Effects of Dietary Protein Content and Using Sugar Beet Pulp or Benzoic Acid Supplementations on the Nitrogen Excretion of Fattening Pigs and its Composition
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals, Experimental Design, Diets and Housing
- −
- A commercial, maize, soybean meal-based control diet (C);
- −
- Low-protein diets with 2% protein reduction and amino acid supplementation (LP);
- −
- Sugar-beet-pulp-supplemented diets (S);
- −
- Benzoic-acid-supplemented diets (B).
2.2. Measurement of Nitrogen Forms and Calculations
2.3. pH Measurements
2.4. Statistical Analysis
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- IIR. Hungary Informative Inventory Report 1990–2019. Available online: https://www.ceip.at/status-of-reporting-and-review-results/2021-submission (accessed on 18 July 2021).
- Geicsnek-Koltay, I.A.; Benedek, Z.; Baranyai, N.H.; Such, N.; Pál, L.; Wágner, L.; Bartos, Á.; Kovács, Á.; Poór, J.; Dublecz, K. Impacts of Age, Genotype and Feeding Low-Protein Diets on the N-Balance Parameters of Fattening Pigs. Agriculture 2022, 12, 94. [Google Scholar] [CrossRef]
- National Emission Ceilings (NEC) Directive—(EU) 2016/2284; European Union: Brussels, Belgium, 2016.
- Aarnink, A.J.A.; Verstegen, M.W.A. Nutrition, Key Factor to Reduce Environmental Load from Pig Production. Livest. Sci. 2007, 109, 194–203. [Google Scholar] [CrossRef]
- Bittman, S.; Dedina, M.; Howard, C.M.; Oenema, O.; Sutton, M.A. (Eds.) Options for Ammonia Mitigation Guidance from the UNECE Task Force on Reactive Nitrogen; Centre for Ecology and Hydrology: Edinburgh, UK, 2014. [Google Scholar]
- Boisen, S.; Fernandez, J.A.; Madsen, A. Studies on Ideal Protein Requirement of Pigs From20 to 95 Kg Live Weight. In Proceedings of the 6th International Symposium on Protein Metabolism and Nutrition, Herning, Denmark, 9–14 June 1991; p. 299. [Google Scholar]
- Koch, F. Amino Acid Formulation to Improve Carcass Quality and Limit Nitrogen Load in Waste. In Proceedings of the Carolina Swine Nutrition Conference; Carolina Feed Industry Association: Raleigh, NC, USA, 1990; pp. 76–95. [Google Scholar]
- Van der Peet-Schwering, C.; Voermans, M. Effects of Feeding and HousiI He Ammonia Emission of Growing and Finishing Pig Facilities. In Proceedings of the Rep. Exp. Pig Stn.; Rosmalen, The Netherlands, 1996; pp. 17–19.
- Santonja, G.G.; Georgitzikis, K.; Scalet, B.M.; Montobbio, P.; Roudier, S.; Sancho, L.D. Best Available Techniques (BAT) Reference Document for the Intensive Rearing of Poultry or Pigs; Join Research Center: Seville, Spain, 2017. [Google Scholar]
- Canh, T.T.; Aarnink, A.J.A.; Mroz, Z.; Jongbloed, W.; Schrama, J.W.; Verstegen, M.W.A. Influence of Electrolyte Balance and Acidifying Calcium Salts in the Diet of Growing Finishing Pigs on Urinary PH, Slurry PH, and Ammonia Volatilisation from Slurry. Livest. Prod. Sci. 1998, 56, 1–13. [Google Scholar] [CrossRef]
- Carter, S.D.; Kim, H.J. Technologies to Reduce Environmental Impact of Animal Wastes Associated with Feeding for Maximum Productivity. Anim. Front. 2013, 3, 42–47. [Google Scholar] [CrossRef]
