Can the Assimilation of the Ascending and Descending Sections’ Data from Round-Trip Drifting Soundings Improve the Forecasting of Rainstorms in Eastern China?
Abstract
:1. Introduction
2. Data and Precipitation
2.1. Observations
2.2. Real Precipitation
3. Setup of the Model and Experimental Design
4. Results
4.1. Precipitation Forecasts
4.2. Quality of the Wind Field Simulation
4.3. Analysis of the Moisture Conditions
4.4. Thermal and Dynamic Analysis
4.5. Unstable Energy
5. Conclusions and Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Huang, S.S.; Lin, Y.B.; Wei, T.J. Studies of the Changjiang-Huaihe cyclogenesis and its development and the rainstorm process and the related forecast questions. Chin. J. Atmos. Sci. 1976, 27–41. [Google Scholar] [CrossRef]
- Gao, S.T.; Zhou, Y.S.; Ran, L.K. A review on the formation mechanisms and forecast methods for torrential rain in China. Chin. J. Atmos. Sci. 2018, 42, 833–846. [Google Scholar]
- The Ministry of Water Resources of the People’s Republic of China. Available online: http://www.mwr.gov.cn/sj/tjgb/zgshzhgb/202112/t20211208_1554245.html (accessed on 22 May 2022).
- Zhang, X.L.; Tao, S.Y.; Zhang, S.L. Three Types of Heavy Rainstorms Associated with the Meiyu Front. Chin. J. Atmos. Sci. 2004, 28, 187–205. [Google Scholar]
- Xu, J.; Zhou, C.Y.; Gao, T.C. Analysis about development mechanism of Jianghuai Cyclone in Meiyu Front and Its Relationship with Rainstorm. Bull. Sci. Technol. 2013, 29, 24–29. [Google Scholar]
- Zhou, Y.S.; Li, B. Structural analyses of vortex causing torrential rain over the Changjiang-Huaihe River basin during 8 and 9 July 2003. Chin. J. Atmos. Sci. 2010, 34, 629–639. [Google Scholar]
- Li, X.R.; Zhang, X.R.; Pu, M.J. Composite analysis of the evolving of Yangtze River and Huaihe River shear line with heavy rain and without heavy rain in Meiyu period. Plateau Meteorol. 2014, 33, 199–209. [Google Scholar]
- Liu, X.; Chu, H.; Sun, J.; Zhao, W.; Meng, Q. A Numerical Simulation of the Development Process of a Mesoscale Convection Complex Causing Severe Rainstorm in the Yangtze River Delta Region behind a Northward Moving Typhoon. Atmosphere 2022, 13, 473. [Google Scholar] [CrossRef]
- Zhang, X.H.; Luo, J.; Chen, X.; Jin, L.L.; Qiu, X.M. Formation and Development Mechanism of One Cyclone over Changjiang-Huaihe River Basin and Diagnostic Analysis of Rainstorm. Meteorol. Mon. 2016, 42, 716–723. [Google Scholar]
- Ma, X.L.; Sun, L.N.; Jiang, S.; Yu, Y.M.; Guan, Y.H. Characteristics of moist available energy and its budget in a heavy rain process over Changjiang-Huaihe River basin. Trans. Atmos. Sci. 2015, 38, 289–298. [Google Scholar]
- Yang, X.M.; Ma, M.J.; Zhu, A.B. Cause Analysis on a Heavy Rainfall over the Yangtze—Huaihe Area in July 2013. J. Arid. Meteorol. 2016, 34, 700–709. [Google Scholar]
- Shou, S.W. Progress of synoptic studies for heavy rain in China. Torrential Rain Disasters 2019, 38, 450–463. [Google Scholar]
- Qi, L.B.; Wu, J.J.; Shi, C.H. Rethink on forecast focus of a torrential rainfall event at Jianghuai region. Torrential Rain Disasters 2020, 39, 647–657. [Google Scholar]
- Bouttier, F.; Courtier, P. Data Assimilation Concepts and Methods; ECMWF Meteorological Training Course Letter; ECMWF: Reading, UK, 1999.
