Chemical Characterization and Source Apportionment of PM10 Using Receptor Models over the Himalayan Region of India
Abstract
:1. Introduction
2. Methodology
2.1. Experimental Sites
2.2. Sampling and Chemical Analysis
2.3. Source Identification Using PCA/APCS, UNMIX, and PMF
2.3.1. Principal Component Analysis/Absolute Principal Component Scores (PCA/APCS)
2.3.2. UNMIX
2.3.3. Positive Matrix Factorization (PMF)
2.3.4. Meteorological Data and Backward Trajectory Analysis
3. Results
3.1. Potential Sources, Atmospheric Processes, and Transport of PM10 in the IHR
3.1.1. Variations in PM10 Mass and Its Chemical Composition
3.1.2. Variation in Water-Soluble Inorganic Ionic Species (WSIIS) of PM10
3.1.3. Correlation of Carbonaceous and WSIIS of PM10
3.2. Aerosol Acidity and Charge Balance
3.3. Potential Source Area from the Air Mass Backward Trajectory Analysis
3.4. Source Apportionment of PM10 Using Receptor Models
3.4.1. PCA/APCS
Mohal-Kullu
Nainital
Darjeeling
3.4.2. UNMIX
Mohal-Kullu
Nainital
Darjeeling
3.4.3. PMF
Mohal-Kullu
Nainital
Darjeeling
3.5. Model Comparison
4. Conclusions
- The highest annual average mass concentration of PM10 was observed at Nainital (62 ± 39 µg m−3), followed by Mohal Kullu (58 ± 32 µg m−3), and Darjeeling (52 ± 18 µg m−3), which are higher than the NAAQS.
- CAs are the major contributor to the PM10 concentration at the IHR, significantly contributing to climate change and affecting the Earth’s radiation balance. Enhanced burning activities, regional transport of pollution plumes to high altitudes, and meteorological conditions affect the region’s air quality.
- The average concentration of crustal components (Ca, Al, Fe, K, and Na) was considerably higher at all study sites, suggesting that the re-suspension of SD and crustal elements were significant at high altitudes of the Himalayas.
- Dominant secondary ions (NH4+, SO42−, and NO3−) suggest that the study sites were strongly influenced by anthropogenic sources from regional and long-range transport. Sufficient NH4+ is available to neutralize SO42− and NO3− as ammonium sulfate and ammonium nitrate.
- PCA/APCS, UNMIX, and PMF were used for SA of PM10 at the study sites. Overall, resuspended SD, secondary inorganic aerosols, VEs, and combustion-related emissions such as BB, CC, and FFC are the major sources of PM10 identified by different models at the study sites.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xu, Y.; Wu, X.; Kumar, R.; Barth, M.; Diao, C.; Gao, M.; Lin, L.; Jones, B.; Meehl, G.A. Substantial Increase in the Joint Occurrence and Human Exposure of Heatwave and High-PM Hazards Over South Asia in the Mid-21st Century. AGU Adv. 2020, 1, e2019AV000103. [Google Scholar] [CrossRef]
- Yang, Y.; Zhou, R.; Yan, Y.; Yu, Y.; Liu, J.; Di, Y.; Du, Z.; Wu, D. Seasonal Variations and Size Distributions of Water-Soluble Ions of Atmospheric Particulate Matter at Shigatse, Tibetan Plateau. Chemosphere 2016, 145, 560–567. [Google Scholar] [CrossRef] [PubMed]
- Adams, P.; Seinfeld, J.; Koch, D.; Mickley, L.; Jacob, D. General Circulation Assessment of Direct Radiative Forcing by the Sulphate-Nitrate-Ammonium-Water Inorganic Aerosol System. J. Geophys. Res. 2001, 106, 1097–1111. [Google Scholar] [CrossRef]
- Cesari, D.; Benedetto, G.E.D.; Bonasoni, P.; Busetto, M.; Dinoi, A.; Merico, E.; Chirizzi, D.; Cristofanelli, P.; Donateo, A.; Grasso, F.M.; et al. Seasonal Variability of PM2.5 and PM10 Composition and Sources in an Urban Background Site in Southern Italy. Sci. Total Environ. 2018, 612, 202–213. [Google Scholar] [CrossRef]
- Mahapatra, P.S.; Sinha, P.R.; Boopathy, R.; Das, T.; Mohanty, S.; Sahu, S.C.; Gurjar, B.R. Seasonal Progression of Atmospheric Particulate Matter over an Urban Coastal Region in Peninsular India: Role of Local Meteorology and Long-Range Transport. Atmos. Res. 2018, 199, 145–158. [Google Scholar] [CrossRef]
- Ramanathan, V.; Crutzen, P.J.; Kiehl, J.T.; Rosenfeld, D. Aerosols, Climate, and the Hydrological Cycle. Science 2001, 294, 2119–2124. [Google Scholar] [CrossRef]
- Lohmann, U.; Feichter, J. Global Indirect Aerosol Effects: A Review. Atmos. Chem. Phys. 2005, 5, 715–737. [Google Scholar] [CrossRef]
- Seinfeld, J.H.; Pandis, S.N. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change; John Wiley & Sons: New York, NY, USA, 1998; Volume 51. [Google Scholar]
- Smithson, P.A. IPCC, 2001: Climate Change 2001: The Scientific Basis. Contribution of Working Group 1 to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Int. J. Climatol. 2002, 22, 1144. [Google Scholar] [CrossRef]
- Banoo, R.; Sharma, S.K.; Gadi, R.; Gupta, S.; Mandal, T. Seasonal Variation of Carbonaceous Species of PM10 Over Urban Sites of National Capital Region of India. Aerosol Sci. Eng. 2020, 4, 111–123. [Google Scholar] [CrossRef]
- Bond, T.C.; Doherty, S.J.; Fahey, D.W.; Forster, P.M.; Berntsen, T.; DeAngelo, B.J.; Flanner, M.G.; Ghan, S.; Kärcher, B.; Koch, D.; et al. Bounding the Role of Black Carbon in the Climate System: A Scientific Assessment. J. Geophys. Res. Atmos. 2013, 118, 5380–5552. [Google Scholar] [CrossRef]
- Hansen, J.; Sato, M.; Ruedy, R.; Nazarenko, L.; Lacis, A.; Schmidt, G.A.; Russell, G.; Aleinov, I.; Bauer, M.; Bauer, S.; et al. Efficacy of Climate Forcings. J. Geophys. Res. Atmos. 2005, 110, D18104. [Google Scholar] [CrossRef]
- Lim, H.-J.; Turpin, B.J. Origins of Primary and Secondary Organic Aerosol in Atlanta: Results of Time-Resolved Measurements during the Atlanta Supersite Experiment. Environ. Sci. Technol. 2002, 36, 4489–4496. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, S.; Dutta, M.; Ghosh, A.; Chatterjee, A. A Year-Long Study on PM2.5 and Its Carbonaceous Components over Eastern Himalaya in India: Contributions of Local and Transported Fossil Fuel and Biomass Burning during Premonsoon. Environ. Res. 2022, 212, 113546. [Google Scholar] [CrossRef] [PubMed]
