design Tools for Estimation of Weekly Exposure to Air Pollution Integrating Travel Patterns during Pregnancy. Open J. Stat. 2022, 12, 408–432. [Google Scholar] [CrossRef]
- Fogg-Rogers, L.; Hayes, E.; Vanherle, K.; Pápics, P.I.; Chatterton, T.; Barnes, J.; Slingerland, S.; Boushel, C.; Laggan, S.; Longhurst, J. Applying Social Learning to Climate Communications—Visualising ‘People Like Me’ in Air Pollution and Climate Change Data. Sustainability 2021, 13, 3406. [Google Scholar] [CrossRef]
- Fan, Y.; Palacios, J.; Arcaya, M.; Luo, R.; Zheng, S. Health perception and commuting choice: A survey experiment measuring behavioral trade-offs between physical activity benefits and pollution exposure risks. Environ. Res. Lett. 2021, 16, 054026. [Google Scholar] [CrossRef]
- Rafirpour, M.; Woodward, A.; Salmond, J.A.; Dirks, K.N. The Impact of Route Choice on Active Commuters’ Exposure to Air Pollution: A Systematic Review. Front. Sustain. Cities 2021, 2, 565733. [Google Scholar]
- Cao, X.; Mokhtarian, P.L. How do individuals adapt their personal travel? A concept exploration of the consideration of travel-related strategies. Transp. Policy 2005, 12, 199–206. [Google Scholar] [CrossRef] [Green Version]
- Horner, M. Extensions to the concept of excess commuting. Environ. Plan. A 2002, 34, 543–566. [Google Scholar] [CrossRef]
- Simonson, E.; Baker, C.; Burns, N.; Keiper, C.; Schmitt, O.H.; Stackhouse, S. Cardiovascular stress (electrocardiographic changes) produced by driving an automobile. Am. Heart J. 1968, 75, 125–135. [Google Scholar] [CrossRef] [PubMed]
- Kelsey, J.L.; Githens, P.B.; O’Conner, T.; Ulrich, W.; Calogero, J.A.; Holford, T.R.; White, A.A., III; Walter, S.D.; Ostfeld, A.M.; Southwick, W.O. Acute Prolapsed Lumbar Intervertebral Disc An epidemiologic study with special reference to driving automobiles and cigarette smoking. Spine 1984, 9, 608–613. [Google Scholar] [CrossRef] [PubMed]
- Pietri, F.; Leclerc, A.; Boitel, L.; Chastang, J.-F.; Morcet, J.-F.; Blondet, M. Low-back pain in commercial travelers. Scand. J. Work. Environ. Health 1992, 18, 52–58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lyons, G.; Chatterjee, K. A human perspective on the daily commute: Costs, benefits and trade-offs. Transp. Rev. 2008, 28, 181–198. [Google Scholar] [CrossRef] [Green Version]
- Fisch, T.; Forest, F.; Biener, K. Auswirkungen des Arbeitsweges auf die Gesundheit, insbesondere den Blutdruck. Soz. Prventivmedizin 1976, 21, 188–191. [Google Scholar] [CrossRef]
- Robinson, A.A. Cancer deaths due to all causes, its relationship with vehicle travel in Australia, Japan and European countries. Med. Hypotheses 1991, 36, 166–171. [Google Scholar] [CrossRef]
- Jones, P.; Clarke, M. The significance and measurement of variability in travel behavior. Transportation 1988, 15, 65–87. [Google Scholar] [CrossRef]