- Zhang, X.Z.; Chen, J.M.; Zhao, P. Impacts of Doppler Radar Data Assimilation on the Simulation of Severe Heavy Rainfall Events. J. Appl. Meteorol. Sci. 2015, 26, 555–566. [Google Scholar]
- Zhang, T.; Bao, Y.S.; Lu, Q.F. The Iasi Date Assimilating Experiments on the Heavy Rain over the Yangtze River Basin. Sci. Technol. Eng. 2016, 16, 9–16. [Google Scholar]
- Durre, I.; Yin, X.G. Enhanced radiosonde data for studies of vertical structure. Bull. Am. Meteorol. Soc. 2008, 89, 1257–1262. [Google Scholar] [CrossRef]
- Faccani, C.; Rabier, F.; Fourrié, N.; Agusti-Panareda, A.; Karbou, F.; Moll, P.; Lafore, J.-P.; Nuret, M.; Hdidou, F.; Bock, O. The Impacts of AMMA Radiosonde Data on the French Global Assimilation and Forecast System. Weather Forecast. 2009, 24, 1268–1286. [Google Scholar] [CrossRef]
- Hattori, M.; Matsumoto, J.; Ogino, S.-Y.; Enomoto, T.; Miyoshi, T. The Impact of Additional Radiosonde Observations on the Analysis of Disturbances in the South China Sea during VPREX2010. SOLA 2016, 12, 75–79. [Google Scholar] [CrossRef] [Green Version]
- Naakka, T.; Nygård, T.; Tjernström, M.; Vihma, T.; Pirazzini, R.; Brooks, I.M. The Impact of Radiosounding Observations on Numerical Weather Prediction Analyses in the Arctic. Geophys. Res. Lett. 2019, 46, 8527–8535. [Google Scholar] [CrossRef] [Green Version]
- Hou, T.J.; Kong, F.Y.; Chen, X.L.; Lei, H.C. Impact of 3DVAR data assimilation on the prediction of heavy rainfall over Southern China. Adv. Meteorol. 2013, 2013, 129642. [Google Scholar] [CrossRef] [Green Version]
- Mo, Y.; Pan, X.B.; Zang, Z.L.; Zhang, B. Numerical experimental study on the impact of data assimilation on a rainstorm in South China. Rainstorm Disaster 2008, 27, 289. [Google Scholar]
- Bao, X.H.; Yang, S.N. Experimental study on deterministic prediction of a rainstorm process in southern China by WRF-ENKF system. Meteorol. Mon. 2015, 41, 566–576. [Google Scholar]
- Meng, X.W. Numerical Simulation of a Heavy Rainstorm Process in Chongqing Area by Assimilation of Conventional Sounding Data. Master’s Thesis, Lanzhou University, Lanzhou, China, 2018. [Google Scholar]
- Choi, Y.; Ha, J.C.; Lim, G.H. Investigation of the Effects of Considering Balloon Drift Information on Radiosonde Data Assimilation Using the Four-Dimensional Variational Method. Weather Forecast. 2015, 30, 809–826. [Google Scholar] [CrossRef]
- Wei, L.; Lei, H.C. Improvement of precipitation forecasts by the assimilation of intensive radiosonde data. Clim. Environ. Res. 2012, 17, 809–820. [Google Scholar]
- Xu, T.; Wang, X.F.; Zhang, L.; Yang, Y.H.; Li, J. The application test of intensive radiosonde observations in the East China regional numerical model system. Rainstorm Disaster 2016, 35, 306–314. [Google Scholar]
- Wang, D.; Xu, Z.F.; Wang, R.W.; Zhang, L.H. Study on the influence of intensive sounding on regional numerical prediction system at 14:00. Plateau Meteorol. 2019, 38, 872–886. [Google Scholar]
- Cao, X.Z.; Xia, Y.C.; Luo, H.W.; Liu, L.H.; Liu, Y.F.; Liu, Z.Y.; Li, X.; Guo, R.; Guo, Q.Y. Technical development and prospect of meteorological sounding observation. Adv. Meteorol. Sci. Technol. 2022, 12, 27–36. [Google Scholar]