- Bhuyan, P.; Deka, P.; Prakash, A.; Balachandran, S.; Hoque, R. Chemical Characterization and Source Apportionment of Aerosol over Mid Brahmaputra Valley, India. Environ. Pollut. 2018, 234, 997–1010. [Google Scholar] [CrossRef] [PubMed]
- Lighty, J.S.; Veranth, J.M.; Sarofim, A.F. Combustion Aerosols: Factors Governing Their Size and Composition and Implications to Human Health. J. Air Waste Manag. Assoc. 2000, 50, 1565–1618. [Google Scholar] [CrossRef] [PubMed]
- Pope, C.A.; Ezzati, M.; Dockery, D.W. Fine-Particulate Air Pollution and Life Expectancy in the United States. N. Engl. J. Med. 2009, 360, 376–386. [Google Scholar] [CrossRef]
- Singh, G.K.; Choudhary, V.; Gupta, T.; Paul, D. Investigation of Size Distribution and Mass Characteristics of Ambient Aerosols and Their Combustion Sources during Post-Monsoon in Northern India. Atmos. Pollut. Res. 2020, 11, 170–178. [Google Scholar] [CrossRef]
- Deng, X.; Shi, C.; Wu, B.; Yang, Y.; Jin, Q.; Wang, H.; Zhu, S.; Yu, C. Characteristics of the Water-Soluble Components of Aerosol Particles in Hefei, China. J. Environ. Sci. 2016, 42, 32–40. [Google Scholar] [CrossRef]
- Kang, J.; Cho, B.C.; Lee, C.-B. Atmospheric Transport of Water-Soluble Ions (NO3−, NH4+ and Nss-SO42−) to the Southern East Sea (Sea of Japan). Sci. Total Environ. 2010, 408, 2369–2377. [Google Scholar] [CrossRef]
- Pathak, R.K.; Wu, W.S.; Wang, T. Summertime PM2.5 Ionic Species in Four Major Cities of China: Nitrate Formation in an Ammonia-Deficient Atmosphere. Atmos. Chem. Phys. 2009, 9, 1711–1722. [Google Scholar] [CrossRef]
- Gaonkar, C.V.; Kumar, A.; Matta, V.M.; Kurian, S. Assessment of Crustal Element and Trace Metal Concentrations in Atmospheric Particulate Matter over a Coastal City in the Eastern Arabian Sea. J. Air Waste Manag. Assoc. 2020, 70, 78–92. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, G.; Karani, G.; Mitchell, D. Trace Elemental Composition in PM10 and PM2.5 Collected in Cardiff, Wales. Energy Procedia 2017, 111, 540–547. [Google Scholar] [CrossRef]
- Guo, F.; Tang, M.; Wang, X.; Yu, Z.; Wei, F.; Zhang, X.; Jin, M.; Wang, J.; Xu, D.; Chen, Z.; et al. Characteristics, Sources, and Health Risks of Trace Metals in PM2.5. Atmos. Environ. 2022, 289, 119314. [Google Scholar] [CrossRef]
- Hsu, C.-Y.; Chiang, H.-C.; Lin, S.-L.; Chen, M.-J.; Lin, T.-Y.; Chen, Y.-C. Elemental Characterization and Source Apportionment of PM10 and PM2.5 in the Western Coastal Area of Central Taiwan. Sci. Total Environ. 2016, 541, 1139–1150. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.K.; Mukherjee, S.; Choudhary, N.; Rai, A.; Ghosh, A.; Chatterjee, A.; Vijayan, N.; Mandal, T. Seasonal Variation and Sources of Carbonaceous Species and Elements in PM2.5 and PM10 over the Eastern Himalaya. Environ. Sci. Pollut. Res. 2021, 28, 51642–51656. [Google Scholar] [CrossRef]
- Zhang, J.; Li, R.; Zhang, X.; Bai, Y.; Cao, P.; Hua, P. Vehicular Contribution of PAHs in Size Dependent Road Dust: A Source Apportionment by PCA-MLR, PMF, and Unmix Receptor Models. Sci. Total Environ. 2019, 649, 1314–1322. [Google Scholar] [CrossRef]
- Hu, X.; Zhang, Y.; Ding, Z.; Wang, T.; Lian, H.; Sun, Y.; Wu, J. Bioaccessibility and Health Risk of Arsenic and Heavy Metals (Cd, Co, Cr, Cu, Ni, Pb, Zn and Mn) in TSP and PM2.5 in Nanjing, China. Atmos. Environ. 2012, 57, 146–152. [Google Scholar] [CrossRef]
- Liu, X.; Ouyang, W.; Shu, Y.; Tian, Y.; Feng, Y.; Zhang, T.; Chen, W. Incorporating Bioaccessibility into Health Risk Assessment of Heavy Metals in Particulate Matter Originated from Different Sources of Atmospheric Pollution. Environ. Pollut. 2019, 254, 113113. [Google Scholar] [CrossRef]
- Huang, Y.; Wang, L.; Zhang, S.; Zhang, M.; Wang, J.; Cheng, X.; Li, T.; He, M.; Ni, S. Source Apportionment and Health Risk Assessment of Air Pollution Particles in Eastern District of Chengdu. Environ. Geochem. Health 2020, 42, 2251–2263. [Google Scholar] [CrossRef]
- Kelly, F.J.; Fussell, J.C. Air Pollution and Public Health: Emerging Hazards and Improved Understanding of Risk. Environ. Geochem. Health 2015, 37, 631–649. [Google Scholar] [CrossRef]
- Wambebe, N.M.; Duan, X. Air Quality Levels and Health Risk Assessment of Particulate Matters in Abuja Municipal Area, Nigeria. Atmosphere 2020, 11, 817. [Google Scholar] [CrossRef]
- Agarwal, R.; Awasthi, A.; Singh, N.; Mittal, S.K.; Gupta, P.K. Epidemiological Study on Healthy Subjects Affected by Agriculture Crop-Residue Burning Episodes and Its Relation with Their Pulmonary Function Tests. Int. J. Environ. Health Res. 2013, 23, 281–295. [Google Scholar] [CrossRef] [PubMed]
- Chameides, W.L.; Yu, H.; Liu, S.C.; Bergin, M.; Zhou, X.; Mearns, L.; Wang, G.; Kiang, C.S.; Saylor, R.D.; Luo, C.; et al. Case Study of the Effects of Atmospheric Aerosols and Regional Haze on Agriculture: An Opportunity to Enhance Crop Yields in China through Emission Controls? Proc. Natl. Acad. Sci. USA 1999, 96, 13626–13633. [Google Scholar] [CrossRef]
- Charlson, R.J.; Schwartz, S.E.; Hales, J.M.; Cess, R.D.; Coakley, J.A.; Hansen, J.E.; Hofmann, D.J. Climate Forcing by Anthropogenic Aerosols. Science 1992, 255, 423–430. [Google Scholar] [CrossRef] [PubMed]
- Cohen, A.J.; Brauer, M.; Burnett, R.; Anderson, H.R.; Frostad, J.; Estep, K.; Balakrishnan, K.; Brunekreef, B.; Dandona, L.; Dandona, R.; et al. Estimates and 25-Year Trends of the Global Burden of Disease Attributable to Ambient Air Pollution: An Analysis of Data from the Global Burden of Diseases Study 2015. Lancet 2017, 389, 1907–1918. [Google Scholar] [CrossRef] [PubMed]
- Joshi, H.; Naja, M.; Srivastava, P.; Gupta, T.; Gogoi, M.; Babu, S. Long-Term Trends in Black Carbon and Aerosol Optical Depth Over the Central Himalayas: Potential Causes and Implications. Front. Earth Sci. 2022, 10, 851444. [Google Scholar] [CrossRef]
