Remote Polar Boundary Layer Wind Profiling Using an All-Fiber Pulsed Coherent Doppler Lidar at Zhongshan Station, Antarctica
Abstract
:1. Introduction
2. Observation Campaign and Instrument
2.1. Observation Campaign at Zhongshan Station
2.2. Lidar System Setup
2.3. Other Wind Sensors at Zhongshan Station
3. Methodology
4. Results and Discussion
4.1. Vertical Comparison of PCDL with Radiosonde
4.2. Long-Term Comparison of PCDL with Anemometer
4.3. Sample of Continuous Wind Profile Measurements at Zhongshan Station
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Genthon, C.; Six, D.; Gallée, H.; Grigioni, P.; Pellegrini, A. Two years of atmospheric boundary layer observations on a 45-m tower at Dome C on the Antarctic plateau. J. Geophys. Res. Atmos. 2013, 118, 3218–3232. [Google Scholar] [CrossRef]
- Alexander Haumann, F.; Gruber, N.; Münnich, M.; Frenger, I.; Kern, S. Sea-ice transport driving Southern Ocean salinity and its recent trends. Nature 2016, 537, 89–92. [Google Scholar] [CrossRef]
- Charalampidis, C.; Van As, D.; Box, J.E.; Van Den Broeke, M.R.; Colgan, W.T.; Doyle, S.H.; Hubbard, A.L.; MacFerrin, M.; Machguth, H.; Smeets, C.J.P.P. Changing surface-atmosphere energy exchange and refreezing capacity of the lower accumulation area, West Greenland. Cryosphere 2015, 9, 2163–2181. [Google Scholar] [CrossRef]
- Baker, W.E.; Atlas, R.; Cardinali, C.; Clement, A.; Emmitt, G.D.; Gentry, B.M.; Hardesty, R.M.; Källén, E.; Kavaya, M.J.; Langland, R.; et al. Lidar-measured wind profiles: The missing link in the global observing system. Bull. Am. Meteorol. Soc. 2014, 95, 543–564. [Google Scholar] [CrossRef]
- Lesins, G.; Duck, T.; Drummond, J. Climate trends at Eureka in the Canadian high arctic. Atmos.-Ocean 2010, 48, 59–80. [Google Scholar] [CrossRef]
- Wu, S.; Liu, B.; Liu, J.; Zhai, X.; Feng, C.; Wang, G.; Zhang, H.; Yin, J.; Wang, X.; Li, R.; et al. Wind turbine wake visualization and characteristics analysis by Doppler lidar. Opt. Express 2016, 24, A762. [Google Scholar] [CrossRef]
- Nott, G.J.; Duck, T.J. Lidar studies of the polar troposphere. Meteorol. Appl. 2011, 18, 383–405. [Google Scholar] [CrossRef]
- Smiley, V.N.; Warburton, J.A.; Morley, B.M. South Pole ice crystal precipitation studies using lidar sounding and replication. Antarct. J. U. S. 1975, 10, 230–231. [Google Scholar]
- Mahesh, A.; Campbell, J.R.; Spinhirne, J.D. Multi-year measurements of cloud base heights at South Pole by lidar. Geophys. Res. Lett. 2005, 32, 1–5. [Google Scholar] [CrossRef]
- Chu, X.; Pan, W.; Papen, G.C.; Gardner, C.S.; Gelbwachs, J.A. Fe Boltzmann temperature lidar: Design, error analysis, and initial results at the North and South Poles. Appl. Opt. 2002, 41, 4400. [Google Scholar] [CrossRef]
- Chu, Z.; Gardner, C.S.; Papen, G. Lidar observations of polar mesospheric clouds at South Pole: Diurnal variations. Geophys. Res. Lett. 2001, 28, 1937–1940. [Google Scholar] [CrossRef]
- Liu, Z.; Barlow, J.F.; Chan, P.W.; Fung, J.C.H.; Li, Y.; Ren, C.; Mak, H.W.L.; Ng, E. A review of progress and applications of pulsed DopplerWind LiDARs. Remote Sens. 2019, 11, 2522. [Google Scholar] [CrossRef]