- Cao, X.Z.; Guo, Q.Y.; Yang, R.K. Research on upper and lower secondary sounding based on long time horizontal drift interval. Chin. J. Sci. Instrum. 2019, 40, 198–204. [Google Scholar]
- Qian, Y. Research on Quality Control and Evaluation of Round-Trip Flat-Drift Sounding Data. Master’s Thesis, Nanjing University of Information Science and Technology, Nanjing, China, 2019. [Google Scholar]
- Wang, D.; Wang, J.C.; Tian, W.H.; Guo, Q.Y. Quality Control and Uncertainty Analysis of Return Radiosonde Data. Chin. J. Atmos. Sci. 2020, 44, 865–884. [Google Scholar]
- Rong, N.; Yang, S.P.; Wang, J.C.; Wang, D. The Evaluation of Return Radiosonde Temperature using GNSS Radio Occultation Retrievaled Temperature. Plateau Meteorol. 2023, 42, 221–232. [Google Scholar]
- Wang, J.C.; Wang, D.; Yang, R.K.; Cao, X.Z.; Guo, Q.Y. A Return Radiosonde Trajectory Forecast Method and Its Preliminary Evaluation Based on High Resolution Numerical Weather Prediction Model. Chin. J. Atmos. Sci. 2021, 45, 651–663. [Google Scholar]
- Yang, C.Y.; Guo, Q.Y.; Cao, X.Z.; Zhang, W. Analysis of gravity wave characteristics in the lower stratosphere based on new round-trip radiosonde. Acta Meteorol. Sin. 2021, 79, 150–167. [Google Scholar]
- Zhang, X.; Wang, Q.P.; Ma, X.L.; Zhang, X.P.; Cheng, W.; Xia, Y.C. Study of the Forecast Sensitivity to New Round-trip Drifting Sounding Observation in the Middle and Lower Reaches of the Yangtze River. Chin. J. Atmos. Sci. 2023. [Google Scholar] [CrossRef]
- Zhang, X.P.; Guo, Q.Y.; Yang, R.K.; Ma, X.L.; Cao, X.Z. Assimilation experiment of rainstorm in the middle and lower reaches of the Yangtze River based on “up-drift-down” sounding data. Meteorol. Mon. 2021, 47, 1512–1524. [Google Scholar]
- Pan, Y.; Shen, Y.; Yu, J.J.; Xiong, A.Y. An experiment of high-resolution gauge-radar-satellite combined precipitation retrieval based on the Bayesian merging method. Acta Meteorol. Sin. 2015, 73, 177–186. [Google Scholar]
- Skamarock, W.C.; Klemp, J.B.; Dudhia, J.; Gill, D.O.; Barker, D.; Duda, M.G.; Huang, X.Y.; Wang, W.; Powers, J.G. A Description of the Advanced Research WRF Version 3; Ncar Technical Note, NCAR/TN-475 + STR; University Corporation for Atmospheric Research: Boulder, CO, USA, 2008. [Google Scholar]
- Zhang, F.M.; Wang, C.H. Experiments on the improvement of near-surface wind speed forecasting by assimilating conventional observations with WRF-3DVAR. Highl. Meteorol. 2014, 33, 675–685. [Google Scholar] [CrossRef]
- Kan, Y.; Liu, C.S.; Qiao, F.X.; Liu, Y.N.; Gao, W.; Sun, Z.B. Effects of Microphysics Parameterization Schemes on the Simulation of a Heavy Rainfall Event in Shanghai. In Proceedings of the SPIE Optical Engineering + Applications, San Diego, CA, USA, 28 August–1 September 2016 ; International Society for Optics and Photonics: Bellingham, WA, USA, 2016. [Google Scholar]