- Ramgolam, K.; Favez, O.; Cachier, H.; Gaudichet, A.; Marano, F.; Martinon, L.; Baeza-Squiban, A. Size-Partitioning of an Urban Aerosol to Identify Particle Determinants Involved in the Proinflammatory Response Induced in Airway Epithelial Cells. Part. Fibre Toxicol. 2009, 6, 10. [Google Scholar] [CrossRef]
- Wang, X.; Wang, W.; Yang, L.; Gao, X.; Nie, W.; Yu, Y.; Xu, P.; Zhou, Y.; Wang, Z. The Secondary Formation of Inorganic Aerosols in the Droplet Mode through Heterogeneous Aqueous Reactions under Haze Conditions. Atmos. Environ. 2012, 63, 68–76. [Google Scholar] [CrossRef]
- Saarikoski, S.; Mäkelä, T.; Hillamo, R.; Aalto, P.; Kerminen, V.-M.; Kulmala, M. Physicochemical Characterization and Mass Closure of Size- Segregated Atmospheric Aerosols in Hyytiälä, Finland. Boreal Environ. Res. 2005, 10, 385–400. [Google Scholar]
- Ambade, B.; Sankar, T.K.; Sahu, L.K.; Dumka, U.C. Understanding Sources and Composition of Black Carbon and PM2.5 in Urban Environments in East India. Urban Sci. 2022, 6, 60. [Google Scholar] [CrossRef]
- Patel, A.; Rastogi, N. Chemical Composition and Oxidative Potential of Atmospheric PM10 over the Arabian Sea. ACS Earth Space Chem. 2020, 4, 112–121. [Google Scholar] [CrossRef]
- Banerjee, T.; Murari, V.; Kumar, M.; Raju, M.P. Source Apportionment of Airborne Particulates through Receptor Modeling: Indian Scenario. Atmos. Res. 2015, 164–165, 167–187. [Google Scholar] [CrossRef]
- Jain, S.; Sharma, S.K.; Choudhary, N.; Masiwal, R.; Saxena, M.; Sharma, A.; Mandal, T.K.; Gupta, A.; Gupta, N.C.; Sharma, C. Chemical Characteristics and Source Apportionment of PM2.5 Using PCA/APCS, UNMIX, and PMF at an Urban Site of Delhi, India. Environ. Sci. Pollut. Res. 2017, 24, 14637–14656. [Google Scholar] [CrossRef] [PubMed]
- Pant, P.; Harrison, R. Critical Review of Receptor Modelling for Particulate Matter: A Case Study of India. Atmos. Environ. 2012, 49, 1–12. [Google Scholar] [CrossRef]
- Sharma, S.K.; Sharma, A.; Saxena, M.; Choudhary, N.; Masiwal, R.; Mandal, T.; Sharma, C. Chemical Characterization and Source Apportionment of Aerosol at an Urban Area of Central Delhi, India. Atmos. Pollut. Res. 2015, 7, 110–121. [Google Scholar] [CrossRef]
- Gautam, R.; Hsu, N.; Lau, W.; Tsay, S.-C.; Kafatos, M. Enhanced Pre-Monsoon Warming over the Himalayan-Gangetic Region from 1979 to 2007. Geophys. Res. Lett. 2009, 36, L07704. [Google Scholar] [CrossRef]
- Hindman, E.; Upadhyay, B. Air Pollution Transport in the Himalayas of Nepal and Tibet during the 1995–1996 Dry Season. Atmos. Environ. 2002, 36, 727–739. [Google Scholar] [CrossRef]
- Carrico, C.; Bergin, M.; Shrestha, A.; Dibb, J.; Gomes, L.; Harris, J. The Importance of Carbon and Mineral Dust to Seasonal Aerosol Properties in the Nepal Himalaya. Atmos. Environ. 2003, 37, 2811–2824. [Google Scholar] [CrossRef]
- Cong, Z.; Kang, S.; Kawamura, K.; Liu, B.; Wan, X.; Wang, Z.; Gao, S.; Fu, P. Carbonaceous Aerosols on the South Edge of the Tibetan Plateau: Concentrations, Seasonality and Sources. Atmos. Chem. Phys. 2015, 15, 1573–1584. [Google Scholar] [CrossRef]
- Ming, J.; Zhang, D.; Kang, S.; Tian, W. Aerosol and Fresh Snow Chemistry in the East Rongbuk Glacier on the Northern Slope of Mt. Qomolangma (Everest). J. Geophys. Res. Atmos. 2007, 112, D008618. [Google Scholar] [CrossRef]
- Tripathee, L.; Kang, S.; Rupakheti, D.; Zhang, Q.; Huang, J.; Sillanpää, M. Water-Soluble Ionic Composition of Aerosols at Urban Location in the Foothills of Himalaya, Pokhara Valley, Nepal. Atmosphere 2016, 7, 102. [Google Scholar] [CrossRef]
- Xu, J.-S.; Xu, M.-X.; Snape, C.; He, J.; Behera, S.N.; Xu, H.-H.; Ji, D.-S.; Wang, C.-J.; Yu, H.; Xiao, H.; et al. Temporal and Spatial Variation in Major Ion Chemistry and Source Identification of Secondary Inorganic Aerosols in Northern Zhejiang Province, China. Chemosphere 2017, 179, 316–330. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Cao, J.; Shen, Z.; Xu, B.; Zhu, C.; Chen, L.-W.A.; Su, X.; Liu, S.; Han, Y.; Wang, G.; et al. Aerosol Particles at a High-Altitude Site on the Southeast Tibetan Plateau, China: Implications for Pollution Transport from South Asia. J. Geophys. Res. Atmos. 2013, 118, 11360–11375. [Google Scholar] [CrossRef]
- Zhao, Z.; Wang, Q.; Li, L.; Han, Y.; Ye, Z.; Pongpiachan, S.; Zhang, Y.; Liu, S.; Tian, R.; Cao, J. Characteristics of PM2.5 at a High-Altitude Remote Site in the Southeastern Margin of the Tibetan Plateau in Premonsoon Season. Atmosphere 2019, 10, 645. [Google Scholar] [CrossRef]
- Agarwal, A.; Satsangi, A.; Lakhani, A.; Kumari, K. Seasonal and Spatial Variability of Secondary Inorganic Aerosols in PM2.5 at Agra: Source Apportionment through Receptor Models. Chemosphere 2019, 242, 125132. [Google Scholar] [CrossRef] [PubMed]
- Singh, N.; Banerjee, T.; Raju, M.P.; Deboudt, K.; Sorek-Hamer, M.; Singh, R.S.; Mall, R. Aerosol Chemistry, Transport, and Climatic Implications during Extreme Biomass Burning Emissions over the Indo-Gangetic Plain. Atmos. Chem. Phys. 2018, 18, 14197–14215. [Google Scholar] [CrossRef]
- Banoo, R.; Sharma, S.K.; Rani, M.; Mandal, T.K. Source and Source Region of Carbonaceous Species and Trace Elements in PM10 over Delhi, India. Environ. Sci. Proc. 2021, 8, 2. [Google Scholar] [CrossRef]
- Rastogi, N.; Sarin, M.M. Chemistry of Aerosols over a Semi-Arid Region: Evidence for Acid Neutralization by Mineral Dust. Geophys. Res. Lett. 2006, 33, L23815. [Google Scholar] [CrossRef]
- Safai, P.D.; Raju, M.P.; Rao, P.S.P.; Pandithurai, G. Characterization of Carbonaceous Aerosols over the Urban Tropical Location and a New Approach to Evaluate Their Climatic Importance. Atmos. Environ. 2014, 92, 493–500. [Google Scholar] [CrossRef]