- Gatel, F.; Grosjean, F. Effect of Protein Content of the Diet on Nitrogen Excretion by Pigs. Livest. Prod. Sci. 1992, 31, 109–120. [Google Scholar] [CrossRef]
- Kerr, B.J. Dietary Manipulation to Reduce Environmental Impact. In Proceedings of the 9th International Symposium on Digestive Physiology in Pigs, Banff, AB, Canada, 14 May 2003; pp. 139–158. [Google Scholar]
- Niyazov, N.; Ostrenko, K. Effect of Low-Protein Diets on the Nitrogen Balance and Productivity of Pigs. J. Livest. Sci. 2020, 11, 106–109. [Google Scholar] [CrossRef]
- Powers, W.J.; Zamzow, S.B.; Kerr, B.J. Reduced Crude Protein Effects on Aerial Emissions from Swine. Appl. Eng. Agric. 2007, 23, 539–546. [Google Scholar] [CrossRef]
- Schutte, J.B.; De Jong, J.; Van Kempen, G.J.M. Dietary Protein Is Relation to Requirement and Pollution in Pigs during the Body Weight Range of 20–40 kg. In Nitrogen Flow in Pig Production and Environmental Consequences; Verstegen, M.W.A., den Hartog, L.A., van Kempen, G.J.M., Metz, J.H.M., Eds.; Pudoc: Wageningen, The Netherlands, 1993; pp. 259–263. [Google Scholar]
- Li, Q.F.; Trottier, N.; Powers, W. Feeding Reduced Crude Protein Diets with Crystalline Amino Acids Supplementation Reduce Air Gas Emissions from Housing. J. Anim. Sci. 2015, 93, 721–730. [Google Scholar] [CrossRef]
- Wang, Y.; Zhou, J.; Wang, G.; Cai, S.; Zeng, X.; Qiao, S. Advances in Low-Protein Diets for Swine. J. Anim. Sci. Biotechnol. 2018, 9, 60. [Google Scholar] [CrossRef]
- FVM. Vidékfejlesztési Képzési és Szaktanácsadási Intézet Az Állattartás Környezeti Hatásai, Helyzete És Viszonya a Hazai És EU Szabályozáshoz. Available online: https://docplayer.hu/1648861-Az-allattartas-kornyezeti-hatasai-helyzete-es-viszonya-a-hazai-es-eu-1-szabalyozashoz.html (accessed on 6 December 2021).
- Gay, S.W. Ammonia emissions and animal agriculture. In Virginia Cooperative Extension; VirginiaTech: Blacksburg, VA, USA, 2009; pp. 442–445. [Google Scholar]
- Canh, T.T.; Aarnink, A.J.A.; Schutte, J.B.; Sutton, A.; Langhout, D.J.; Verstegen, M.W.A. Dietary Protein Affects Nitrogen Excretion and Ammonia Emission from Slurry of Growing-Finishing Pigs. Livest. Prod. Sci. 1998, 56, 181–191. [Google Scholar] [CrossRef]
- Dourmad, J.Y.; Henry, Y.; Bourdon, D.; Quiniou, N.; Guillou, D. Effect of Growth Potential and Dietary Protein Input on Growth Performance, Carcass Characteristics and Nitrogen Output in Growing-Finishing Pigs. In Proceedings of the Proceedings Congress on Ni-trogen Flow in Pig Production and Environmental Consequences, Wageningen, The Netherlands, 8 June 1993; pp. 206–211. [Google Scholar]
- Lenis, N.P.; Schutte, J.B. Aminozuurvoorziening van Biggen En Vleesvarkens in Relatie Tot de Stikstofuitscheiding. In Mestproblematiek: Aanpak via de Voeding van Varkens en Pluimvee. Onderzoek Inzake de Mest en Ammoniakproblematiek in de Veehouderij; Jongbloed, A.W., Coppoolse, J., Eds.; Dienst Landbouwkundig Onderzoek: Wageningen, The Netherlands, 1990; Volume 4. [Google Scholar]