- Huff, J.O.; Hanson, S. Repetition and variability in urban travel. Geogr. Anal. 1986, 18, 97–113. [Google Scholar] [CrossRef]
- Pas, E.I. Intra-personal variability and model goodness-of-fit. Transp. Res. 1987, 21, 431–438. [Google Scholar]
- Kitamura, R.; Yamamoto, T.; Susilo, Y.O.; Axhausen, K.W. How routine is a routine? An analysis of the day-to-day variability in prism vertex location. Transp. Res. Part A Policy Pract. 2006, 40, 259–279. [Google Scholar] [CrossRef] [Green Version]
- Jing, Z.; Fan, Y. Study on the influencing factors of commuting well-being of metropolitan residents: A case study of Xi’an city. Urban Rural. Plan. 2017, 32, 15–25. [Google Scholar]
- Wu, J. Study on the Impact of Urban Commuting Time on Personal Well-Being and Health; East China Normal University: Shanghai, China, 2016. [Google Scholar]
- Zhao, S. CPI Analysis Based on System Clustering in SPSS; Henan Normal University: Henan, China, 2013. [Google Scholar]
- Yi, S.; Feng, C. Comparison of Six Common Conditional Systematic Clustering Methods. China Health Stat. 2004, 6, 19–21. [Google Scholar]
- Yang, C.; Chunyan, S.; Bai, Z.; Yan, L. The PM_ (2.5) control areas in China are classified based on cluster analysis. China Environ. Monit. 2017, 33, 138–145. [Google Scholar]
- Yang, H.; Wang, X. Research on China’s legal regulation of excessive labor under the new normal. J. Nanjing Univ. 2017, 54, 71–77. [Google Scholar]
- Shen, J. The Legal Structure and Genealogy of Vacation in Labor Law. Law 2021, 10, 154–166. [Google Scholar]
- Yu, J.Y.; He, X.H. Data Statistical Analysis and SPSS Application; People’s Posts and Telecommunications Publishing House: Beijing, China, 2003. [Google Scholar]
- Yu, C. SPSS and Statistical Analysis; Electronic Industry Press: Beijing, China, 2007; pp. 356–379. [Google Scholar]
- Song, S.; Yao, M.; Wang, Z. Study on commuting characteristics and commuting mode choice behavior of urban residents in China--Based on microscopic survey data of Tianjin City. Urban Dev. Res. 2018, 25, 115–124. [Google Scholar]
- Fu, T.; Zhang, Y.; Chai, Y. Study on the health impact of commuting modes of suburban residents in metropolitan cities—Taking Tiantong Garden in Beijing as an example. Prog. Geogr. Sci. 2018, 37, 547–555. [Google Scholar]
- Sun, B.; Yan, H.; Zhang, T. Built environmental impacts on individual mode choice and BMI: Evidence from China. J. Transp. Geogr. 2017, 63, 11–21. [Google Scholar] [CrossRef]
- Hansson, E.; Mattisson, K.; Björk, J.; Östergren, P.-O.; Jakobsson, K. Relationship between commuting and health outcomes in a cross-sectional population survey in southern Sweden. BMC Public Health 2011, 11, 834. [Google Scholar] [CrossRef] [Green Version]