- Greco, S.; Emmitt, G.D.; Duvivier, A.; Hines, K.; Kavaya, M. Polar winds: Airborne doppler wind lidar missions in the arctic for atmospheric observations and numerical model comparisons. Atmosphere 2020, 11, 1141. [Google Scholar] [CrossRef]
- Achtert, P.; Brooks, I.M.; Brooks, B.J.; Moat, B.I.; Prytherch, J.; Persson, P.O.G.; Tjernström, M. Measurement of wind profiles by motion-stabilised ship-borne Doppler lidar. Atmos. Meas. Tech. 2015, 8, 4993–5007. [Google Scholar] [CrossRef]
- Zentek, R.; Kohnemann, S.H.E.; Heinemann, G. Analysis of the performance of a ship-borne scanning wind lidar in the Arctic and Antarctic. Atmos. Meas. Tech. 2018, 11, 5781–5795. [Google Scholar] [CrossRef]
- Tomasi, C.; Vitale, V.; Lupi, A.; Di Carmine, C.; Campanelli, M.; Herber, A.; Treffeisen, R.; Stone, R.S.; Andrews, E.; Sharma, S.; et al. Aerosols in polar regions: A historical overview based on optical depth and in situ observations. J. Geophys. Res. Atmos. 2007, 112, D16205. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, R.; Li, H.; Zhuang, Q.; Huang, W.; Wang, W.; Liu, F.; Ban, C.; Chen, C. Applied research on low-altitude wind field using coherent Doppler wind lidar at Zhongshan Station, Antarctic. Chin. J. Polar Res. 2022, 34, 11–19. [Google Scholar] [CrossRef]
- Dou, Y.; Zuo, G.; Chang, X.; Chen, Y. A study of a standalone renewable energy system of the Chinese Zhongshan Station in Antarctica. Appl. Sci. 2019, 9, 1968. [Google Scholar] [CrossRef]
- Chen, X.; Huang, W.; Ban, C.; Kosch, M.J.; Murphy, D.J.; Hu, Z.; Liu, J.; He, F.; Wang, R.; Yang, H.; et al. Dynamic Properties of a Sporadic Sodium Layer Revealed by Observations Over Zhongshan, Antarctica: A Case Study. J. Geophys. Res. Sp. Phys. 2021, 126, e2021JA029787. [Google Scholar] [CrossRef]
- Ban, C.; Pan, W.; Wang, R.; Huang, W.; Liu, F.; Wang, Z.; Fang, X.; Cheng, X.; Hu, H. Initial results of Rayleigh scattering lidar observations at Zhongshan station, Antarctica. Infrared Laser Eng. 2021, 50, 70–77. [Google Scholar] [CrossRef]
- Liu, F.; Wang, R.; Yi, F.; Huang, W.; Ban, C.; Pan, W.; Wang, Z.; Hu, H. Pure rotational Raman lidar for full-day troposphere temperature measurement at Zhongshan Station (6937° S, 7637° E), Antarctica. Opt. Express 2021, 29, 10059. [Google Scholar] [CrossRef]
- Iwai, H.; Aoki, M.; Oshiro, M.; Ishii, S. Validation of Aeolus Level 2B wind products using wind profilers, ground-based Doppler wind lidars, and radiosondes in Japan. Atmos. Meas. Tech. 2021, 14, 7255–7275. [Google Scholar] [CrossRef]
- Srinivasa Rao, I.; Anandan, V.K.; Narasimha Reddy, P. Evaluation of DBS wind measurement technique in different beam configurations for a VHF wind profiler. J. Atmos. Ocean. Technol. 2008, 25, 2304–2311. [Google Scholar] [CrossRef]
- Zeng, Z.; Wang, Z.; Ding, M.; Zheng, X.; Sun, X.; Zhu, W.; Zhu, K.; An, J.; Zang, L.; Guo, J.; et al. Estimation and Long-term Trend Analysis of Surface Solar Radiation in Antarctica: A Case Study of Zhongshan Station. Adv. Atmos. Sci. 2021, 38, 1497–1509. [Google Scholar] [CrossRef]
Parameters | Specification |
---|---|
Wavelength | 1550 nm |
Repetition rate | 10 kHz |