- Zhu, G.L.; Lin, W.T.; Cao, Y.H. Numerical simulation of a rainstorm event over southern China by using various cloud microphysics parameterization schemes in the WRF model and its performance analysis. Chin. J. Atmos. Sci. 2014, 38, 513–523. [Google Scholar]
- Meng, Z.H. Study on Sensitivity of Physical Disturbance Parameters in High Resolution Numerical Model. Master’s Thesis, Nanjing University of Information Science and Technology, Nanjing, China, 2020. [Google Scholar]
- Mlawer, E.J.; Taubman, S.J.; Brown, P.D.; Iacono, M.J.; Clough, S.A. Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res. Atmos. 1997, 102, 16663–16682. [Google Scholar] [CrossRef] [Green Version]
- Dudhia, J. Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J. Atmos. Sci. 1989, 46, 3077–3107. [Google Scholar] [CrossRef]
- Hong, S.-Y.; Noh, Y.; Dudhia, J. A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Weather Rev. 2006, 134, 2318–2341. [Google Scholar] [CrossRef] [Green Version]
- Paulson, C.A. The mathematical representation of wind speed and temperature profiles in the unstable atmospheric surface layer. J. Appl. Meteorol. 1970, 9, 857–861. [Google Scholar] [CrossRef]
- Grell, G.A.; Freitas, S.R. A scale and aerosol aware stochastic convective parameterization for weather and air quality modeling. Atmos. Chem. Phys. 2014, 14, 5233–5250. [Google Scholar] [CrossRef] [Green Version]
- Xue, L.L.; Fan, J.W.; Lebo, Z.J.; Wu, W.; Morrison, H.; Grabowski, W.W.; Chu, X.; Geresdi, I.; North, K.; Stenz, R.; et al. Idealized Simulations of a Squall Line from the MC3E Field Campaign Applying Three Bin Microphysics Schemes: Dynamic and Thermodynamic Structure. Mon. Weather Rev. 2017, 145, 4789–4812. [Google Scholar] [CrossRef]
- Gao, Y.Q.; Sun, L.; Ma, X.L.; Meng, Z.H.; Cheng, K.Q. The sensitivity of the structure and strength of squall line to low-level humidity and environmental vertical wind shear. Trans. Atmos. Sci. 2022, 45, 938–947. (In Chinese) [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Sun, L.; Ma, X.; Guo, H.; Gong, Z.; Yan, X. Can the Assimilation of the Ascending and Descending Sections’ Data from Round-Trip Drifting Soundings Improve the Forecasting of Rainstorms in Eastern China? Atmosphere 2023, 14, 1127. https://doi.org/10.3390/atmos14071127
Zhang X, Sun L, Ma X, Guo H, Gong Z, Yan X. Can the Assimilation of the Ascending and Descending Sections’ Data from Round-Trip Drifting Soundings Improve the Forecasting of Rainstorms in Eastern China? Atmosphere. 2023; 14(7):1127. https://doi.org/10.3390/atmos14071127
Chicago/Turabian StyleZhang, Xupeng, Lu Sun, Xulin Ma, Huan Guo, Zerui Gong, and Xiaohan Yan. 2023. "Can the Assimilation of the Ascending and Descending Sections’ Data from Round-Trip Drifting Soundings Improve the Forecasting of Rainstorms in Eastern China?" Atmosphere 14, no. 7: 1127. https://doi.org/10.3390/atmos14071127
APA StyleZhang, X., Sun, L., Ma, X., Guo, H., Gong, Z., & Yan, X. (2023). Can the Assimilation of the Ascending and Descending Sections’ Data from Round-Trip Drifting Soundings Improve the Forecasting of Rainstorms in Eastern China? Atmosphere, 14(7), 1127. https://doi.org/10.3390/atmos14071127