Climate Change Flood Risk Analysis: Application of Dynamical Downscaling and Hydrological Modeling
Abstract
1. Introduction
2. Methodology
2.1. Study Area
2.2. Rainfall Data and Climate Simulation Model
3. Results
3.1. Catchment Land Use and Occupation
3.2. Frequency Analysis
3.3. HEC-HMS Simulation
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Merz, B.; Blöschl, G.; Vorogushyn, S.; Dottori, F.; Aerts, J.C.J.H.; Bates, P.; Bertola, M.; Kemter, M.; Kreibich, H.; Lall, U.; et al. Causes, Impacts and Patterns of Disastrous River Floods. Nat. Rev. Earth Environ. 2021, 2, 592–609. [Google Scholar] [CrossRef]
- Billi, P.; Alemu, Y.T.; Ciampalini, R. Increased Frequency of Flash Floods in Dire Dawa, Ethiopia: Change in Rainfall Intensity or Human Impact? Nat. Hazards 2015. [Google Scholar] [CrossRef]
- Acosta-Coll, M.; Ballester-Merelo, F.; Martinez-Peiró, M.; De la Hoz-Franco, E. Real-Time Early Warning System Design for Pluvial Flash Floods—A Review. Sensors 2018, 18, 2255. [Google Scholar] [CrossRef]
- Tien Bui, D.; Hoang, N.D.; Martínez-Álvarez, F.; Ngo, P.T.T.; Hoa, P.V.; Pham, T.D.; Samui, P.; Costache, R. A Novel Deep Learning Neural Network Approach for Predicting Flash Flood Susceptibility: A Case Study at a High Frequency Tropical Storm Area. Sci. Total Environ. 2020, 701, 134413. [Google Scholar] [CrossRef] [PubMed]
- Le Lay, M.; Saulnier, G.M. Exploring the Signature of Climate and Landscape Spatial Variabilities in Flash Flood Events: Case of the 8–9 September 2002 Cévennes-Vivarais Catastrophic Event. Geophys. Res. Lett. 2007, 34, 1–5. [Google Scholar] [CrossRef]
- Chancibault, K.; Anquetin, S.; Ducrocq, V.; Saulnier, G.M. Hydrological Evaluation of High-Resolution Precipitation Forecasts of the Gard Flash-Flood Events (8–9 September 2002). Q. J. R. Meteorol. Soc. 2006, 132, 1091–1117. [Google Scholar] [CrossRef]
- Berne, A.; Delrieu, G.; Boudevillain, B. Variability of the Spatial Structure of Intense Mediterranean Precipitation. Adv. Water Resour. 2009, 32, 1031–1042. [Google Scholar] [CrossRef]
- Ambrizzi, T.; Reboita, M.S.; da Rocha, R.P.; Llopart, M. The State of the Art and Fundamental Aspects of Regional Climate Modeling in South America. Ann. N. Y. Acad. Sci. 2019, 1436, 98–120. [Google Scholar] [CrossRef]
- Giorgi, F. Thirty Years of Regional Climate Modeling: Where Are We and Where Are We Going Next? J. Geophys. Res. Atmos. 2019, 124, 5696–5723. [Google Scholar] [CrossRef]
- Althoff, D.; Rodrigues, L.N.; da Silva, D.D. Impacts of Climate Change on the Evaporation and Availability of Water in Small Reservoirs in the Brazilian Savannah. Clim. Chang. 2020, 159, 215–232. [Google Scholar] [CrossRef]
- Brêda, J.P.L.F.; de Paiva, R.C.D.; Chou, S.C.; Collischonn, W. Assessing Extreme Precipitation from a Regional Climate Model in Different Spatial–Temporal Scales: A Hydrological Perspective in South America. Int. J. Climatol. 2022, 2021, 1–24. [Google Scholar] [CrossRef]
- Michelan, M.G.; Menegaz, M.N.; Gonçalves, F.A.; Henrique, P.; Menezes, B.J.; de Oliveira Tiezzi, R. Estimating the Impact of Climate Change on Water Levels in a Data-Poor River Basin in Southeastern Brazil. Water Policy 2021, 23, 1284–1302. [Google Scholar] [CrossRef]