- Han, I.K.; Lee, J.H. The Role of Synthetic Amino Acids in Monogastric Animal Production-review. Asian-Australas. J. Anim. Sci. 2000, 13, 543–560. [Google Scholar] [CrossRef]
- Carpenter, D.A.; O’Mara, F.P.; O’Doherty, J.V. The Effect of Dietary Crude Protein Concentration on Growth Performance, Carcass Composition and Nitrogen Excretion in Entire Grower-Finisher Pigs. Irish J. Agric. Food Res. 2004, 43, 227–236. [Google Scholar]
- Zhao, Y.; Tian, G.; Chen, D.; Zheng, P.; Yu, J.; He, J.; Mao, X.; Yu, B. Effects of Varying Levels of Dietary Protein and Net Energy on Growth Performance, Nitrogen Balance and Faecal Characteristics of Growing-Finishing Pigs. Rev. Bras. Zootec. 2019, 48, 20180021. [Google Scholar] [CrossRef]
- Rocha, G.C.; Duarte, M.E.; Kim, S.W. Advances, Implications, and Limitations of Low-Crude-Protein Diets in Pig Production. Animals 2022, 12, 3478. [Google Scholar] [CrossRef]
- Babcsány, I.; Nyári, E.; Warning, S.; Lynott, D.; Csizmazia, L.; Szélesné Kutas, B.; Csáki, Z.S.; Mayer, A.; Demeter, J.; Ács, P.; et al. Útmutató az Elérhető Legjobb Technika Meghatározásához; Integrált Szennyezés-Megelő Zési És Környezet-Egészségügyi Főosztály: Budapest, Hungary, 2004. [Google Scholar]
- Figueroa, J.; Lewis, A.; Miller, P.S. Nitrogen Balance and Growth Trials with Pigs Fed Low-Crude Protein, Amino Acid-Supplemented Diets. Neb. Swine Rep. 2000, 110, 26–28. [Google Scholar]
- O’Shea, C.J.; Lynch, B.; Lynch, M.B.; Callan, J.J.; O’Doherty, J.V. Ammonia Emissions and Dry Matter of Separated Pig Manure Fractions as Affected by Crude Protein Concentration and Sugar Beet Pulp Inclusion of Finishing Pig Diets. Agric. Ecosyst. Environ. 2009, 131, 154–160. [Google Scholar] [CrossRef]
- Portejoie, S.; Dourmad, J.Y.; Martinez, J.; Lebreton, Y. Effect of Lowering Dietary Crude Protein on Nitrogen Excretion, Manure Composition and Ammonia Emission from Fattening Pigs. Livest. Prod. Sci. 2004, 1–2, 45–55. [Google Scholar] [CrossRef]
- O’Connell, J.M.; Callan, J.J.; O’Doherty, J.V. The Effect of Dietary Crude Protein Level, Cereal Type and Exogenous Enzyme Supplementation on Nutrient Digestibility, Nitrogen Excretion, Faecal Volatile Fatty Acid Concentration and Ammonia Emissions from Pigs. Anim. Feed Sci. Technol. 2006, 127, 73–88. [Google Scholar] [CrossRef]
- Aarnink, A.J.A.; Cahn, T.T.; Mroz, Z. Reduction of Ammonia Volatilization by Housing and Feeding in Fattening Pig-Geries. In Ammonia and Odour Emission from Animal Production Facilities; Voermans, J.A.M., Monteney, G.J., Eds.; Animal Nutrition, WIAS: Vinkeloord, The Netherlands, 1997; pp. 283–291. [Google Scholar]
- Clark, O.G.; Moehn, S.; Edeogu, I.; Price, J.; Leonard, J. Manipulation of Dietary Protein and Nonstarch Polysaccharide to Control Swine Manure Emissions. J. Environ. Qual. 2005, 34, 1461–1466. [Google Scholar] [CrossRef]
- Jarret, G.; Cerisuelo, A.; Peu, P.; Martinez, J.; Dourmad, J.Y. Impact of Pig Diets with Different Fibre Contents on the Composition of Excreta and Their Gaseous Emissions and Anaerobic Digestion. Agric. Ecosyst. Environ. 2012, 160, 51–58. [Google Scholar] [CrossRef]