- Badeenezhad, A.; Baghapour, M.A.; Sorooshian, A.; Keshavarz, M.; Azhdarpoor, A.; Goudarzi, G.; Hoseini, M. Investigating the relationship between central nervous system biomarkers and short-term exposure to PM10-bound metals during dust storms—ScienceDirect. Atmos. Pollut. Res. 2020, 11, 2022–2029. [Google Scholar] [CrossRef]
- Yan, W.; Li, Z.; Kan, T.; Tian, L. Ecological Renewal of Old Communities under the Guidance of Air Environment Health: Theoretical Framework and Case Practice. Urban Dev. Res. 2022, 1, 29. [Google Scholar]
- Xuan, Z.; Jia, X.; Hongyuan, J. Mobility or liquidity? Translation, evolution and interpretation. Tour. Trib. 2017, 32, 104–114. [Google Scholar]
- Shao, F.; Sui, Y.; Yu, X.; Sun, R. Spatio-temporal travel patterns of elderly people—A comparative study based on buses usage in Qingdao, China. J. Transp. Geogr. 2019, 76, 178–190. [Google Scholar] [CrossRef]
- Jianzhong, H.; Ruiqi, Z.; Gangyu, H. A research of the elderly’s daily life circle based on spatial-temporal behaviors—Analysis of place recognition and spatial features. Urban Plan. Forum 2019, 3, 87–95. [Google Scholar]
- Yanwei, C.; Chunjiang, L. Urban life cycle planning: From research to practice. City Plan. Rev. 2019, 43, 9–16. [Google Scholar]
- Daosheng, S.; Yanwei, C.; Yan, Z. The definition and measurement of community life circle: A case study of Qinghe area in Beijing. Urban Dev. Stud. 2016, 23, 1–9. [Google Scholar]
- Xiping, Y.; Zhixiang, F. Recent progress in studying human mobility and urban spatial structure based on mobile location big data. Prog. Geogr. 2018, 37, 880–889. [Google Scholar]
- Xiao, Q.; Feng, Z. Combination between big data and small data: New methods of urban studies in the information era. Sci. Geogr. Sin. 2017, 37, 321–330. [Google Scholar]
- Lee, B.S.; McDonald, J.F. Determinants of commuting time and distance for Seoul residents: The impact of family status on the commuting of women. Urban Stud. 2003, 40, 1283–1302. [Google Scholar] [CrossRef]
- Peng, Z.R. The jobs-housing balance and urban commuting. Urban Stud. 1997, 34, 1215–1235. [Google Scholar] [CrossRef]
Item | Count | Proportion | Item | Count | Proportion | Item | Count | Proportion |
---|---|---|---|---|---|---|---|---|
Gender | Marital status | Body mass index | ||||||
Male | 371 | 44.2 | Unmarried | 121 | 17.6 | Normal | 399 | 58.2 |
Female | 382 | 55.8 | Married | 564 | 82.4 | Overweight | 229 | 33.5 |
Obesity | 57 | 8.4 | ||||||
Age | Family Size | Self-rating physical health | ||||||
20–30 | 427 | 62.3 | <3 | 378 | 55.3 | Very good | 78 | 11.4 |
31–40 | 161 | 23.5 | 3~5 | 229 | 33.5 | Good | 293 | 42.8 |
41–50 | 51 | 7.4 | >5 | 78 | 11.2 | Normal | 175 | 25.6 |
51–65 | 33 | 5.1 | Not good | 139 | 20.3 | |||
>65 | 14 | 1.7 | ||||||
Education level | Annual family income | Self-rating mental health | ||||||