- Chatterjee, A.; Adak, A.; Singh, A.; Srivastava, M.; Ghosh, S.; Tiwari, S.; Devara, P.; Raha, S. Aerosol Chemistry over a High Altitude Station at Northeastern Himalayas, India. PLoS ONE 2010, 5, e11122. [Google Scholar] [CrossRef]
- Ghosh, A.; Patel, A.; Rastogi, N.; Sharma, S.K.; Mandal, T.; Chatterjee, A. Size-Segregated Aerosols over a High Altitude Himalayan and a Tropical Urban Metropolis in Eastern India: Chemical Characterization, Light Absorption, Role of Meteorology and Long Range Transport. Atmos. Environ. 2021, 254, 118398. [Google Scholar] [CrossRef]
- Kumar, A.; Attri, A. Biomass Combustion a Dominant Source of Carbonaceous Aerosols in the Ambient Environment of Western Himalayas. Aerosol Air Qual. Res. 2016, 16, 519–529. [Google Scholar] [CrossRef]
- Rai, A.; Mukherjee, S.; Choudhary, N.; Ghosh, A.; Chatterjee, A.; Mandal, T.; Sharma, S.K.; Kotnala, R. Seasonal Transport Pathway and Sources of Carbonaceous Aerosols at an Urban Site of Eastern Himalaya. Aerosol Sci. Eng. 2021, 5, 318–343. [Google Scholar] [CrossRef]
- Ram, K.; Sarin, M.M.; Rengarajan, R.; Sudheer, A.K. Carbonaceous and Secondary Inorganic Aerosols during Wintertime Fog and Haze over Urban Sites in the Indo-Gangetic Plain. Aerosol Air Qual. Res. 2013, 12, 359–370. [Google Scholar] [CrossRef]
- Ram, K.; Sarin, M.M.; Hegde, P. Long-Term Record of Aerosol Optical Properties and Chemical Composition from a High-Altitude Site (Manora Peak) in Central Himalaya. Atmos. Chem. Phys. Discuss. 2010, 10, 7435–7467. [Google Scholar] [CrossRef]
- Ram, K.; Sarin, M.M. Spatio-Temporal Variability in Atmospheric Abundances of EC, OC and WSOC over Northern India. J. Aerosol Sci. 2010, 41, 88–98. [Google Scholar] [CrossRef]
- Roy, A.; Chatterjee, A.; Sarkar, C.; Das, S.K.; Ghosh, S.K.; Raha, S. A Study on Aerosol-Cloud Condensation Nuclei (CCN) Activation over Eastern Himalaya in India. Atmos. Res. 2017, 189, 69–81. [Google Scholar] [CrossRef]
- Srivastava, A.; Ram, K.; Singh, S.; Kumar, S.; Tiwari, S. Aerosol Optical Properties and Radiative Effects over Manora Peak in the Himalayan Foothills: Seasonal Variability and Role of Transported Aerosols. Sci. Total Environ. 2015, 502, 287–295. [Google Scholar] [CrossRef]
- Soni, A.; Kumar, U.; Prabhu, V.; Shridhar, V. Characterization, Source Apportionment and Carcinogenic Risk Assessment of Atmospheric Particulate Matter at Dehradun, Situated in the Foothills of Himalayas. J. Atmos. Sol.-Terr. Phys. 2020, 199, 105205. [Google Scholar] [CrossRef]
- Sheoran, R.; Dumka, U.; Kaskaoutis, D.; Grivas, G.; Ram, K.; Prakash, J.; Hooda, R.; Tiwari, R.; Mihalopoulos, N. Chemical Composition and Source Apportionment of Total Suspended Particulate in the Central Himalayan Region. Atmosphere 2021, 12, 1228. [Google Scholar] [CrossRef]
- Choudhary, N.; Srivastava, P.; Dutta, M.; Mukherjee, S.; Rai, A.; Kuniyal, J.C.; Lata, R.; Chatterjee, A.; Naja, M.; Vijayan, N.; et al. Seasonal Characteristics, Sources and Pollution Pathways of PM10 at High Altitudes Himalayas of India. Aerosol Air Qual. Res 2022, 22, 220092. [Google Scholar] [CrossRef]
- Kuniyal, J.C.; Thakur, A.; Thakur, H.; Sharma, S.; Pant, P.; Rawat, P.; Moorthy, K.K. Aerosol Optical Depths at Mohal-Kullu in the Northwestern Indian Himalayan High Altitude Station during ICARB. J. Earth Syst. Sci. 2009, 118, 41–48. [Google Scholar] [CrossRef]
- Kumar, R.; Naja, M.; Satheesh, S.; Ojha, N.; Joshi, H.; Sarangi, T.; Pant, P.; Dumka, U.; Hegde, P. Influences of the Springtime Northern Indian Biomass Burning over the Central Himalayas. J. Geophys. Res. 2011, 116, D015509. [Google Scholar] [CrossRef]
- Sarangi, T.; Naja, M.; Ojha, N.; Kumar, R.; Lal, S.; Sethuraman, V.; Kumar, A.; Sagar, R.; Chandola, H. First Simultaneous Measurements of Ozone, CO, and NO y at a High-Altitude Regional Representative Site in the Central Himalayas: Ozone, CO, and NO y over the himalayas. J. Geophys. Res. 2014, 119, 1592–1611. [Google Scholar] [CrossRef]
- Srivastava, P.; Naja, M. Characteristics of Carbonaceous Aerosols Derived from Long-Term High-Resolution Measurements at a High-Altitude Site in the Central Himalayas: Radiative Forcing Estimates and Role of Meteorology and Biomass Burning. Environ. Sci. Pollut. Res. 2021, 28, 14654–14670. [Google Scholar] [CrossRef]
- Chatterjee, A.; Mukherjee, S.; Dutta, M.; Ghosh, A.; Ghosh, S.K.; Roy, A. High Rise in Carbonaceous Aerosols under Very Low Anthropogenic Emissions over Eastern Himalaya, India: Impact of Lockdown for COVID-19 Outbreak. Atmos. Environ. 2021, 244, 117947. [Google Scholar] [CrossRef]
- Sarkar, S.; Khillare, P.S. Profile of PAHs in the Inhalable Particulate Fraction: Source Apportionment and Associated Health Risks in a Tropical Megacity. Environ. Monit. Assess. 2013, 185, 1199–1213. [Google Scholar] [CrossRef]
- Chow, J.; Watson, J.; Chen, L.-W.A.; Arnott, W.; Moosmuller, H.; Fung, K. Equivalence of Elemental Carbon by Thermal/Optical Reflectance and Transmittance with Different Temperature Protocols. Environ. Sci. Technol. 2004, 38, 4414–4422. [Google Scholar] [CrossRef]
- Hegde, P.; Vyas, B.M.; Aswini, A.R.; Aryasree, S.; Nair, P.R. Carbonaceous and Water-Soluble Inorganic Aerosols over a Semi-Arid Location in North West India: Seasonal Variations and Source Characteristics. J. Arid Environ. 2020, 172, 104018. [Google Scholar] [CrossRef]
- Hegde, P.; Kawamura, K.; Joshi, H.; Naja, M. Organic and Inorganic Components of Aerosols over the Central Himalayas: Winter and Summer Variations in Stable Carbon and Nitrogen Isotopic Composition. Environ. Sci. Pollut. Res. 2016, 23, 6102–6118. [Google Scholar] [CrossRef]
- Jolliffe, I.T.; Cadima, J. Principal Component Analysis: A Review and Recent Developments. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2016, 374, 20150202. [Google Scholar] [CrossRef] [PubMed]
- Hallin, M.; Paindaveine, D.; Verdebout, T. Efficient R-Estimation of Principal and Common Principal Components. J. Am. Stat. Assoc. 2014, 109, 1071–1083. [Google Scholar] [CrossRef]
