Potential Implications of the Sesquiterpene Presence over the Remote Marine Boundary Layer in the Arctic Region
Abstract
:1. Introduction
2. Methods
2.1. VOC Analysis
2.2. The INTEX-B and the 2016 and 2017 R/V Araon Campaigns
3. Results
3.1. Isoprene Distribution over the North Pacific during the INTEX-B Campaign
3.2. Sesquiterpene Distributions over the Arctic Ocean
4. Discussion and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Charlson, R.J.; Lovelock, J.E.; Andreae, M.O.; Warren, S.G. Oceanic Phytoplankton, Atmospheric Sulfur, Cloud Albedo and Climate. Nature 1987, 326, 655–661. [Google Scholar] [CrossRef]
- Quinn, P.K.; Bates, T.S. The case against climate regulation via oceanic phytoplankton sulphur emissions. Nature 2011, 480, 51–56. [Google Scholar] [CrossRef]
- Zhang, M.; Park, K.-T.; Yan, J.; Park, K.; Wu, Y.; Jang, E.; Gao, W.; Tan, G.; Wang, J.; Chen, L. Atmospheric dimethyl sulfide and its significant influence on the sea-to-air flux calculation over the Southern Ocean. Prog. Oceanogr. 2020, 186, 102392. [Google Scholar] [CrossRef]
- Bonsang, B.; Polle, C.; Lambert, G. Evidence for Marine Production of Isoprene. Geophys. Res. Lett. 1992, 19, 1129–1132. [Google Scholar] [CrossRef]
- Zimmerman, P. Testing for Hydrocarbon Emissions from Vegetation Leaf Litter and Aquatic Surfaces, and Development Methodology for Compiling Biogenic Emission Inventories; U.S. Environmental Protection Agency: Washington, DC, USA, 1979.
- Lamb, B.; Guenther, A.; Gay, D.; Westberg, H. A national inventory of biogenic hydrocarbon emissions. Atmos. Environ. 1987, 21, 1695–1705. [Google Scholar] [CrossRef]
- Plassdulmer, C.; Koppmann, R.; Ratte, M.; Rudolph, J. Light Nonmethane Hydrocarbons in Seawater. Glob. Biogeochem. Cycles 1995, 9, 79–100. [Google Scholar] [CrossRef]
- Guenther, A.; Hewitt, C.N.; Erickson, D.; Fall, R.; Geron, C.; Graedel, T.; Harley, P.; Klinger, L.; Lerdau, M.; McKay, W.A.; et al. A global model of natural volatile organic compound emissions. J. Geophys. Res. 1995, 100, 8873–8892. [Google Scholar] [CrossRef]
- Shaw, S.L.; Chisholm, S.W.; Prinn, R.G. Isoprene production by Prochlorococcus, a marine cyanobacterium, and other phytoplankton. Mar. Chem. 2003, 80, 227–245. [Google Scholar] [CrossRef]
- Bonsang, B.; Gros, V.; Peeken, I.; Yassaa, N.; Bluhm, K.; Zoellner, E.; Sarda-Esteve, R.; Williams, J. Isoprene emission from phytoplankton monocultures: The relationship with chlorophyll-a, cell volume and carbon content. Environ. Chem. 2010, 7, 554–563. [Google Scholar] [CrossRef]
- Shaw, S.L.; Gantt, B.; Meskhidze, N. Production and Emissions of Marine Isoprene and Monoterpenes: A Review. Adv. Meteorol. 2010, 2010, 408696. [Google Scholar] [CrossRef]
- Luo, G.; Yu, F. A numerical evaluation of global oceanic emissions of alpha-pinene and isoprene. Atmos Chem Phys 2010, 10, 2007–2015. [Google Scholar] [CrossRef]