Primary school and below | 103 | 15.14 | ≤100,000 | 42 | 6.2 | Very good | 49 | 7.2 |
Junior high school | 334 | 48.71 | 100,000–150,000 | 160 | 23.4 | Good | 216 | 31.5 |
High school | 107 | 15.61 | 150,000–300,000 | 385 | 56.2 | Normal | 256 | 37.4 |
Bachelor’s degree and above | 141 | 20.55 | >300,000 | 98 | 14.2 | Not good | 164 | 23.9 |
Factor | Corbach’s Alpha Value | Standardized Corbach’s Alpha Value |
---|---|---|
Age | 0.8821 | 0.9014 |
Gender | 0.8745 | 0.8901 |
Education level | 0.7892 | 0.8191 |
Annual household income | 0.7233 | 0.7912 |
Occupation | 0.7563 | 0.7244 |
Car ownership | 0.8135 | 0.8227 |
Variable (Unit) | Basic Definition | Mean/Day | Variance | Minimum | Max |
---|---|---|---|---|---|
AQI (Value) | Single-day AQI | 68.82 | 28.58 | 20.08 | 167.92 |
PM2.5 (μg/m3) | Particle index with aerodynamic equivalent diameter less than or equal to 2.5 μm in the atmosphere | 76.13 | 23.25 | 23.71 | 103.21 |
PM10 (μg/m3) | Particle index with aerodynamic equivalent diameter less than or equal to 10 μm in the atmosphere | 83.27 | 21.07 | 33.91 | 112.13 |
CO (mg/m3) | Carbon monoxide concentration index in the atmosphere | 4.82 | 0.15 | 3.15 | 4.97 |
NO2 (μg/m3) | Nitrogen dioxide concentration index in the atmosphere | 37.21 | 9.37 | 29.18 | 48.27 |
O3 (μg/m3) | Ozone concentration index in the atmosphere | 74.23 | 25.43 | 41.72 | 92.18 |
SO2 (mg/m3) | Sulfur dioxide concentration index in the atmosphere | 85.17 | 19.18 | 67.19 | 103.94 |
Commuting Mode | Mode 1 | Mode 2 | Mode 3 | Mode 4 | |
---|---|---|---|---|---|
Commuting distance/km | Mean value | 1.4 | 4.2 | 14.1 | 15.8 |
Median | 0.9 | 3.8 | 13.0 | 13.5 | |
Standard deviation | 1.3 | 2.2 | 7.5 | 6.6 | |
Commuting time/min | Mean value | 7.9 | 19.6 | 44.7 | 28.8 |
Median | 10.0 | 20.0 | 40.0 | 23.0 | |
Standard deviation | 2.5 | 6.2 | 11.5 | 16.1 | |
Transportation vehicles (proportion)/% | Walking or cycling | 58.3 | 17.9 | 3.7 | 28.4 |
Public transportation | 4.2 | 42.3 | 61.1 | 33.8 | |
Car | 15.3 | 15.4 | 31.5 | 19.6 | |
Other modes | 22.2 | 24.4 | 3.7 | 18.1 | |
Number of samples | / | 172 | 156 | 132 | 78 |
Each Categorical Variable | Physical Health Level | Mental Health Level | |||||
---|---|---|---|---|---|---|---|
Low Body Mass Index (Proportion%) | Poor Sleep Quality (Proportion%) | Frequent Sick Leave (Proportion%) | Negative Attitude (Proportion%) | Major Psychological Pressure (Proportion%) | Depression (Proportion%) | ||
Analysis variables | |||||||
Commuting mode | Mode 1 | 43.2 | 7.6 | 11 | 15.3 | 33.9 | 13.6 |
Mode 2 | 37 | 13.7 | 11 | 17.8 | 43.8 | 17.8 | |
Mode 3 | 26.5 | 8.8 | 8.8 | 8.8 | 35.3 | 11.8 | |
Mode 4 | 12.5 | 7.2 | 3.3 | 14.2 | 24.8 | 7.9 | |
Control variables | |||||||
Air pollution environment (AQI) | AQI ≤ 50 | 8.5 | 6.7 | 5.9 | 10.2 | 9.3 | 10.5 |