- Thurston, G.D.; Spengler, J.D. A Quantitative Assessment of Source Contributions to Inhalable Particulate Matter Pollution in Metropolitan Boston. Atmos. Environ. 1967 1985, 19, 9–25. [Google Scholar] [CrossRef]
- Gewers, F.L.; Ferreira, G.R.; Arruda, H.F.D.; Silva, F.N.; Comin, C.H.; Amancio, D.R.; Costa, L.D.F. Principal Component Analysis: A Natural Approach to Data Exploration. ACM Comput. Surv. 2021, 54, 1–34. [Google Scholar] [CrossRef]
- Kitao, A. Principal Component Analysis and Related Methods for Investigating the Dynamics of Biological Macromolecules. J 2022, 5, 298–317. [Google Scholar] [CrossRef]
- Kothai, P.; Saradhi, I.V.; Prathibha, P.; Hopke, P.K.; Pandit, G.G.; Puranik, V.D. Source Apportionment of Coarse and Fine Particulate Matter at Navi Mumbai, India. Aerosol Air Qual. Res. 2008, 8, 423–436. [Google Scholar]
- Song, Y.; Xie, S.; Zhang, Y.; Zeng, L.; Salmon, L.G.; Zheng, M. Source Apportionment of PM2.5 in Beijing Using Principal Component Analysis/Absolute Principal Component Scores and UNMIX. Sci. Total Environ. 2006, 372, 278–286. [Google Scholar] [CrossRef]
- Chen, Z.; Ding, Y.; Jiang, X.; Duan, H.; Ruan, X.; Li, Z.; Li, Y. Combination of UNMIX, PMF Model and Pb-Zn-Cu Isotopic Compositions for Quantitative Source Apportionment of Heavy Metals in Suburban Agricultural Soils. Ecotoxicol. Environ. Saf. 2022, 234, 113369. [Google Scholar] [CrossRef]
- Henry, R. Multivariate Receptor Modeling by N-Dimensional Edge Detection. Chemom. Intell. Lab. Syst. 2003, 65, 179–189. [Google Scholar] [CrossRef]
- Hopke, P.K. Review of Receptor Modeling Methods for Source Apportionment. J. Air Waste Manag. Assoc. 2016, 66, 237–259. [Google Scholar] [CrossRef]
- Peter, A.E.; Shiva Nagendra, S.M.; Nambi, I.M. Comprehensive Analysis of Inhalable Toxic Particulate Emissions from an Old Municipal Solid Waste Dumpsite and Neighborhood Health Risks. Atmos. Pollut. Res. 2018, 9, 1021–1031. [Google Scholar] [CrossRef]
- Brown, S.G.; Eberly, S.; Paatero, P.; Norris, G.A. Methods for Estimating Uncertainty in PMF Solutions: Examples with Ambient Air and Water Quality Data and Guidance on Reporting PMF Results. Sci. Total Environ. 2015, 518–519, 626–635. [Google Scholar] [CrossRef] [PubMed]
- Paatero, P.; Tapper, U. Positive Matrix Factorization: A Non-Negative Factor Model with Optimal Utilization of Error Estimates of Data Values. Environmetrics 1994, 5, 111–126. [Google Scholar] [CrossRef]
- Zhang, Y.; Cai, J.; Wang, S.; He, K.; Zheng, M. Review of Receptor-Based Source Apportionment Research of Fine Particulate Matter and Its Challenges in China. Sci. Total Environ. 2017, 586, 917–929. [Google Scholar] [CrossRef] [PubMed]
- Amato, F.; Alastuey, A.; Karanasiou, A.; Lucarelli, F.; Nava, S.; Calzolai, G.; Severi, M.; Becagli, S.; Gianelle, V.L.; Colombi, C.; et al. AIRUSE-LIFE$+$: A Harmonized PM Speciation and Source Apportionment in Five Southern European Cities. Atmos. Chem. Phys. 2016, 16, 3289–3309. [Google Scholar] [CrossRef]
- Behera, S.N.; Sharma, M. Spatial and Seasonal Variations of Atmospheric Particulate Carbon Fractions and Identification of Secondary Sources at Urban Sites in North India. Environ. Sci. Pollut. Res. 2015, 22, 13464–13476. [Google Scholar] [CrossRef] [PubMed]
- Dumka, U.C.; Kaskaoutis, D.G.; Srivastava, M.K.; Devara, P.C.S. Scattering and Absorption Properties of Near-Surface Aerosol over Gangetic–Himalayan Region: The Role of Boundary-Layer Dynamics and Long-Range Transport. Atmos. Chem. Phys. 2015, 15, 1555–1572. [Google Scholar] [CrossRef]
- Dumka, U.C.; Kosmopoulos, P.G.; Ningombam, S.S.; Masoom, A. Impact of Aerosol and Cloud on the Solar Energy Potential over the Central Gangetic Himalayan Region. Remote Sens. 2021, 13, 3248. [Google Scholar] [CrossRef]
- Rastogi, N.; Singh, A.; Sarin, M.M.; Singh, D. Temporal Variability of Primary and Secondary Aerosols over Northern India: Impact of Biomass Burning Emissions. Atmos. Environ. 2016, 125, 396–403. [Google Scholar] [CrossRef]
- Deshmukh, D.; Tsai, Y.I.; Deb, M.; Zarmpas, P. Characteristics and Sources of Water-Soluble Ionic Species Associated with PM10 Particles in the Ambient Air of Central India. Bull. Environ. Contam. Toxicol. 2012, 89, 1091–1097. [Google Scholar] [CrossRef]
- Safai, P.D.; Budhavant, K.B.; Rao, P.S.P.; Ali, K.; Sinha, A. Source Characterization for Aerosol Constituents and Changing Roles of Calcium and Ammonium Aerosols in the Neutralization of Aerosol Acidity at a Semi-Urban Site in SW India. Atmos. Res. 2010, 98, 78–88. [Google Scholar] [CrossRef]
- Yang, Y.; Yang, X.; He, M.; Christakos, G. Beyond Mere Pollution Source Identification: Determination of Land Covers Emitting Soil Heavy Metals by Combining PCA/APCS, GeoDetector and GIS Analysis. CATENA 2020, 185, 104297. [Google Scholar] [CrossRef]
- Zhou, M.; Zheng, G.; Wang, H.; Qiao, L.; Zhu, S.; Huang, D.; An, J.; Lou, S.; Tao, S.; Wang, Q.; et al. Long-Term Trends and Drivers of Aerosol PH in Eastern China. Atmos. Chem. Phys. 2022, 22, 13833–13844. [Google Scholar] [CrossRef]
- Sun, Y.; Zhuang, G.; Huang, K.; Li, J.; Wang, Q.; Wang, Y.; Lin, Y.; Fu, J.S.; Zhang, W.; Tang, A.; et al. Asian Dust over Northern China and Its Impact on the Downstream Aerosol Chemistry in 2004. J. Geophys. Res. Atmos. 2010, 115, D012757. [Google Scholar] [CrossRef]
- Chelani, A.; Gajghate, D.; Chalapatirao, C.; Devotta, S. Particle Size Distribution in Ambient Air of Delhi and Its Statistical Analysis. Bull. Environ. Contam. Toxicol. 2010, 85, 22–27. [Google Scholar] [CrossRef]
- Priyadharshini, B.; Verma, S.; Chatterjee, A.; Sharma, S.K.; Mandal, T.K. Chemical Characterization of Fine Atmospheric Particles of Water-Soluble Ions and Carbonaceous Species in a Tropical Urban Atmosphere over the Eastern Indo-Gangetic Plain. Aerosol Air Qual. Res. 2019, 19, 129–147. [Google Scholar] [CrossRef]