- Gantt, B.; Meskhidze, N. The physical and chemical characteristics of marine primary organic aerosol: A review. Atmos. Chem. Phys. 2013, 13, 3979–3996. [Google Scholar] [CrossRef]
- Colman, J.J.; Swanson, A.L.; Meinardi, S.; Sive, B.C.; Blake, D.R.; Rowland, F.S. Description of the analysis of a wide range of volatile organic compounds in whole air samples collected during PEM-Tropics A and B. Anal. Chem. 2001, 73, 3723–3731. [Google Scholar] [CrossRef]
- Hatch, L.E.; Luo, W.; Pankow, J.F.; Yokelson, R.J.; Stockwell, C.E.; Barsanti, K.C. Identification and quantification of gaseous organic compounds emitted from biomass burning using two-dimensional gas chromatography-time-of-flight mass spectrometry. Atmos. Chem. Phys. 2015, 15, 1865–1899. [Google Scholar] [CrossRef]
- McGregor, L.; Gravell, A.; Allen, I.; Mills, G.; Barden, D.; Bukowski, N.; Smith, S. The Softly-Softly Approach. Anal. Sci. 2015, 401, 501. [Google Scholar]
- Nagalingam, S.; Seco, R.; Musaev, K.; Basu, C.; Kim, S.; Guenther, A. Impact of heat stress on foliar biogenic volatile ofranic compound emission and gene expression in tomato (Solanum lycopersicum) seedlings. Elem. Sci. Anthr. 2022, 10, 00096. [Google Scholar] [CrossRef]
- Kim, S.; Huey, L.G.; Stickel, R.E.; Pierce, R.B.; Chen, G.; Avery, M.A.; Dibb, J.E.; Diskin, G.S.; Sachse, G.M.; McNaughton, C.S.; et al. Airborne measurements of HCl from the marine boundary layer to the lower stratosphere over the North Pacific Ocean during INTEX-B. Atmos. Chem. Phys. Discuss. 2008, 8, 3563–3595. [Google Scholar]
- Mao, J.; Ren, X.; Brune, W.H.; Olson, J.R.; Crawford, J.H.; Fried, A.; Huey, L.G.; Cohen, R.C.; Heikes, B.; Singh, H.B.; et al. Airborne measurement of OH reactivity during INTEX-B. Atmos. Chem. Phys. 2009, 9, 163–173. [Google Scholar] [CrossRef]
- Woodgate, R.A.; Aagaard, K.; Weingartner, T.J. A year in the physical oceanography of the Chukchi Sea: Moored measurements from autumn 1990–1991. Deep. Sea Res. Part II Top. Stud. Oceanogr. 2005, 52, 3116–3149. [Google Scholar] [CrossRef]
- Cassar, N.; Barnett, B.A.; Bender, M.L.; Kaiser, J.; Hamme, R.C.; Tilbrook, B. Continuous High-Frequency Dissolved O2/Ar Measurements by Equilibrator Inlet Mass Spectrometry. Anal. Chem. 2009, 81, 1855–1864. [Google Scholar] [CrossRef] [PubMed]
- Duhl, T.R.; Helmig, D.; Guenther, A. Sesquiterpene emissions from vegetation: A review. Biogeosciences 2008, 5, 761–777. [Google Scholar] [CrossRef]
- Shu, Y.G.; Atkinson, R. Rate Constants for the Gas-Phase Reactions of O-3 with a Series of Terpenes and Oh Radical Formation from the O-3 Reactions with Sesquiterpenes at 296+/-2-K. Int. J. Chem. Kinet. 1994, 26, 1193–1205. [Google Scholar] [CrossRef]
- Shu, Y.H.; Atkinson, R. Atmospheric Lifetimes and Fates of a Series of Sesquiterpenes. J. Geophys. Res.-Atmos. 1995, 100, 7275–7281. [Google Scholar] [CrossRef]