- Santos, C.A.S.; Rocha, F.A.; Ramos, T.B.; Alves, L.M.; Mateus, M.; de Oliveira, R.P.; Neves, R. Using a Hydrologic Model to Assess the Performance of Regional Climate Models in a Semi-Arid Watershed in Brazil. Water 2019, 11, 170. [Google Scholar] [CrossRef]
- Chou, S.C.; Lyra, A.; Mourão, C.; Dereczynski, C.; Pilotto, I.; Gomes, J.; Bustamante, J.; Tavares, P.; Silva, A.; Rodrigues, D.; et al. Assessment of Climate Change over South America under RCP 4.5 and 8.5 Downscaling Scenarios. Am. J. Clim. Chang. 2014, 3, 512–527. [Google Scholar] [CrossRef]
- de Oliveira, V.A.; de Mello, C.R.; Beskow, S.; Viola, M.R.; Srinivasan, R. Modeling the Effects of Climate Change on Hydrology and Sediment Load in a Headwater Basin in the Brazilian Cerrado Biome. Ecol. Eng. 2019, 133, 20–31. [Google Scholar] [CrossRef]
- Andrade, C.W.L.; Montenegro, S.M.G.L.; Montenegro, A.A.A.; Lima, J.R.d.S.; Srinivasan, R.; Jones, C.A. Climate Change Impact Assessment on Water Resources under RCP Scenarios: A Case Study in Mundaú River Basin, Northeastern Brazil. Int. J. Climatol. 2021, 41, E1045–E1061. [Google Scholar] [CrossRef]
- Chou, S.C.; Lyra, A.; Mourão, C.; Dereczynski, C.; Pilotto, I.; Gomes, J.; Bustamante, J.; Tavares, P.; Silva, A.; Rodrigues, D.; et al. Evaluation of the Eta Simulations Nested in Three Global Climate Models. Am. J. Clim. Chang. 2014, 3, 438–454. [Google Scholar] [CrossRef]
- Lyra, A.; Tavares, P.; Chou, S.C.; Sueiro, G.; Dereczynski, C.; Sondermann, M.; Silva, A.; Marengo, J.; Giarolla, A. Climate Change Projections over Three Metropolitan Regions in Southeast Brazil Using the Non-Hydrostatic Eta Regional Climate Model at 5-Km Resolution. Theor. Appl. Climatol. 2018, 132, 663–682. [Google Scholar] [CrossRef]
- Almagro, A.; Oliveira, P.T.S.; Rosolem, R.; Hagemann, S.; Nobre, C.A. Performance Evaluation of Eta/HadGEM2-ES and Eta/MIROC5 Precipitation Simulations over Brazil. Atmos. Res. 2020, 244, 105053. [Google Scholar] [CrossRef]
- Alvarenga, L.A.; de Mello, C.R.; Colombo, A.; Chou, S.C.; Cuartas, L.A.; Viola, M.R. Impacts of Climate Change on the Hydrology of a Small Brazilian Headwater Catchment Using the Distributed Hydrology-Soil-Vegetation Model. Am. J. Clim. Chang. 2018, 7, 355–366. [Google Scholar] [CrossRef]
- Bai, Y.; Zhang, Z.; Zhao, W. Assessing the Impact of Climate Change on Flood Events Using HEC-HMS and CMIP5. Water Air Soil Pollut. 2019, 230, 1–13. [Google Scholar] [CrossRef]
- Danielson, S.L.; Hill, D.F.; Hedstrom, K.S.; Beamer, J.; Curchitser, E. Demonstrating a High-Resolution Gulf of Alaska Ocean Circulation Model Forced Across the Coastal Interface by High-Resolution Terrestrial Hydrological Models. J. Geophys. Res. Oceans 2020, 125, 1–20. [Google Scholar] [CrossRef]
- Vezzoli, R.; Mercogliano, P.; Pecora, S.; Zollo, A.L.; Cacciamani, C. Hydrological Simulation of Po River (North Italy) Discharge under Climate Change Scenarios Using the RCM COSMO-CLM. Sci. Total Environ. 2015, 521–522, 346–358. [Google Scholar] [CrossRef]
- Peres, D.J.; Modica, R.; Cancelliere, A. Assessing Future Impacts of Climate Change on Water Supply System Performance: Application to the Pozzillo Reservoir in Sicily, Italy. Water 2019, 11, 2531. [Google Scholar] [CrossRef]