50 < AQI ≤ 100 | 9.2 | 8.3 | 9.6 | 15.3 | 14.5 | 16.3 | |
100 < AQI ≤ 150 | 23.3 | 17.2 | 19.6 | 19.2 | 18.6 | 19.8 | |
150 < AQI ≤ 200 | 6.2 | 5.7 | 4.3 | 8.2 | 7.9 | 7.3 | |
Gender | Male | 44.8 | 8.8 | 9.6 | 14.4 | 35.2 | 15.2 |
Female | 29.6 | 10.2 | 11.1 | 15.7 | 38.9 | 13 | |
Age | ≤20 | 18.2 | 9.1 | 18.2 | 9.1 | 45.5 | 18.2 |
20–35 | 31.5 | 13 | 11.1 | 15.7 | 41.7 | 15.7 | |
35–50 | 53.1 | 7.4 | 8.6 | 14.8 | 35.8 | 13.6 | |
50–65 | 23.3 | 3.3 | 10 | 13.3 | 20 | 6.7 | |
>65 | 66.7 | 0 | 0 | 33.3 | 33.3 | 33.3 | |
Education | Junior high school and below | 30.4 | 4.3 | 26.1 | 8.7 | 17.4 | 0 |
High school | 29.5 | 11.5 | 8.2 | 8.2 | 37.7 | 14.8 | |
College degrees | 45.3 | 9.4 | 8.5 | 22.2 | 34.2 | 17.1 | |
Master’s degree or above | 31.3 | 9.4 | 9.4 | 6.3 | 59.4 | 12.5 | |
Annual household income | ≤100,000 | 41.2 | 5.9 | 9.4 | 9.4 | 23.5 | 8.2 |
100,000–150,000 | 28.3 | 10 | 10 | 16.7 | 41.7 | 15 | |
150,000–300,000 | 37 | 11.1 | 14.8 | 22.2 | 37 | 20.4 | |
>300,000 | 43.5 | 13 | 8.7 | 17.4 | 52.2 | 17.4 | |
Employment | Government agencies and institutions | 48.1 | 3.7 | 0 | 3.7 | 37 | 7.4 |
State-owned enterprises | 53.8 | 0 | 3.8 | 23.1 | 42.3 | 19.2 | |
Private enterprise | 32.2 | 13.8 | 9.2 | 18.4 | 35.6 | 19.5 | |
Freelancer | 55.6 | 5.6 | 5.2 | 16.7 | 5.1 | 3.1 | |
Number of family cars | None | 40.7 | 12.8 | 7 | 17.4 | 33.7 | 18.6 |
1 | 36.3 | 5.6 | 10.5 | 11.3 | 35.5 | 11.3 | |
≥2 | 34.8 | 17.4 | 21.7 | 26.1 | 56.5 | 13.2 |
Body Mass Index | Sleep Quality | Sick Leave Frequency | Life Attitude | Psychological Stress | Emotional State | ||
---|---|---|---|---|---|---|---|
Mode 1 | Pearson correlation | 0.819 | 0.719 | −0.406 | −0.237 | −0.306 | 0.3165 |
Significance (Double tailed) | 0.116 ** | 0.111 ** | 0.943 | 0.067 | 0.934 | 0.027 * | |
Covariance | 0.960 | 0.585 | −0.012 | −0.689 | 0.049 | 1.140 | |
Mode 2 | Pearson correlation | 0.754 | 0.662 | −0.552 | −0.625 | 0.427 | 0.636 |
Significance (Double tailed) | 0.477 * | 0.411 ** | 0.504 | 0.094 | 0.717 * | 0.068 *** | |
Covariance | 0.050 | 0.035 | −0.013 | −0.073 | 0.025 | 0.110 | |
Mode 3 | Pearson correlation | −0.124 | 0.112 | 0.105 | −0.002 | 0.091 | −0.025 |
Significance (Double tailed) | 0.858 ** | 0.140 | 0.181 | 0.978 | 0.231 * | 0.740 | |
Covariance | −0.057 | 0.260 | 0.120 | −0.005 | 0.367 | −0.092 | |
Mode 4 | Pearson correlation | −0.207 | 0.134 | 0.131 | −0.032 | 0.082 | −0.031 |
Significance (Double tailed) | 0.782 * | 0.129 | 0.126 | 0.849 * | 0.254 | 0.731 * | |
Covariance | −0.067 | 0.273 | 0.157 | −0.027 | 0.356 | −0.108 |
Influence Factor | Abnormal Body Mass Index | Poor Sleep Quality | High Frequency of Sick Leave | |||
---|---|---|---|---|---|---|
Sig. | Exp(B) | Sig. | Exp(B) | Sig. | Exp(B) | |
Commuting mode (comparison: Mode 4) | 0.609 | / | 0.911 | / | 0.193 | / |