- Philippe, F.X.; Cabaraux, J.F.; Nicks, B. Ammonia Emissions from Pig Houses: Influencing Factors and Mitigation Techniques. Agric. Ecosyst. Environ. 2011, 141, 245–260. [Google Scholar] [CrossRef]
- Low, A.G. Role of Diet. In Recent Advances in Animal Nutrition; Haresign, W., Cole, D.J.A., Eds.; Butterworths: London, UK, 1985; p. 87. [Google Scholar]
- Philippe, F.-X.; Laitat, M.; Wavreille, J.; Nicks, B.; Cabaraux, J.-F.; Philippe, F.-X.; Laitat, M.; Wavreille, J.; Nicks, B.; Cabaraux, J.-F. Effects of a High-Fibre Diet on Ammonia and Greenhouse Gas Emissions from Gestating Sows and Fattening Pigs. Atmos. Environ. 2015, 109, 197–204. [Google Scholar] [CrossRef]
- Nørgaard, J.V.; Fernández, J.A.; Eriksen, J.; Olsen, O.H.; Carlson, D.; Poulsen, H.D. Urine Acidification and Mineral Metabolism in Growing Pigs Fed Diets Supplemented with Dietary Methionine and Benzoic Acid. Livest. Sci. 2010, 134, 113–115. [Google Scholar] [CrossRef]
- Bühler, K.; Wenk, C.; Broz, J.; Gebert, S. Influence of Benzoic Acid and Dietary Protein Level on Performance, Nitrogen Metabolism and Urinary PH in Growing-Finishing Pigs. Arch. Anim. Nutr. 2006, 60, 382–389. [Google Scholar] [CrossRef] [PubMed]
- Le Dinh, P.; van der Peet-Schwering, C.M.C.; Ogink, N.W.M.; Aarnink, A.J.A. Effect of Diet Composition on Excreta Composition and Ammonia Emissions from Growing-Finishing Pigs. Animals 2022, 12, 229. [Google Scholar] [CrossRef] [PubMed]
- Le Dinh, P.; Aarnink, A. Nutritional Strategies to Reduce Emissions from Waste in Pig Production Phung Lê Đình, Hue University of Agriculture and Forestry, University and Research, The Netherlands. In Achieving Sustainable Production of Pig Meat; Burleigh Dodds Science Publishing: Wageningen, The Netherlands, 2018; Volume 1, pp. 243–264. ISBN 9781351114493. [Google Scholar]
- Magyar, M.; Pirkó, B.; Seenger, J.K.; Baranyai, N.H.; Dublecz, K.; Vojtela, T.; Rák, R.; Borka, G.; Szabó, A.; Benedek, Z. Advisory and Knowledge Transfer Tool for Ammonia Emission Mitigation on Pig Farms in Hungary. Appl. Sci. 2021, 11, 5970. [Google Scholar] [CrossRef]
- Noblet, J.; Perez, J.M. Prediction of digestibility of nutrients and energy values of pig diets from chemical analysis. J. Anim. Sci. 1993, 77, 3389–3398. [Google Scholar] [CrossRef]
- Council, N.R. Nutrient Requirements of Swine: Eleventh Revised Edition; National Academies Press: Washington, DC, USA, 2012; ISBN 978-0-309-48903-4. [Google Scholar]
- Publications Office of the EU. EMEP/EEA Air Pollutant Emission Inventory Guidebook; Publications Office of the EU: Luxembourg, 2019. [Google Scholar]
- Intergovernmental Panel on Climate Change Emissions from Livestock and Manure Management. 2019 Refinement 2006 IPCC Greenhause Gas Guidelines. 2019. Available online: https://www.ipcc.ch/report/2019-refinement-to-the-2006-ipcc-guidelines-for-national-greenhouse-gas-inventories/ (accessed on 6 February 2023).