- Seneviratne, S.I.; Zhang, X.; Adnan, M.; Badi, W.; Dereczynski, C.; Di Luca, A.; Ghosh, S.; Iskandar, I.; Kossin, J.; Lewis, S.; et al. Weather and Climate Extreme Events in a Changing Climate. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2021. [Google Scholar] [CrossRef]
- Maraun, D.; Wetterhall, F.; Ireson, A.M.; Chandler, R.E.; Kendon, E.J.; Widmann, M.; Brienen, S.; Rust, H.W.; Sauter, T.; Themel, M.; et al. Precipitation Downscaling under Climate Change: Recent Developments to Bridge the Gap between Dynamical Models and the End User. Rev. Geophys. 2010, 48, 1–34. [Google Scholar] [CrossRef]
- Brighenti, T.M.; Gassman, P.W.; Gutowski, W.J.; Thompson, J.R. Assessing the Influence of a Bias Correction Method on Future Climate Scenarios Using SWAT as an Impact Model Indicator. Water 2023, 15, 750. [Google Scholar] [CrossRef]
- Cardell, M.F.; Amengual, A.; Romero, R.; Ramis, C. Future Extremes of Temperature and Precipitation in Europe Derived from a Combination of Dynamical and Statistical Approaches. Int. J. Climatol. 2020, 40, 4800–4827. [Google Scholar] [CrossRef]
- Li, J.; Yu, R.; Yuan, W.; Chen, H. Changes in Duration-Related Characteristics of Late-Summer Precipitation over Eastern China in the Past 40 Years. J. Clim. 2011, 24, 5683–5690. [Google Scholar] [CrossRef]
- Lupikasza, E. Spatial and Temporal Variability of Extreme Precipitation in Poland in the Period 1951-2006. Int. J. Climatol. 2010, 30, 991–1007. [Google Scholar] [CrossRef]
- Zhang, X.; Zwiers, F.W.; Li, G.; Wan, H.; Cannon, A.J. Complexity in Estimating Past and Future Extreme Short-Duration Rainfall. Nat. Geosci. 2017, 10, 255–259. [Google Scholar] [CrossRef]
- Pierce, D.W.; Barnett, T.P.; Santer, B.D.; Gleckler, P.J.; Designed, P.J.G.; Performed, T.P.B. Selecting Global Climate Models for Regional Climate Change Studies. Proc. Natl. Acad. Sci. USA 2009, 106, 8441–8446. [Google Scholar] [CrossRef] [PubMed]
- Jahangir, M.H.; Haghighi, P.; Danehkar, S. Downscaling Climate Parameters in Fars Province, Using Models of the Fifth Report and RCP Scenarios. Ecol. Inform. 2022, 68, 101558. [Google Scholar] [CrossRef]
- Dereczynski, C.; Chan Chou, S.; Lyra, A.; Sondermann, M.; Regoto, P.; Tavares, P.; Chagas, D.; Gomes, J.L.; Rodrigues, D.C.; de los Milagros Skansi, M. Downscaling of Climate Extremes over South America—Part I: Model Evaluation in the Reference Climate. Weather Clim. Extremes 2020, 29, 100273. [Google Scholar] [CrossRef]
Year | 2005 | 2016 | 2019 |
---|---|---|---|
Type | Area (km2) | Area (km2) | Area (km2) |
Water | 0.01 | 0.01 | 0.01 |
Industrial | 0.21 | 0.25 | 0.25 |
Buildings | 6.06 | 6.12 | 6.12 |
Pasture | 8.47 | 8.55 | 7.83 |
Expose Soil | 0.54 | 0.51 | 1.23 |
Vegetation | 11.25 | 11.10 | 11.10 |
Total | 26.54 | 26.54 | 26.54 |
Observed Data (1979–2018) | Eta/HadGEM2-ES Present (1979–2018) | Eta/HadGEM2-ES Future (2019–2048) | Flow Bias Percentage à Percent Difference in Flow | Rainfall Bias Percentage à Percent Difference in Rainfall | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Combination | Division | Peak Flow (m3/s) | Rainfall (mm) | Peak Flow (m3/s) | Rainfall (mm) | Peak Flow (m3/s) | Rainfall (mm) | Present Model–Observed | Future–Present | Present Model–Observed | Future–Present |