- Rengarajan, R.; Sarin, M.M.; Sudheer, A.K. Carbonaceous and Inorganic Species in Atmospheric Aerosols during Wintertime over Urban and High-Altitude Sites in North India. J. Geophys. Res. Atmos. 2007, 112, D008150. [Google Scholar] [CrossRef]
- Saraswati; Sharma, S.K.; Saxena, M.; Mandal, T.K. Characteristics of Gaseous and Particulate Ammonia and Their Role in the Formation of Secondary Inorganic Particulate Matter at Delhi, India. Atmos. Res. 2019, 218, 34–49. [Google Scholar] [CrossRef]
- Ram, K.; Sarin, M.M. Day–Night Variability of EC, OC, WSOC and Inorganic Ions in Urban Environment of Indo-Gangetic Plain: Implications to Secondary Aerosol Formation. Atmos. Environ. 2011, 45, 460–468. [Google Scholar] [CrossRef]
- Satsangi, A. Water Soluble Ionic Species in Atmospheric Aerosols: Concentrations and Sources at Agra in the Indo-Gangetic Plain (IGP). Aerosol Air Qual. Res. 2013, 13, 1877–1889. [Google Scholar] [CrossRef]
- Tanner, R.L. An Ambient Experimental Study of Phase Equilibrium in the Atmospheric System: Aerosol H+, NH4+, SO42−, NO3−-NH3(g), HNO3(g). Atmos. Environ. 1982, 16, 2935–2942. [Google Scholar] [CrossRef]
- Heo, J.-B.; Hopke, P.K.; Yi, S.-M. Source Apportionment of PM2.5 in Seoul, Korea. Atmos. Chem. Phys. 2009, 9, 4957–4971. [Google Scholar] [CrossRef]
- Rastogi, N.; Sarin, M.M. Quantitative Chemical Composition and Characteristics of Aerosols over Western India: One-Year Record of Temporal Variability. Atmos. Environ. 2009, 43, 3481–3488. [Google Scholar] [CrossRef]
- Ryou, H.G.; Heo, J.; Kim, S.-Y. Source Apportionment of PM10 and PM2.5 Air Pollution, and Possible Impacts of Study Characteristics in South Korea. Environ. Pollut. 2018, 240, 963–972. [Google Scholar] [CrossRef] [PubMed]
- Saffari, A.; Hasheminassab, S.; Shafer, M.M.; Schauer, J.J.; Chatila, T.A.; Sioutas, C. Nighttime Aqueous-Phase Secondary Organic Aerosols in Los Angeles and Its Implication for Fine Particulate Matter Composition and Oxidative Potential. Atmos. Environ. 2016, 133, 112–122. [Google Scholar] [CrossRef]
- Taghvaee, S.; Sowlat, M.H.; Mousavi, A.; Hassanvand, M.S.; Yunesian, M.; Naddafi, K.; Sioutas, C. Source Apportionment of Ambient PM2.5 in Two Locations in Central Tehran Using the Positive Matrix Factorization (PMF) Model. Sci. Total Environ. 2018, 628–629, 672–686. [Google Scholar] [CrossRef]
- Duan, F.; Liu, X.; Yu, T.; Cachier, H. Identification and Estimate of Biomass Burning Contribution to the Urban Aerosol Organic Carbon Concentrations in Beijing. Atmos. Environ. 2004, 38, 1275–1282. [Google Scholar] [CrossRef]
- Xu, J.; Wang, Z.; Yu, G.; Qin, X.; Ren, J.; Qin, D. Characteristics of Water Soluble Ionic Species in Fine Particles from a High Altitude Site on the Northern Boundary of Tibetan Plateau: Mixture of Mineral Dust and Anthropogenic Aerosol. Atmos. Res. 2014, 143, 43–56. [Google Scholar] [CrossRef]
- Lelieveld, J.; Evans, J.S.; Fnais, M.; Giannadaki, D.; Pozzer, A. The Contribution of Outdoor Air Pollution Sources to Premature Mortality on a Global Scale. Nature 2015, 525, 367–371. [Google Scholar] [CrossRef]
- Kumar, P.; Yadav, S. Seasonal Variations in Water Soluble Inorganic Ions, OC and EC in PM10 and PM>10 Aerosols over Delhi: Influence of Sources and Meteorological Factors. Aerosol Air Qual. Res. 2016, 16, 1165–1178. [Google Scholar] [CrossRef]
- Rawat, P.; Sarkar, S.; Jia, S.; Khillare, P.S.; Sharma, B. Regional Sulfate Drives Long-Term Rise in AOD over Megacity Kolkata, India. Atmos. Environ. 2019, 209, 167–181. [Google Scholar] [CrossRef]
- Rana, A.; Dey, S.; Rawat, P.; Mukherjee, A.; Mao, J.; Jia, S.; Khillare, P.; Yadav, A.; Sarkar, S. Optical Properties of Aerosol Brown Carbon (BrC) in the Eastern Indo-Gangetic Plain. Sci. Total Environ. 2020, 716, 137102. [Google Scholar] [CrossRef]
- Arun, B.; Aswini, A.R.; Gogoi, M.; Hegde, P.; Kompalli, S.; Sharma, P.; Babu, S. Physico-Chemical and Optical Properties of Aerosols at a Background Site (∼4 Km a.s.l.) in the Western Himalayas. Atmos. Environ. 2019, 218, 117017. [Google Scholar] [CrossRef]
- Sarkar, C.; Roy, A.; Chatterjee, A.; Ghosh, S.; Raha, S. Factors Controlling the Long-Term (2009–2015) Trend of PM2.5 and Black Carbon Aerosols at Eastern Himalaya, India. Sci. Total Environ. 2018, 656, 280–296. [Google Scholar] [CrossRef]
- Chelani, A.B.; Gajghate, D.G.; Devotta, S. Source Apportionment of PM10 in Mumbai, India Using CMB Model. Bull. Environ. Contam. Toxicol. 2008, 81, 190–195. [Google Scholar] [CrossRef]
- Chow, J.C.; Watson, J.G. Review of PM2.5 and PM10 Apportionment for Fossil Fuel Combustion and Other Sources by the Chemical Mass Balance Receptor Model. Energy Fuels 2002, 16, 222–260. [Google Scholar] [CrossRef]
- Begum, B.A.; Biswas, S.K.; Hopke, P.K. Key Issues in Controlling Air Pollutants in Dhaka, Bangladesh. Atmos. Environ. 2011, 45, 7705–7713. [Google Scholar] [CrossRef]
- Mansha, M.; Ghauri, B.; Rahman, S.; Amman, A. Characterization and Source Apportionment of Ambient Air Particulate Matter (PM2.5) in Karachi. Sci. Total Environ. 2012, 425, 176–183. [Google Scholar] [CrossRef]
- Raja, S.; Biswas, K.F.; Husain, L.; Hopke, P.K. Source Apportionment of the Atmospheric Aerosol in Lahore, Pakistan. Water Air Soil Pollut. 2010, 208, 43–57. [Google Scholar] [CrossRef]
- Khare, P.; Baruah, B. prasad. Elemental Characterization and Source Identification of PM2.5 Using Multivariate Analysis at the Suburban Site of North-East India. Atmos. Res. 2010, 98, 148–162. [Google Scholar] [CrossRef]
- Saggu, G.S.; Mittal, S.K. Source Apportionment of PM10 by Positive Matrix Factorization Model at a Source Region of Biomass Burning. J. Environ. Manag. 2020, 266, 110545. [Google Scholar] [CrossRef] [PubMed]