- Mroz, Z.; Jongbloed, A.W.; Partanen, K.H.; Vreman, K.; Kemme, P.A.; Jogut, J. The Effects of Calcium Benzoate in Diets with or without Organic Acids on Dietary Buffering Capacity, Apparent Digestibility, Retention of Nutrients and Manure Characteristics in Swine. J. Anim. Sci. 2000, 78, 2622–2632. [Google Scholar] [CrossRef] [PubMed]
- Canh, T.T.; Verstegen, M.W.A.; Aarnink, A.J.A.; Schrama, J.W. Influence of Dietary Factors on Nitrogen Partitioning and Composition of Urine and Feces of Fattening Pigs. J. Anim. Sci. 1997, 75, 700–706. [Google Scholar] [CrossRef]
- Canh, T.T.; Sutton, A.L.; Aarnink, A.J.A.; Verstegen, M.W.A.; Schrama, J.W.; Bakker, G.C.M. Dietary Carbohydrates Alter the Fecal Composition and PH and the Ammonia Emission from Slurry of Growing Pigs. J. Anim. Sci. 1998, 76, 1887–1895. [Google Scholar] [CrossRef]
- EU 2017/302 Best Available Techniques (BAT) Conclusions, under Directive 2010/75/EU of the European Parliament and of the Council, for the Intensive Rearing of Poultry or Pigs. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=uriserv%3AOJ.L_.2017.043.01.0231.01.ENG (accessed on 6 February 2023).
- Dublecz, K.; Husvéth, F.; Wágner, L.; Márton, A.; Koltay, I.; Such, N.; Rawash, M.A.; Mezőlaki, Á.; Pál, L.; Molnár, A. Feeding Low Protein Diets Poultry and Pig Diets—Physiological, Economic and Environmental Aspects. In Proceedings of the International Symposium on Animal Science, Herceg Novi, Montenegro, 3–8 June 2019; pp. 20–29. [Google Scholar]
- Shriver, J.A.; Carter, S.D.; Sutton, A.L.; Richert, B.T.; Senne, B.W.; Pettey, L.A. Effects of Adding Fiber Sources to Reduced-Crude Protein, Amino Acid-Supplemented Diets on Nitrogen Excretion, Growth Performance, and Carcass Traits of Finishing Pigs. J. Anim. Sci. 2003, 81, 492–502. [Google Scholar] [CrossRef] [PubMed]
- Aarnink, A.J.A.; Hol, J.M.G.; Nijeboer, G.M. Het Effect van Toevoeging van Benzoëzuur (1% VevoVitall®) Aan Vleesvarkensvoer Op de Ammoniakemissiereductie Is Bepaald En Bedroeg Gemiddeld 15.8% Ten Opzichte van Voer Zonder VevoVitall®; Wageningen University and Research Centre: Wageningen, The Netherlands, 2008. [Google Scholar]
- Guingand, N.; Demerson, L. Jiri Broz Incidence de l’incorporation d’acide Benzoïque Dans l’alimentation Des Porcs Charcutiers Sur Les Performances Zootechniques et l’émission d’ammoniac. J. Rech. Porc. 2005, 37, 1–6. [Google Scholar]
- Daumer, M.L.; Guiziou, F.; Dourmad, J.-Y. Influence de La Teneur En Protéines de l’aliment et de l’addition d’acide Benzoïque et de Phytase Microbienne Sur Les Caractéristiques des Effluents Chez Le Porc à l’engraissement. J. Rech. Porc. 2007, 39, 13–22. [Google Scholar]