Mode 1 | 0.434 ** | 1.464 | 0.866 * | 0.872 | 0.088 * | 0.177 |
Mode 2 | 0.899 * | 0.949 | 0.850 * | 1.158 | 0.401 ** | 0.445 |
Mode 3 | 0.689 | 0.763 | 0.827 | 1.092 | 0.359 | 0.482 |
Air pollution level (comparison: 150 < AQI ≤ 200) | 0.726 | / | 0.927 | / | 0.932 | / |
AQI≤50 | 0.986 | 0.981 | 0.923 | 0.000 | 0.982 | 0.000 |
50 < AQI ≤ 100 | 0.801 * | 1.285 | 0.976 * | 0.000 | 0.968 ** | 0.000 |
100 < AQI ≤ 150 | 0.659 ** | 0.649 | 0.999 | 0.000 | 0.999 | 0.000 |
Gender (comparison: female) | 0.056 | / | 0.532 | / | 0.858 | / |
Male | 0.290 | 0.979 | 0.381 | 1.028 | 0.175 | 1.049 |
Education background (comparison: Master’s degree or above) | 0.195 | / | 0.801 | / | 0.060 | / |
Primary school and below | 0.918 * | 0.911 | 0.607 | 2.227 | 0.735 * | 0.609 |
Junior high school | 0.837 ** | 1.156 | 0.834 * | 1.247 | 1.242 | 3.330 |
High school | 0.178 | 0.465 | 0.432 * | 2.014 | 0.137 | 4.557 |
Annual household income (comparison: over 300,000 yuan) | 0.793 | / | 0.729 | / | 0.954 | / |
Below 100,000 | 0.999 | 0.000 | 0.932 * | 0.032 | 0.827 * | 0.788 |
100,000–150,000 | 0.999 | 0.000 | 0.927 ** | 0.054 | 0.795 *** | 0.766 |
150,000–300,000 | 0.999 | 0.000 | 0.908 | 0.018 | 0.594 | 1.779 |
Employment (comparison: Freelancer) | 0.324 | / | 0.866 | / | 0.913 | / |
Government agencies and institutions | 0.207 *** | 0.207 | 0.926 * | 0.000 | 1.000 | 2.619 |
State-owned enterprises | 0.447 * | 0.379 | 1.000 | 0.328 | 0.999 | 0.000 |
Private enterprise | 0.633 * | 0.530 | 0.999 | 0.000 | 0.999 | 0.000 |
Number of family cars (comparison: 2 or more) | 0.635 | / | 0.170 | / | 0.049 | / |
None | 0.496 * | 0.635 | 0.220 * | 3.010 | 0.026 | 10.110 |
1 | 0.347 | 0.555 | 0.061 | 5.211 | 0.017 | 10.267 |
Marital status (comparison: unmarried) | 0.971 | / | 0.841 | / | 0.333 | / |
Married | 0.623 * | 0.566 | 0.999 | 0.000 | 0.999 | 0.000 |
Constant | 0.999 | 3.797 × 108 | 0.998 | 4.902 × 102 | 0.998 | 1.371 × 102 |
Number of samples | 472 | 398 | 396 | |||
Log-likelihood | 236.670 | 103.525 | 87.087 | |||
Cox & Snell R2 | 0.129 | 0.125 | 0.193 | |||
Nagelkerke R2 | 0.178 | 0.265 | 0.408 |
Influence Factor | Negative Attitude | Psychological Stress | Depression | |||
---|---|---|---|---|---|---|
Sig. | Exp(B) | Sig. | Exp(B) | Sig. | Exp(B) | |
Commuting mode (comparison: Mode 4) | 0.743 | / | 0.823 | / | 0.673 | / |
Mode 1 | 0.591 * | 0.675 | 0.610 ** | 0.784 | 0.568 | 0.648 |
Mode 2 | 0.443 * | 0.607 | 0.980 | 1.011 | 0.375 * | 0.547 |
Mode 3 | 0.503 * | 0.683 | 0.611 * | 0.497 | 0.329 | 0.026 |
Air pollution level (comparison: 150 < AQI ≤ 200) | 0.877 | / | 0.512 | / | 0.802 | / |
AQI≤50 | 0.766 | 1.600 | 0.153 ** | 4.297 | 0.779 * | 1.524 |
50 < AQI ≤ 100 | 0.499 | 0.379 | 0.426 * | 2.140 | 0.534 | 2.568 |
100 < AQI ≤ 150 | 0.796 | 0.687 | 0.569 | 1.728 | 0.714 | 1.750 |