TR05 | Spring | 84.5 | 84.07 | 65.7 | 71.87 | 48.6 | 59.67 | −22.25% | −26.03% | −14.51% | −16.98% |
Medium | 119.2 | 84.07 | 93.1 | 71.87 | 69.1 | 59.67 | −21.90% | −25.78% | −14.51% | −16.98% | |
Low | 138.3 | 84.07 | 106.9 | 71.87 | 78.4 | 59.67 | −22.70% | −26.66% | −14.51% | −16.98% | |
TR05 S | Spring | 84.5 | 84.07 | 65.7 | 71.87 | 48.6 | 59.67 | −22.25% | −26.03% | −14.51% | −16.98% |
Medium | 82.1 | - | 63.9 | - | 47.3 | - | −22.17% | −25.98% | - | - | |
Low | 82.1 | - | 63.9 | - | 47.3 | - | −22.17% | −25.98% | - | - | |
TR05 M | Spring | - | - | - | - | - | - | - | - | - | - |
Medium | 95.6 | 84.07 | 74.2 | 71.87 | 54.7 | 59.67 | −22.38% | −26.28% | −14.51% | −16.98% | |
Low | 95.6 | - | 74.2 | - | 54.7 | - | −22.38% | −26.28% | - | - | |
TR05 L | Spring | - | - | - | - | - | - | - | - | - | - |
Medium | - | - | - | - | - | - | - | - | - | - | |
Low | 55.6 | 84.07 | 39.5 | 71.87 | 25.9 | 59.67 | −28.96% | −34.43% | −14.51% | −16.98% | |
TR05 SM | Spring | 84.5 | 84.07 | 65.7 | 71.87 | 48.6 | 59.67 | −22.25% | −26.03% | −14.51% | −16.98% |
Medium | 119.2 | 84.07 | 93.1 | 71.87 | 69.1 | 59.67 | −21.90% | −25.78% | −14.51% | −16.98% | |
Low | 119.2 | 0.0 | 93.1 | 0.0 | 69.1 | 0.0 | −21.90% | −25.78% | - | - | |
TR05 SL | Spring | 84.5 | 84.07 | 65.7 | 71.87 | 48.6 | 59.67 | −22.25% | −26.03% | −14.51% | −16.98% |
Medium | 82.1 | - | 63.9 | - | 47.3 | - | −22.17% | −25.98% | - | - | |
Low | 97.3 | 84.07 | 75.3 | 71.87 | 55.2 | 59.67 | −22.61% | −26.69% | −14.51% | −16.98% | |
TR05 ML | Spring | - | - | - | - | - | - | - | - | - | - |
Medium | 95.6 | 84.07 | 74.2 | 71.87 | 54.7 | 59.67 | −22.38% | −26.28% | −14.51% | −16.98% | |
Low | 124.8 | 84.07 | 95.7 | 71.87 | 69.2 | 59.67 | −23.32% | −27.69% | −14.51% | −16.98% |
Data Source | Accumulated 06 h Rainfall (mm) | |||||||
---|---|---|---|---|---|---|---|---|
TR 05 | TR 10 | TR 15 | TR 20 | TR 25 | TR 30 | TR 50 | TR 100 | |
Observed (1979–2018) | 84.07 | 95.92 | 102.60 | 107.26 | 110.85 | 113.77 | 121.88 | 132.63 |
Present climate (1979–2018) | 71.87 | 78.81 | 81.89 | 83.76 | 85.05 | 86.02 | 88.36 | 90.63 |
Future climate (2019–2048) | 59.67 | 69.83 | 75.78 | 80.00 | 83.27 | 85.94 | 93.43 | 103.60 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lima, F.N.; Freitas, A.C.V.; Silva, J. Climate Change Flood Risk Analysis: Application of Dynamical Downscaling and Hydrological Modeling. Atmosphere 2023, 14, 1069. https://doi.org/10.3390/atmos14071069
Lima FN, Freitas ACV, Silva J. Climate Change Flood Risk Analysis: Application of Dynamical Downscaling and Hydrological Modeling. Atmosphere. 2023; 14(7):1069. https://doi.org/10.3390/atmos14071069
Chicago/Turabian StyleLima, Fernando Neves, Ana Carolina Vasques Freitas, and Josiano Silva. 2023. "Climate Change Flood Risk Analysis: Application of Dynamical Downscaling and Hydrological Modeling" Atmosphere 14, no. 7: 1069. https://doi.org/10.3390/atmos14071069
APA StyleLima, F. N., Freitas, A. C. V., & Silva, J. (2023). Climate Change Flood Risk Analysis: Application of Dynamical Downscaling and Hydrological Modeling. Atmosphere, 14(7), 1069. https://doi.org/10.3390/atmos14071069