- Jain, S.; Sharma, S.K.; Vijayan, N.; Mandal, T. Seasonal Characteristics of Aerosols (PM2.5 and PM10) and Their Source Apportionment Using PMF: A Four Year Study over Delhi, India. Environ. Pollut. 2020, 262, 114337. [Google Scholar] [CrossRef] [PubMed]
- Rabha, S.; Islam, N.; Saikia, B.K.; Singh, G.K.; Qadri, A.M.; Srivastava, V.; Gupta, T. Year-Long Evaluation of Aerosol Chemistry and Meteorological Implications of PM2.5 in an Urban Area of the Brahmaputra Valley, India. Environ. Sci. Atmos. 2023, 3, 196–206. [Google Scholar] [CrossRef]
- Begum, B.A.; Biswas, S.K.; Markwitz, A.; Hopke, P.K. Identification of Sources of Fine and Coarse Particulate Matter in Dhaka, Bangladesh. Aerosol Air Qual. Res. 2010, 10, 345–353. [Google Scholar] [CrossRef]
- Shridhar, V.; Khillare, P.S.; Agarwal, T.; Ray, S. Metallic Species in Ambient Particulate Matter at Rural and Urban Location of Delhi. J. Hazard. Mater. 2010, 175, 600–607. [Google Scholar] [CrossRef]
- Kumar, A.; Suresh, K.; Rahaman, W. Geochemical Characterization of Modern Aeolian Dust over the Northeastern Arabian Sea: Implication for Dust Transport in the Arabian Sea. Sci. Total Environ. 2020, 729, 138576. [Google Scholar] [CrossRef]
- Sharma, S.K.; Choudhary, N.; Srivastava, P.; Naja, M.; Vijayan, N.; Kotnala, G.; Mandal, T. Variation of Carbonaceous Species and Trace Elements in PM10 at a Mountain Site in the Central Himalayan Region of India. J. Atmos. Chem. 2020, 77, 49–62. [Google Scholar] [CrossRef]
- Dumka, U.; Kaskaoutis, D.; Mihalopoulos, N.; Sheoran, R. Identification of Key Aerosol Types and Mixing States in the Central Indian Himalayas during the GVAX Campaign: The Role of Particle Size in Aerosol Classification. Sci. Total Environ. 2020, 761, 143188. [Google Scholar] [CrossRef]
- Kant, Y.; Darga Saheb, S.; Mitra, D.; Chandola, H.; Babu, S.; Chauhan, P. Black Carbon Aerosol Quantification over North-West Himalayas: Seasonal Heterogeneity, Source Apportionment and Radiative Forcing. Environ. Pollut. 2019, 257, 113446. [Google Scholar] [CrossRef]
- Pant, P.; Harrison, R.M. Estimation of the Contribution of Road Traffic Emissions to Particulate Matter Concentrations from Field Measurements: A Review. Atmos. Environ. 2013, 77, 78–97. [Google Scholar] [CrossRef]
- Roy, A.; Chatterjee, A.; Tiwari, S.; Sarkar, C.; Das, S.K.; Ghosh, S.K.; Raha, S. Precipitation Chemistry over Urban, Rural and High Altitude Himalayan Stations in Eastern India. Atmos. Res. 2016, 181, 44–53. [Google Scholar] [CrossRef]
- Lodhi, A.; Ghauri, B.M.; Khan, M.; Rahmana, S.; Shafique, S. Particulate Matter (PM2.5) Concentration and Source Apportionment in Lahore. J. Braz. Chem. Soc. JBCS 2009, 20, 1811–1820. [Google Scholar] [CrossRef]
- Rai, P.; Furger, M.; El Haddad, I.; Kumar, V.; Wang, L.; Singh, A.; Dixit, K.; Bhattu, D.; Petit, J.-E.; Ganguly, D.; et al. Real-Time Measurement and Source Apportionment of Elements in Delhi’s Atmosphere. Sci. Total Environ. 2020, 742, 140332. [Google Scholar] [CrossRef] [PubMed]
- Song, S.; Wu, Y.; Jiang, J.; Yang, L.; Cheng, Y.; Hao, J. Chemical Characteristics of Size-Resolved PM2.5 at a Roadside Environment in Beijing, China. Environ. Pollut. 2012, 161, 215–221. [Google Scholar] [CrossRef]
- Srimuruganandam, B.; Shiva Nagendra, S.M. Chemical Characterization of PM10 and PM2.5 Mass Concentrations Emitted by Heterogeneous Traffic. Sci. Total Environ. 2011, 409, 3144–3157. [Google Scholar] [CrossRef]
- Thorpe, A.; Harrison, R.M. Sources and Properties of Non-Exhaust Particulate Matter from Road Traffic: A Review. Sci. Total Environ. 2008, 400, 270–282. [Google Scholar] [CrossRef]
- Yadav, S.; Tripathi, S.N.; Rupakheti, M. Current Status of Source Apportionment of Ambient Aerosols in India. Atmos. Environ. 2022, 274, 118987. [Google Scholar] [CrossRef]
- Sarkar, C.; Chatterjee, A.; Majumdar, D.; Ghosh, S.; Srivastava, A.; Raha, S. Volatile Organic Compounds over Eastern Himalaya, India: Temporal Variation and Source Characterization Using Positive Matrix Factorization. Atmos. Chem. Phys. Discuss. 2014, 14, 32133–32175. [Google Scholar] [CrossRef]
- Sarkar, C.; Chatterjee, A.; Majumdar, D.; Roy, A.; Srivastava, A.; Ghosh, S.; Raha, S. How the Atmosphere over Eastern Himalaya, India Is Polluted with Carbonyl Compounds? Temporal Variability and Identification of Sources. Aerosol Air Qual. Res. 2017, 17, 2206–2223. [Google Scholar] [CrossRef]
- Amato, F.; Pandolfi, M.; Escrig, A.; Querol, X.; Alastuey, A.; Pey, J.; Perez, N.; Hopke, P.K. Quantifying Road Dust Resuspension in Urban Environment by Multilinear Engine: A Comparison with PMF2. Atmos. Environ. 2009, 43, 2770–2780. [Google Scholar] [CrossRef]
- Contini, D.; Belosi, F.; Gambaro, A.; Cesari, D.; Stortini, A.M.; Bove, M.C. Comparison of PM10 Concentrations and Metal Content in Three Different Sites of the Venice Lagoon: An Analysis of Possible Aerosol Sources. J. Environ. Sci. 2012, 24, 1954–1965. [Google Scholar] [CrossRef] [PubMed]
- Favez, O.; El Haddad, I.; Piot, C.; Boréave, A.; Abidi, E.; Marchand, N.; Jaffrezo, J.-L.; Besombes, J.-L.; Personnaz, M.-B.; Sciare, J.; et al. Inter-Comparison of Source Apportionment Models for the Estimation of Wood Burning Aerosols during Wintertime in an Alpine City (Grenoble, France). Atmos. Chem. Phys. 2010, 10, 5295–5314. [Google Scholar] [CrossRef]
- Sharma, S.K.; Mandal, T.K. Elemental composition and sources of fine particulate matter (PM2.5) in Delhi, India. Bull. Environ. Contamin. Toxicol. 2023, 110, 60. [Google Scholar] [CrossRef] [PubMed]
All Units Are in µg m−3 | Annual (August 2018–December 2019) | Winter (January–February) | Summer (March–May) | Monsoon (June–September) | Post Monsoon (October–December) |
---|---|---|---|---|---|
Darjeeling | |||||
No. of Samples (n) | n = 134 | n = 25 | n = 32 | n = 31 | n = 46 |
PM10 | 54 ± 18 | 52 ± 18 | 63 ± 21 | 47 ± 9 | 50 ± 15 |