Pulse energy | 150 μJ |
Pulse width | 200 ns |
Velocity measurement range | ±90 m s−1 |
Detection range | 3000 m maximum |
Range resolution | 30 m |
Telescope diameter | 100 mm |
Parameters | Specification | |
---|---|---|
Anemometer | Type | XFY3-1 (wind cup) |
Maximum reported wind speed | 160 m s−1 | |
Directional measurement uncertainty | 5° | |
Speed measurement uncertainty | 0.5 m s−1 (0~10 m s−1) | |
5% × Vm m s−1 (10~95 m s−1) | ||
Radiosonde | Type | Vaisala RS41-SG |
Speed measurement range | 95 m s−1 | |
Directional measurement uncertainty | 1° | |
Speed measurement uncertainty | 0.7 m s−1 |
Date | Start Time (UTC) | End Time (UTC) | Observation Period | N | Wind Speed (m s−1) | Wind Direction (°) | ||||
---|---|---|---|---|---|---|---|---|---|---|
RMSD | Bias | R | RMSD | Bias | R | |||||
2020-02-16 | 9:04 | 23:59 | 14:54 | 1986 | 0.85 | 0.68 | 0.962 | 10.28 | −6.71 | 0.943 |
2020-02-17 | 0:00 | 18:12 | 18:12 | |||||||
2020-04-06 | 4:03 | 23:59 | 19:56 | 2044 | 1.05 | 0.49 | 0.976 | 9.96 | −11.55 | 0.925 |
2020-04-07 | 0:00 | 14:08 | 14:08 | |||||||
2020-05-12 | 3:59 | 23:59 | 19:59 | 1471 | 0.97 | 0.64 | 0.951 | 9.77 | −8.1 | 0.932 |
2020-05-13 | 0:00 | 4:32 | 4:32 | |||||||
2020-06-23 | 7:58 | 23:59 | 16:00 | 1480 | 0.72 | 0.59 | 0.944 | 13.61 | −18.63 | 0.891 |
2020-06-24 | 0:00 | 8:41 | 8:40 | |||||||
2020-07-11 | 8:43 | 23:59 | 15:15 | 1413 | 1.25 | 0.81 | 0.907 | 11.22 | 5.17 | 0.913 |
2020-07-12 | 0:00 | 8:18 | 8:18 | |||||||
2020-08-09 | 4:34 | 23:59 | 19:25 | 2103 | 0.69 | 0.36 | 0.975 | 9.73 | −15.62 | 0.925 |
2020-08-10 | 0:00 | 15:38 | 15:38 | |||||||
2020-09-22 | 2:24 | 23:59 | 21:35 | 1936 | 1.08 | 0.76 | 0.941 | 7.23 | −11.49 | 0.948 |
2020-09-23 | 0:00 | 10:42 | 10:42 | |||||||
2020-10-14 | 6:18 | 23:59 | 17:41 | 1545 | 1.21 | 0.82 | 0.912 | 12.56 | −14.12 | 0.915 |
2020-10-15 | 0:00 | 8:05 | 8:04 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, H.; Wang, Z.; Zhuang, Q.; Wang, R.; Huang, W.; Chen, C.; Li, X.; Wang, X.; Xue, B.; Yu, Y.; et al. Remote Polar Boundary Layer Wind Profiling Using an All-Fiber Pulsed Coherent Doppler Lidar at Zhongshan Station, Antarctica. Atmosphere 2023, 14, 901. https://doi.org/10.3390/atmos14050901
Li H, Wang Z, Zhuang Q, Wang R, Huang W, Chen C, Li X, Wang X, Xue B, Yu Y, et al. Remote Polar Boundary Layer Wind Profiling Using an All-Fiber Pulsed Coherent Doppler Lidar at Zhongshan Station, Antarctica. Atmosphere. 2023; 14(5):901. https://doi.org/10.3390/atmos14050901
Chicago/Turabian StyleLi, Hui, Zhangjun Wang, Quanfeng Zhuang, Rui Wang, Wentao Huang, Chao Chen, Xianxin Li, Xiufen Wang, Boyang Xue, Yang Yu, and et al. 2023. "Remote Polar Boundary Layer Wind Profiling Using an All-Fiber Pulsed Coherent Doppler Lidar at Zhongshan Station, Antarctica" Atmosphere 14, no. 5: 901. https://doi.org/10.3390/atmos14050901
APA StyleLi, H., Wang, Z., Zhuang, Q., Wang, R., Huang, W., Chen, C., Li, X., Wang, X., Xue, B., Yu, Y., & Pan, X. (2023). Remote Polar Boundary Layer Wind Profiling Using an All-Fiber Pulsed Coherent Doppler Lidar at Zhongshan Station, Antarctica. Atmosphere, 14(5), 901. https://doi.org/10.3390/atmos14050901