- Shu, Y.; Yu, B.; He, J.; Yu, J.; Zheng, P.; Yuan, Z.; Chen, D.; Mao, X. Excess of Dietary Benzoic Acid Supplementation Leads to Growth Retardation, Hematological Abnormality and Organ Injury of Piglets. Livest. Sci. 2016, 190, 94–103. [Google Scholar] [CrossRef]
- Gloaguen, M.; Le Floc’h, N.; Corrent, E.; Primot, Y.; van Milgen, J. The Use of Free Amino Acids Allows Formulating Very Low Crude Protein Diets for Piglets. J. Anim. Sci. 2014, 92, 637–644. [Google Scholar] [CrossRef]
Ingredients (%) | C | LP | C + B | C + S | LP + S | LP + B |
---|---|---|---|---|---|---|
Maize | 53.1 | 51.9 | 52.1 | 42.3 | 58.6 | 51.2 |
Soybean meal | 24.1 | 15.3 | 24.3 | 24.3 | 18.6 | 15.4 |
Bran | - | 9.3 | - | - | - | 9.4 |
Barley | 20.0 | 20.0 | 20.0 | 20.0 | 9.5 | 20.0 |
Sugar beet pulp | - | - | - | 10.0 | 10.0 | - |
Sunflower oil | 0.1 | - | 0.3 | 0.8 | - | - |
Limestone | 1.4 | 1.4 | 1.4 | 1.2 | 1.2 | 1.4 |
MCP | 0.5 | 0.6 | 0.5 | 0.5 | 0.6 | 0.6 |
Salt | 0.4 | 0.4 | 0.4 | 0.4 | 0.4 | 0.4 |
Premix * | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 |
L-Lysine | 0.2 | 0.5 | 0.2 | 0.2 | 0.4 | 0.5 |
DL-Methionine | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 |
L-Threonine | - | 0.1 | - | 0.1 | 0.1 | 0.1 |
L-Valine | - | 0.1 | - | - | 0.1 | 0.1 |
L-Tryptophan | - | 0.1 | - | - | 0.1 | 0.1 |
Ca-benzoate | - | - | 0.5 | - | - | 0.5 |
Nutrient content (%) | ||||||
DE (MJ/kg) | 13.90 | 13.70 | 13.80 | 13.90 | 13.80 | 13.80 |
Dry matter | 88.30 | 87.90 | 88.40 | 88.30 | 88.20 | 88.40 |
Crude protein | 16.50 | 14.30 | 17.00 | 16.80 | 14.40 | 14.60 |
Crude fat | 2.60 | 3.00 | 3.20 | 3.00 | 2.60 | 2.80 |
Crude fiber | 3.20 | 3.00 | 4.60 | 3.00 | 3.80 | 3.50 |
Crude ash | 4.90 | 5.20 | 5.30 | 4.80 | 4.70 | 4.80 |
Lysine | 1.06 | 1.02 | 0.98 | 0.95 | 0.99 | 0.94 |
Methionine | 0.39 | 0.37 | 0.38 | 0.39 | 0.38 | 0.37 |
Methionine + Cystine | 0.70 | 0.64 | 0.69 | 0.68 | 0.65 | 0.63 |
Threonine | 0.71 | 0.70 | 0.67 | 0.67 | 0.69 | 0.65 |
Valine | 0.74 | 0.64 | 0.78 | 0.75 | 0.69 | 0.66 |
Arginine | 0.96 | 0.79 | 1.06 | 1.00 | 0.88 | 0.89 |
Ca | 0.60 | 0.60 | 0.70 | 0.70 | 0.60 | 0.60 |
P | 0.50 | 0.40 | 0.50 | 0.50 | 0.50 | 0.50 |
C | LP | C + B | C + S | LP + B | LP + S | |
---|---|---|---|---|---|---|
start | 58.65 ± 1.46 | 60.88 ± 2.11 | 55.97 ± 1.86 | 54.90 ± 3.20 | 59.69 ± 2.07 | 56.98 ± 1.65 |
end | 63.04 ± 1.44 | 64.95 ± 2.33 | 60.28 ± 1.19 | 59.54 ± 3.13 | 63.42 ± 1.77 | 59.43 ± 1.37 |
Treatments | N Intake | Fecal N Excretion | Urinary N Excretion (g/day) | Total N Excretion (g/day) | |
---|---|---|---|---|---|
(g/day) | (g/day) | ||||
C | 50.64 | 6.79 b | 19.22 | 26.01 | |
C + B | 50.92 | 7.10 b | 18.96 | 26.10 | |
C + S | 50.59 | 10.22 a | 15.77 | 25.98 | |
LP | 43.56 | 7.23 b | 15.34 | 22.57 | |
LP + B | 44.47 | 7.13 b | 17.21 | 24.33 | |
LP + S | 43.68 | 7.28 b | 14.30 | 21.58 | |
SEM | 0.267 | 0.580 | 0.572 | ||
p-values | 0.000 | 0.065 | 0.064 | ||