OC | 5.13 ± 2.33 | 5.43 ± 2.02 | 5.21 ± 2.14 | 3.11 ± 1.02 | 6.32 ± 2.41 |
EC | 2.20 ± 1.22 | 2.72 ± 1.00 | 3.01 ± 1.15 | 1.13 ± 0.45 | 2.12 ± 1.05 |
WSOC | 3.61 ± 1.91 | 3.92 ± 1.31 | 3.43 ± 2.22 | 1.82 ± 0.91 | 4.71 ± 1.61 |
POC | 2.90 ± 1.51 | 3.54 ± 1.30 | 3.91 ± 1.53 | 1.70 ± 0.60 | 3.22 ± 1.44 |
SOC | 2.33 ± 1.52 | 1.94 ± 1.14 | 1.32 ± 1.05 | 1.42 ± 0.91 | 3.11 ± 1.53 |
TCA | 10.41 ± 4.74 | 13.04 ± 4.71 | 13.11 ± 5.20 | 6.62 ± 1.93 | 13.52 ± 5.14 |
Na+ | 1.46 ± 0.88 | 1.43 ± 0.73 | 1.97 ± 1.22 | 1.14 ± 0.48 | 1.33 ± 0.72 |
NH4+ | 2.88 ± 3.40 | 3.99 ± 4.11 | 4.73 ± 4.30 | 1.57 ± 1.75 | 1.91 ± 2.29 |
K+ | 0.61 ± 0.46 | 0.63 ± 0.37 | 0.76 ± 0.50 | 0.25 ± 0.18 | 0.72 ± 0.48 |
Mg2+ | 0.13 ± 0.16 | 0.11 ± 0.10 | 0.23 ± 0.26 | 0.08 ± 0.07 | 0.10 ± 0.10 |
Ca2+ | 0.69 ± 0.62 | 0.61 ± 0.25 | 1.15 ± 1.02 | 0.46 ± 0.27 | 0.54 ± 0.33 |
F− | 0.04 ± 0.08 | 0.03 ± 0.05 | 0.08 ± 0.15 | 0.02 ± 0.01 | 0.03 ± 0.02 |
Cl− | 0.55 ± 0.74 | 0.36 ± 0.20 | 1.01 ± 1.31 | 0.35 ± 0.26 | 0.47 ± 0.40 |
NO3− | 2.29 ± 2.52 | 2.43 ± 2.47 | 3.66 ± 3.77 | 1.09 ± 1.12 | 2.06 ± 1.73 |
SO42− | 5.36 ± 5.49 | 5.90 ± 5.22 | 8.43 ± 8.11 | 3.83 ± 3.50 | 3.96 ± 3.22 |
Nainital | |||||
No. of Samples (n) | n = 86 | n = 17 | n = 27 | n = 9 | n = 33 |
PM10 | 62 ± 39 | 38 ± 9 | 100 ± 50 | 49 ± 17 | 47 ± 14 |
OC | 5.31 ± 4.60 | 2.90 ± 1.05 | 8.30 ± 7.15 | 4.32 ± 1.70 | 4.31 ± 1.33 |
EC | 1.70 ± 1.12 | 1.32 ± 0.61 | 2.31 ± 1.43 | 1.45 ± 0.81 | 1.42 ± 0.84 |
WSOC | 3.67 ± 2.70 | 2.11 ± 0.60 | 5.71 ± 3.45 | 3.20 ± 1.40 | 3.01 ± 1.71 |
POC | 2.71 ± 1.71 | 2.33 ± 1.05 | 3.74 ± 2.32 | 2.80 ± 1.43 | 2.54 ± 1.32 |
SOC | 2.63 ± 3.51 | 0.74 ± 0.34 | 4.74 ± 5.62 | 1.55 ± 1.20 | 1.83 ± 1.22 |
TCA | 11.10 ± 8.74 | 6.71 ± 2.45 | 16.94 ± 13.25 | 9.24 ± 3.52 | 9.13 ± 2.95 |
Na+ | 0.44 ± 0.40 | 0.23 ± 0.12 | 0.63 ± 0.50 | 0.45 ± 0.46 | 0.40 ± 0.33 |
NH4+ | 1.80 ± 0.98 | 1.06 ± 0.64 | 2.12 ± 0.78 | 2.11 ± 1.18 | 1.82 ± 1.06 |
K+ | 0.46 ± 0.28 | 0.30 ± 0.15 | 0.60 ± 0.38 | 0.50 ± 0.13 | 0.40 ± 0.20 |
Mg2+ | 0.10 ± 0.08 | 0.06 ± 0.02 | 0.13 ± 0.06 | 0.14 ± 0.08 | 0.09 ± 0.07 |
Ca2+ | 0.90 ± 0.93 | 0.46 ± 0.26 | 1.25 ± 1.37 | 1.12 ± 0.78 | 0.77 ± 0.58 |
F− | 0.04 ± 0.02 | 0.04 ± 0.02 | 0.04 ± 0.02 | 0.04 ± 0.03 | 0.03 ± 0.02 |
Cl− | 0.31 ± 0.37 | 0.23 ± 0.18 | 0.50 ± 0.56 | 0.17 ± 0.10 | 0.24 ± 0.21 |
NO3− | 2.12 ± 1.23 | 1.32 ± 0.80 | 2.63 ± 1.24 | 2.44 ± 1.57 | 1.89 ± 1.03 |
SO42− | 4.04 ± 2.01 | 2.39 ± 0.78 | 4.95 ± 1.53 | 4.63 ± 2.41 | 3.69 ± 1.80 |
Mohal-Kullu | |||||
No. of Samples (n) | n = 76 | n = 5 | n = 8 | n = 34 | n = 29 |
PM10 | 58 ± 32 | 51 ± 16 | 52 ± 15 | 44 ± 26 | 76 ± 36 |
OC | 10.71 ± 8.25 | 11.14 ± 5.33 | 11.50 ± 6.21 | 6.54 ± 4.65 | 15.43 ± 9.95 |
EC | 3.50 ± 2.05 | 4.23 ± 1.91 | 3.75 ± 1.54 | 2.35 ± 1.31 | 4.70 ± 2.05 |
WSOC | 5.55 ± 3.24 | 5.32 ± 1.26 | 4.30 ± 3.00 | 4.24 ± 1.65 | 7.50 ± 4.11 |
POC | 6.82 ± 3.92 | 9.30 ± 4.21 | 7.20 ± 2.94 | 4.80 ± 2.64 | 9.11 ± 4.04 |
SOC | 3.94 ± 4.90 | 1.84 ± 1.65 | 4.31 ± 3.44 | 1.81 ± 2.43 | 6.33 ± 6.51 |
TCA | 20.71 ± 15.10 | 22.05 ± 10.34 | 22.05 ± 11.44 | 12.82 ± 8.70 | 29.36 ± 17.84 |
Na+ | 2.63 ± 2.11 | 2.18 ± 0.73 | 1.81 ± 0.32 | 2.23 ± 1.89 | 3.41 ± 1.22 |
NH4+ | 1.88 ± 1.50 | 1.61 ± 0.90 | 1.01 ± 0.50 | 1.50 ± 1.20 | 2.61 ± 1.78 |
K+ | 0.55 ± 0.51 | 0.40 ± 0.17 | 0.39 ± 0.42 | 0.38 ± 0.38 | 0.82 ± 0.61 |
Mg2+ | 0.26 ± 0.21 | 0.39 ± 0.34 | 0.11 ± 0.11 | 0.31 ± 0.28 | 0.20 ± 0.23 |
Ca2+ | 1.47 ± 1.22 | 1.66 ± 0.75 | 1.03 ± 0.36 | 1.07 ± 0.91 | 2.04 ± 1.51 |
F− | 0.10 ± 0.07 | 0.08 ± 0.02 | 0.05 ± 0.03 | 0.09 ± 0.07 | 0.12 ± 0.07 |
Cl− | 1.76 ± 1.11 | 1.66 ± 0.79 | 1.00 ± 0.23 | 1.40 ± 0.87 | 2.41 ± 1.25 |
NO3− | 2.45 ± 1.67 | 2.31 ± 0.97 | 1.53 ± 0.57 | 1.98 ± 1.18 | 3.28 ± 2.11 |
SO42− | 2.65 ± 1.75 | 2.51 ± 1.17 | 1.58 ± 0.58 | 2.31 ± 1.46 | 3.43 ± 2.07 |
Identified Sources | Mohal-Kullu | Nainital | Darjeeling | ||||||
---|---|---|---|---|---|---|---|---|---|
PCA | UNMIX | PMF | PCA | UNMIX | PMF | PCA | UNMIX | PMF | |
Soil dust (SD) | 38 | 26 | 23 | 25 | 37 | 26 | 31 | 17 | 23 |
Secondary aerosols (SAs) | 17 | 24 | 13 | 31 | 34 | 18 | 21 | 33 | 14 |
Biomass burning (BB) | - | - | 34 | 20 | 19 | 15 | 28 | 26 | 32 |
Fossil fuel combustion (FFC/CC) | - | - | - | - | - | 22 | 5 | 7 | 8 |
Vehicular emissions (VEs) | 9 | - | 29 | 15 | 7 | 19 | 12 | 17 | 23 |
Sea salts (SS)/sodium magnesium salts (SMS) | 2 | 4 | - | 9 | 3 | - | 3 | - | - |
Combustion (BB+FFC) | 35 | 45 | - | - | - | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choudhary, N.; Rai, A.; Kuniyal, J.C.; Srivastava, P.; Lata, R.; Dutta, M.; Ghosh, A.; Dey, S.; Sarkar, S.; Gupta, S.; et al. Chemical Characterization and Source Apportionment of PM10 Using Receptor Models over the Himalayan Region of India. Atmosphere 2023, 14, 880. https://doi.org/10.3390/atmos14050880
Choudhary N, Rai A, Kuniyal JC, Srivastava P, Lata R, Dutta M, Ghosh A, Dey S, Sarkar S, Gupta S, et al. Chemical Characterization and Source Apportionment of PM10 Using Receptor Models over the Himalayan Region of India. Atmosphere. 2023; 14(5):880. https://doi.org/10.3390/atmos14050880
Chicago/Turabian StyleChoudhary, Nikki, Akansha Rai, Jagdish Chandra Kuniyal, Priyanka Srivastava, Renu Lata, Monami Dutta, Abhinandan Ghosh, Supriya Dey, Sayantan Sarkar, Sakshi Gupta, and et al. 2023. "Chemical Characterization and Source Apportionment of PM10 Using Receptor Models over the Himalayan Region of India" Atmosphere 14, no. 5: 880. https://doi.org/10.3390/atmos14050880
APA StyleChoudhary, N., Rai, A., Kuniyal, J. C., Srivastava, P., Lata, R., Dutta, M., Ghosh, A., Dey, S., Sarkar, S., Gupta, S., Chaudhary, S., Thakur, I., Bawari, A., Naja, M., Vijayan, N., Chatterjee, A., Mandal, T. K., Sharma, S. K., & Kotnala, R. K. (2023). Chemical Characterization and Source Apportionment of PM10 Using Receptor Models over the Himalayan Region of India. Atmosphere, 14(5), 880. https://doi.org/10.3390/atmos14050880