- Lee, A.; Goldstein, A.H.; Kroll, J.H.; Ng, N.L.; Varutbangkul, V.; Flagan, R.C.; Seinfeld, J.H. Gas-phase products and secondary aerosol yields from the photooxidation of 16 different terpenes. J. Geophys. Res.-Atmos. 2006, 111, 17305. [Google Scholar] [CrossRef]
- Edwards, P.M.; Evans, M.J.; Furneaux, K.L.; Hopkins, J.; Ingham, T.; Jones, C.; Lee, J.D.; Lewis, A.C.; Moller, S.J.; Stone, D.; et al. OH reactivity in a South East Asian tropical rainforest during the Oxidant and Particle Photochemical Processes (OP3) project. Atmos. Chem. Phys. 2013, 13, 9497–9514. [Google Scholar] [CrossRef]
- Kim, S.; Kim, S.-Y.; Lee, M.; Shim, H.; Wolfe, G.M.; Guenther, A.B.; He, A.; Hong, Y.; Han, J. Impact of isoprene and HONO chemistry on ozone and OVOC formation in a semirural South Korean forest. Atmos. Chem. Phys. 2015, 15, 4357–4371. [Google Scholar] [CrossRef]
- Kaiser, J.; Skog, K.M.; Baumann, K.; Bertman, S.; Brown, S.B.; Brune, W.; Crounse, J.D.; De Gouw, J.; Edgerton, E.; Feiner, P.A.; et al. Speciation of OH reactivity above the canopy of an isoprene dominated forest. Atmos. Chem. Phys. Discuss. 2016, 16, 9349–9359. [Google Scholar] [CrossRef]
- Kroll, J.H.; Ng, N.L.; Murphy, S.M.; Flagan, R.C.; Seinfeld, J.H. Secondary organic aerosol formation from isoprene photooxidation. Environ. Sci. Technol. 2006, 40, 1869–1877. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, T.; Odum, J.R.; Bowman, F.; Collins, D.; Klockow, D.; Flagan, R.C.; Seinfeld, J.H. Formation of organic aerosols from the oxidation of biogenic hydrocarbons. J. Atmos. Chem. 1997, 26, 189–222. [Google Scholar] [CrossRef]
- Quinn, P.K.; Bates, T.S.; Baum, E.; Doubleday, N.; Fiore, A.M.; Flanner, M.; Fridlind, A.; Garrett, T.J.; Koch, D.; Menon, S.; et al. Short-lived pollutants in the Arctic: Their climate impact and possible mitigation strategies. Atmos. Chem. Phys. 2008, 8, 1723–1735. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, K.; Rodriguez, B.; Thomas, J.; Gu, D.; Zhang, M.; Sarkar, C.; Guenther, A.; Kim, S. Potential Implications of the Sesquiterpene Presence over the Remote Marine Boundary Layer in the Arctic Region. Atmosphere 2023, 14, 823. https://doi.org/10.3390/atmos14050823
Park K, Rodriguez B, Thomas J, Gu D, Zhang M, Sarkar C, Guenther A, Kim S. Potential Implications of the Sesquiterpene Presence over the Remote Marine Boundary Layer in the Arctic Region. Atmosphere. 2023; 14(5):823. https://doi.org/10.3390/atmos14050823
Chicago/Turabian StylePark, Keyhong, Blanca Rodriguez, Jerry Thomas, Dasa Gu, Miming Zhang, Chinmoy Sarkar, Alex Guenther, and Saewung Kim. 2023. "Potential Implications of the Sesquiterpene Presence over the Remote Marine Boundary Layer in the Arctic Region" Atmosphere 14, no. 5: 823. https://doi.org/10.3390/atmos14050823
APA StylePark, K., Rodriguez, B., Thomas, J., Gu, D., Zhang, M., Sarkar, C., Guenther, A., & Kim, S. (2023). Potential Implications of the Sesquiterpene Presence over the Remote Marine Boundary Layer in the Arctic Region. Atmosphere, 14(5), 823. https://doi.org/10.3390/atmos14050823