dietary protein | C | 50.72 | 8.04 a | 17.98 a | 26.02 a |
LP | 43.91 | 7.21 b | 15.62 b | 22.83 b | |
feed additives | Ø | 46.78 | 7.03 b | 17.11 | 24.13 |
B | 47.40 | 7.11 b | 18.00 | 25.12 | |
S | 46.82 | 8.62 a | 14.97 | 23.58 | |
SEM | 1.534 | 3.33 | 3.291 | ||
p-values | |||||
dietary protein | 0.044 | 0.034 | 0.005 | ||
feed additives | 0.002 | 0.068 | 0.542 | ||
dietary protein × feed additives | 0.003 | 0.600 | 0.575 |
Treatments | N Digestibility (%) | TAN (%) | N Retention (%) | Urinary pH | |
---|---|---|---|---|---|
C | 86.59 a | 74.10 a | 48.64 | 8.92 | |
C + B | 86.06 a | 72.54 a | 48.83 | 8.53 | |
C + S | 79.80 b | 60.32 b | 48.64 | 8.85 | |
LP | 83.41 ab | 67.04 ab | 48.19 | 7.70 | |
LP + B | 83.98 ab | 70.29 ab | 45.29 | 7.68 | |
LP + S | 83.34 ab | 66.04 ab | 50.59 | 8.65 | |
SEM | 0.466 | 1.034 | 1.000 | 0.529 | |
p-values | 0.002 | 0.008 | 0.842 | 0.000 | |
dietary protein | C | 84.15 | 68.98 | 48.70 | 8.77 a |
LP | 83.57 | 67.78 | 48.02 | 8.01 b | |
feed additives | Ø | 84.85 a | 70.24 a | 48.39 | 8.26 b |
B | 84.92 a | 71.31 a | 46.89 | 8.07 b | |
S | 81.73 b | 63.43 b | 49.70 | 8.74 a | |
SEM | 3.038 | 6.890 | 6.307 | 0.568 | |
p-values | |||||
dietary protein | 0.490 | 0.553 | 0.772 | 0.000 | |
feed additives | 0.002 | 0.004 | 0.670 | 0.000 | |
dietary protein × feed additives | 0.005 | 0.045 | 0.629 | 0.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dublecz, K.; Geicsnek-Koltay, I.A.; Such, N.; Benedek, Z.; Kovács, Á.; Bartos, Á.; Poór, J.; Pál, L. Effects of Dietary Protein Content and Using Sugar Beet Pulp or Benzoic Acid Supplementations on the Nitrogen Excretion of Fattening Pigs and its Composition. Atmosphere 2023, 14, 776. https://doi.org/10.3390/atmos14050776
Dublecz K, Geicsnek-Koltay IA, Such N, Benedek Z, Kovács Á, Bartos Á, Poór J, Pál L. Effects of Dietary Protein Content and Using Sugar Beet Pulp or Benzoic Acid Supplementations on the Nitrogen Excretion of Fattening Pigs and its Composition. Atmosphere. 2023; 14(5):776. https://doi.org/10.3390/atmos14050776
Chicago/Turabian StyleDublecz, Károly, Ilona Anna Geicsnek-Koltay, Nikoletta Such, Zsuzsanna Benedek, Ákos Kovács, Ádám Bartos, Judit Poór, and László Pál. 2023. "Effects of Dietary Protein Content and Using Sugar Beet Pulp or Benzoic Acid Supplementations on the Nitrogen Excretion of Fattening Pigs and its Composition" Atmosphere 14, no. 5: 776. https://doi.org/10.3390/atmos14050776
APA StyleDublecz, K., Geicsnek-Koltay, I. A., Such, N., Benedek, Z., Kovács, Á., Bartos, Á., Poór, J., & Pál, L. (2023). Effects of Dietary Protein Content and Using Sugar Beet Pulp or Benzoic Acid Supplementations on the Nitrogen Excretion of Fattening Pigs and its Composition. Atmosphere, 14(5), 776. https://doi.org/10.3390/atmos14050776