Interannual Variation in Earth’s Rotation Rate and Its Role as a Climate Change Indicator
Abstract
:1. Introduction
2. Data and Methods
2.1. Datasets
2.2. Data Processing
3. Results
3.1. Surface Fluid Contributions to ΔLOD
3.2. The Latest Triple-Dip La Niña Event Detected during 2020–2022
3.3. The Follow-Up El Niño Event Indicated over 2023
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Eubanks, T.M.; Smith, D.E.; Turcotte, D.L. Variations in the orientation of the Earth. Geodyn. Ser. 1993, 24, 1–54. [Google Scholar] [CrossRef]
- Gambis, D. Monitoring Earth Orientation using space-geodetic techniques: State-of-the-art and prospective. J. Geod. 2004, 78, 295–303. [Google Scholar] [CrossRef]
- Ratcliff, J.; Gross, R. Combinations of Earth Orientation Measurements: SPACE2018, COMB2018, and POLE2018; Jet Propulsion Laboratory, National Aeronautics and Space Administration: Pasadena, CA, USA, 2019. [Google Scholar]
- Zotov, L.; Bizouard, C.; Sidorenkov, N.; Ustinov, A.; Ershova, T. Multidecadal and 6-year variations of LOD. J. Phys. Conf. Ser. 2020, 1705, 012002. [Google Scholar] [CrossRef]
- Chen, J.L.; Wilson, C.R.; Kuang, W.J.; Chao, B.F. Interannual oscillations in Earth rotation. J. Geophys. Res. Solid Earth 2019, 124, 13404–13414. [Google Scholar] [CrossRef]
- Fang, S.W.; Yu, J.Y. A Control of ENSO Transition Complexity by Tropical Pacific Mean SSTs through Tropical Interaction. Geophys. Res. Lett. 2020, 47, e2020GL087933. [Google Scholar] [CrossRef]
- Timmermann, A.; An, S.I.; Kug, J.S.; Jin, F.F.; Cai, W.; Capotondi, A.; Cobb, K.M.; Lengaigne, M.; McPhaden, M.J.; Stuecker, M.F.; et al. El Niño–Southern Oscillation complexity. Nature 2019, 567, E3. [Google Scholar] [CrossRef] [Green Version]
- Haddad, M.; Bonaduce, A. Interannual variations in length of day with respect to El Niño- Southern Oscillation’s impact (1962-2015). Arab. J. Geosci. 2017, 10, 255. [Google Scholar] [CrossRef]
- Viron, O.D.; Dickey, J.O. The two types of El-Niño and their impacts on the length of day. J. Oceanogr. 2014, 41, 3407–3412. [Google Scholar] [CrossRef] [Green Version]
- Dickey, J.O.; Marcus, S.L.; Chin, T.M. Thermal wind forcing and atmospheric angular momentum: Origin of the Earth’s delayed response to ENSO. Geophys. Res. Lett. 2007, 34, 17803. [Google Scholar] [CrossRef]
- David, A.S. Monitoring atmospheric winds and pressures for Earth orientation studies. Adv. Space Res. 1993, 13, 175–184. [Google Scholar]
- Xu, X.Q.; Zhou, Y.H.; Duan, P.S.; Fang, M.; Kong, Z.Y.; Xu, C.C.; An, X.R. Contributions of oceanic and continental AAM to interannual variation in ΔLOD with the detection of 2020-2021 La Niña event. J. Geod. 2022, 96, 43. [Google Scholar] [CrossRef]
- Hsu, C.C.; Duan, P.S.; Xu, X.Q.; Zhou, Y.H.; Huang, C.L. A new ~7 year periodic signal in length of day from a FDSR method. J. Geod. 2021, 95, 55. [Google Scholar] [CrossRef]
- Ding, H.; An, Y.; Shen, W. New evidence for the fluctuation characteristics of intradecadal periodic signals in length-of-day variation. J. Geophys. Res. Solid Earth 2021, 126, e2020JB020990. [Google Scholar] [CrossRef]