Gender (comparison: female) | 0.708 | / | 0.671 | / | 0.344 | / |
Male | 0.596 * | 0.984 | 0.393 | 0.983 | 0.651 | 0.986 |
Education background (comparison: Master’s degree or above) | 0.747 | / | 0.153 | / | 0.763 | / |
Primary school and below | 0.602 * | 2.075 | 0.051 | 6.475 | 0.998 | 1.014 × 108 |
Junior high school | 0.398 | 2.454 | 0.254 ** | 2.172 | 0.635 ** | 0.626 |
High school | 0.883 | 1.132 | 0.070 | 2.725 | 0.777 | 1.267 |
Annual household income (comparison: over 300,000 yuan) | 0.518 | / | 0.145 | / | 0.810 | / |
Below 100,000 | 0.363 | 5.294 | 0.070 | 7.503 | 0.412 | 3.924 |
100,000–150,000 | 0.967 | 1.065 | 0.166 | 4.053 | 0.306 | 4.931 |
150,000–300,000 | 0.652 | 2.086 | 0.805 | 1.293 | 0.331 | 5.047 |
Employment (comparison: Freelancer) | 0.594 | / | 0.481 | / | 0.497 | / |
Government agencies and institutions | 0.319 | 0.000 | 0.253 ** | 3.017 | 0.774 | 1.558 |
State-owned enterprises | 0.293 *** | 0.000 | 0.303 * | 1.682 | 0.482 | 3.373 |
Private enterprise | 0.237 | 0.000 | 0.616 | 1.662 | 0.610 * | 0.475 |
Number of family cars (comparison: 2 or more) | 0.369 | / | 0.646 | / | 0.491 | / |
None | 0.833 | 0.836 | 0.552 ** | 1.465 | 0.245 | 0.283 |
1 | 0.447 * | 1.850 | 0.985 | 1.011 | 0.387 * | 0.410 |
Marital status (comparison: unmarried) | 0.578 | / | 0.033 | / | 0.877 | / |
Married | 0.162 | 9.055 | 0.685 | 0.583 | 0.269 | 0.000 |
Constant | 0.999 | 0.797 × 106 | 0.712 | 0.511 × 108 | 0.999 | 1.481 × 109 |
Number of samples | 424 | 379 | 433 | |||
Log-likelihood | 127.480 | 237.325 | 125.970 | |||
Cox & snell R2 | 0.095 | 0.158 | 0.119 | |||
Nagelkerke R2 | 0.184 | 0.214 | 0.226 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, Y.; Xu, H.; Wu, H.; Lu, X.; Shen, S. The Commuting Patterns and Health Effects among Urban Residents in Low-Visibility Air Pollution Environments: An Empirical Study of Gaoyou City, China. Atmosphere 2023, 14, 1140. https://doi.org/10.3390/atmos14071140
Cao Y, Xu H, Wu H, Lu X, Shen S. The Commuting Patterns and Health Effects among Urban Residents in Low-Visibility Air Pollution Environments: An Empirical Study of Gaoyou City, China. Atmosphere. 2023; 14(7):1140. https://doi.org/10.3390/atmos14071140
Chicago/Turabian StyleCao, Yang, Hao Xu, Hao Wu, Xi Lu, and Shuwen Shen. 2023. "The Commuting Patterns and Health Effects among Urban Residents in Low-Visibility Air Pollution Environments: An Empirical Study of Gaoyou City, China" Atmosphere 14, no. 7: 1140. https://doi.org/10.3390/atmos14071140
APA StyleCao, Y., Xu, H., Wu, H., Lu, X., & Shen, S. (2023). The Commuting Patterns and Health Effects among Urban Residents in Low-Visibility Air Pollution Environments: An Empirical Study of Gaoyou City, China. Atmosphere, 14(7), 1140. https://doi.org/10.3390/atmos14071140