- Duan, P.S.; Liu, G.Y.; Hu, X.G.; Zhao, J.; Huang, C.L. Mechanism of the interannual oscillation in length of day and its constraint on the electromagnetic coupling at the core-mantle boundary. Earth Planet Sci. Lett. 2018, 482, 245–252. [Google Scholar] [CrossRef]
- Lambert, S.B.; Marcus, S.L.; Viron, O.D. Atmospheric torques and Earth’s rotation: What drove the millisecond-level length-of-day response to the 2015-2016 El Niño? Earth Syst. Dyn. Discuss. 2017, 8, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Xu, X.Q.; Zhou, Y.H.; Xu, C.C. Earth rotation parameters prediction and climate change indicators in it. Artificial Satellites. J. Planet. Geod. 2023, 57, 262–273. [Google Scholar] [CrossRef]
- Dill, R.; Dobslaw, H.; Thomas, M. Improved 90-day earth orientation predictions from angular momentum forecasts of atmosphere, ocean, and terrestrial hydrosphere. J. Geod. 2019, 93, 287–295. [Google Scholar] [CrossRef] [Green Version]
- Dobslaw, H.; Dill, R. Predicting Earth Orientation Changes from Global Forecasts of Atmosphere-Hydrosphere Dynamics. Adv. Space Res. 2018, 61, 1047–1054. [Google Scholar] [CrossRef] [Green Version]
- Zotov, L.; Bizouard, C.; Shum, C.K.; Zhang, C.Y.; Sidorenkov, N.; Yushkin, V. Analysis of Earth’s polar motion and length of day trends in comparison with estimates using second degree stokes coefficients from satellite gravimetry. Adv. Space Res. 2022, 69, 308–318. [Google Scholar] [CrossRef]
- Feng, L.C.; Zhang, R.H.; Yu, B.; Han, X. Roles of wind stress and subsurface cold water in the second-year cooling of the 2017/18 La Niña event. Adv. Atmos. Sci. 2020, 37, 847–860. [Google Scholar] [CrossRef]
- Song, X.; Zhang, R.; Rong, X. Influence of Intraseasonal Oscillation on the Asymmetric Decays of El Niño and La Niña. Adv. Atmos. Sci. 2019, 36, 779–792. [Google Scholar] [CrossRef]
- Kalarus, M.; Schuh, H.; Kosek, W.; Akyilmaz, O.; Bizouard, C.; Gambis, D.; Gross, R.; Jovanović, B.; Kumakshev, S.; Kutterer, H.; et al. Achievements of the Earth orientation parameters prediction comparison campaign. J. Geod. 2010, 84, 587–596. [Google Scholar] [CrossRef]
Initial ΔLOD | Climate-Related ΔLOD | Interannual AAM | ONI | |
---|---|---|---|---|
Initial ΔLOD | 1.00 | 0.14 | 0.13 | 0.12 |
Climate-related ΔLOD | 0.14 | 1.00 | 0.76 | 0.61 |
AAM | OAM | HAM | AOAM | AHAM | AOHAM | |
---|---|---|---|---|---|---|
Climate-related ΔLOD | 0.76 | 0.12 | 0.32 | 0.76 | 0.80 | 0.80 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, X.-Q.; Zhou, Y.-H.; Xu, C.-C. Interannual Variation in Earth’s Rotation Rate and Its Role as a Climate Change Indicator. Atmosphere 2023, 14, 982. https://doi.org/10.3390/atmos14060982
Xu X-Q, Zhou Y-H, Xu C-C. Interannual Variation in Earth’s Rotation Rate and Its Role as a Climate Change Indicator. Atmosphere. 2023; 14(6):982. https://doi.org/10.3390/atmos14060982
Chicago/Turabian StyleXu, Xue-Qing, Yong-Hong Zhou, and Can-Can Xu. 2023. "Interannual Variation in Earth’s Rotation Rate and Its Role as a Climate Change Indicator" Atmosphere 14, no. 6: 982. https://doi.org/10.3390/atmos14060982
APA StyleXu, X. -Q., Zhou, Y. -H., & Xu, C. -C. (2023). Interannual Variation in Earth’s Rotation Rate and Its Role as a Climate Change Indicator. Atmosphere, 14(6), 982. https://doi.org/10.3390/atmos14060982